JPH0690064A - Manufacture of semiconductor laser element - Google Patents

Manufacture of semiconductor laser element

Info

Publication number
JPH0690064A
JPH0690064A JP26418192A JP26418192A JPH0690064A JP H0690064 A JPH0690064 A JP H0690064A JP 26418192 A JP26418192 A JP 26418192A JP 26418192 A JP26418192 A JP 26418192A JP H0690064 A JPH0690064 A JP H0690064A
Authority
JP
Japan
Prior art keywords
compound semiconductor
type compound
layer
conductivity type
conductive type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26418192A
Other languages
Japanese (ja)
Inventor
Takeshi Yukitani
武 行谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP26418192A priority Critical patent/JPH0690064A/en
Publication of JPH0690064A publication Critical patent/JPH0690064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a semiconductor laser element which can improve reliability by eliminating the distortion of a buried layer. CONSTITUTION:A mesa-stripe-shaped part in <011> or <0-11> direction where a first conductive type compound semiconductor clad layer 12, an active layer 13, and a second conductive type compound semiconductor clad layer 14 are laminated successively is formed on the surface of a first conductive type compound semiconductor substrate 11, then the side surface of the mesa-stripe-shaped part is buried successively by a second conductive type compound semiconductor current rejection layer 15 and a first conductive type compound semiconductor current block layer 16 while leaving an upper-edge part by the organic metal vapor growth (MOCVD) method, and then a second conductive type compound semiconductor clad layer 17 is laminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機金属気相成長(M
OCVD)法を用いた半導体レーザ素子の製造方法に関
する。
BACKGROUND OF THE INVENTION The present invention relates to metal organic chemical vapor deposition (M
The present invention relates to a method for manufacturing a semiconductor laser device using the OCVD method.

【0002】[0002]

【従来技術】従来の埋め込み型半導体レーザ素子は、例
えば、有機金属気相成長(MOCVD)法を用いて、次
のような工程で製造されている。即ち、 1)n−InP基板1上にn−InPバッファ層2、多
重量子井戸活性層3、p−InPクラッド層4を順次積
層する(図2(a))。 2)次いで、このウェハ上にフォトリソグラフィの手法
を用いて、SiNX などの誘電体膜からなる選択成長マ
スク9を形成し、次いで、この選択成長マスク9を利用
してn−InPバッファ層2までエッチングし、メサを
形成する(図2(b))。 3)次いで、メサの両脇にp−InP電流狭窄層5とn
─InP電流狭窄層6を積層する(図2(c))。 4)次いで、選択成長マスク9を除去し、平坦な表面を
得、電極との接触面を大きくするために、p−InPク
ラッド層7、p−GaInAsコンタクト層8を積層す
る。最後に、電極9、10を形成する(図2(d))。
この製造方法では、有機金属気相成長(MOCVD)法
を3回にわたり用いている。
2. Description of the Related Art A conventional buried type semiconductor laser device is manufactured in the following steps using, for example, a metal organic chemical vapor deposition (MOCVD) method. That is, 1) The n-InP buffer layer 2, the multiple quantum well active layer 3, and the p-InP clad layer 4 are sequentially stacked on the n-InP substrate 1 (FIG. 2A). 2) Next, a selective growth mask 9 made of a dielectric film such as SiN x is formed on this wafer by using a photolithography technique, and then the n-InP buffer layer 2 is formed using this selective growth mask 9. To form a mesa (FIG. 2B). 3) Next, p-InP current confinement layer 5 and n are formed on both sides of the mesa.
—Laying the InP current constriction layer 6 (FIG. 2C). 4) Next, the selective growth mask 9 is removed, a p-InP clad layer 7 and a p-GaInAs contact layer 8 are laminated in order to obtain a flat surface and increase the contact surface with the electrode. Finally, the electrodes 9 and 10 are formed (FIG. 2D).
In this manufacturing method, the metal organic chemical vapor deposition (MOCVD) method is used three times.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
ような半導体レーザ素子の製造方法には次のような問題
があった。即ち、選択成長マスクの下、エッチングされ
たメサ側面に電流狭窄層を成長させる際に、マスクによ
り電流狭窄層に歪みが導入され、半導体レーザ素子の信
頼性が低下する。
However, the method of manufacturing a semiconductor laser device as described above has the following problems. That is, when the current confinement layer is grown on the side surface of the etched mesa under the selective growth mask, strain is introduced into the current confinement layer by the mask, and the reliability of the semiconductor laser device is reduced.

【0004】[0004]

【課題を解決するための手段】本発明は上記問題点を解
決した半導体レーザ素子の製造方法を提供するもので、
第1導電型化合物半導体基板面上に、第1導電型化合物
半導体クラッド層、活性層および第2導電型化合物半導
体クラッド層が順次積層された<011>または<0
−11>方向のメサストライプ形状部を形成し、次い
で、有機金属気相成長(MOCVD)法により、メサス
トライプ形状部側面を上端部分を残して第2導電型化合
物半導体電流阻止層、第1導電型化合物半導体電流阻止
層で順次埋め込み、次いで、第2導電型化合物半導体ク
ラッド層を積層することを特徴とするものである。
The present invention provides a method of manufacturing a semiconductor laser device which solves the above problems.
<011> or <0> in which a first conductivity type compound semiconductor clad layer, an active layer, and a second conductivity type compound semiconductor clad layer are sequentially stacked on the surface of the first conductivity type compound semiconductor substrate.
The mesa stripe shape portion in the −11> direction is formed, and then the second conductivity type compound semiconductor current blocking layer and the first conductivity type metal organic vapor phase epitaxy (MOCVD) method is used to leave the side surface of the mesa stripe shape portion at the upper end. It is characterized in that a type compound semiconductor current blocking layer is sequentially buried, and then a second conductivity type compound semiconductor clad layer is laminated.

【0005】[0005]

【作用】本発明は、有機金属気相成長法では、(11
1)面上にはエピタキシャル層が成長しにくいという現
象を利用したものである。即ち、<011>または<0
−11>方向のメサストライプ形状部を形成し、その
側面を第2導電型化合物半導体電流阻止層で埋め込む
と、メサストライプ形状部上面には(111)面を有す
る第2導電型化合物半導体層が積層する。次いで、第1
導電型化合物半導体電流阻止層で順次埋め込むと、メサ
ストライプ形状部上面の第2導電型化合物半導体層の上
には第1導電型化合物半導体層は積層しない。こうする
と、選択成長マスクを用いないため歪みのない電流阻止
層を形成することができる。従って、その上に第2導電
型化合物半導体クラッド層を積層すると、メサストライ
プ形状部側面ではpn逆接合が形成されるが、メサスト
ライプ形状部上面には形成されず、注入電流をメサスト
ライプ形状部上面に狭窄することができる。
According to the present invention, in the metal organic chemical vapor deposition method, (11
1) It utilizes the phenomenon that an epitaxial layer is difficult to grow on the surface. That is, <011> or <0
When a mesa stripe shape portion in the −11> direction is formed and the side surface thereof is filled with a second conductivity type compound semiconductor current blocking layer, a second conductivity type compound semiconductor layer having a (111) plane is formed on the upper surface of the mesa stripe shape portion. Stack. Then the first
When the conductive type compound semiconductor current blocking layer is sequentially buried, the first conductive type compound semiconductor layer is not stacked on the second conductive type compound semiconductor layer on the upper surface of the mesa stripe shape portion. In this case, since the selective growth mask is not used, a strain-free current blocking layer can be formed. Therefore, when the second conductivity type compound semiconductor clad layer is laminated thereon, the pn reverse junction is formed on the side surface of the mesa stripe shape portion, but is not formed on the upper surface of the mesa stripe shape portion, and the injection current is applied to the mesa stripe shape portion. The upper surface can be narrowed.

【0006】[0006]

【実施例】以下、図面に示した実施例に基づいて本発明
を詳細に説明する。図1は本発明にかかる半導体レーザ
素子の一実施例の工程説明図であり、その工程は以下の
通りである。即ち、 1)(100)n−InP基板11面上にn−InPバ
ッファ層12、多重量子井戸活性層13、p−InPク
ラッド層14を有機金属気相成長法を用いて順次積層す
る(図1(a))。 2)次いで、このウェハ上にフォトリソグラフィとエッ
チングの手法を用いて、高さ2.5μm、幅1.5μm
で<011>方向のメサストライプを形成する(図1
(b))。 3)次いで、有機金属気相成長法により、p−InP層
を積層し、n−InPバッファ層12上に2.0μm厚
さのp−InP電流阻止層15を、メサ上にp−InP
クラッド層15aを積層する。この際、p−InPクラ
ッド層15aは厚さが約1μmで成長が停止し、(11
1)面をなしている。次いで、n−InP層を積層し、
メサ側面にメサ上端部を残すように高さ0.8μmのn
−InP電流阻止層16を積層する。この際、n−In
P層は(111)面を有するp−InPクラッド層15
a上には積層しない。次いで、p−InPクラッド層1
7、p−GaInAsコンタクト層18を積層する。本
実施例によれば、気相成長回数は2回ですむ。なお、化
合物半導体材質は上記実施例に限定されることはなく、
また、p、nの導電型を逆にしてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 is a process explanatory view of an embodiment of a semiconductor laser device according to the present invention, and the process is as follows. That is, 1) The n-InP buffer layer 12, the multiple quantum well active layer 13, and the p-InP clad layer 14 are sequentially laminated on the surface of the (100) n-InP substrate 11 by using the metal organic chemical vapor deposition method (FIG. 1 (a)). 2) Next, using a photolithography and etching technique on this wafer, height 2.5 μm, width 1.5 μm
To form a mesa stripe in the <011> direction (see FIG. 1).
(B)). 3) Next, a p-InP layer is stacked by a metal organic chemical vapor deposition method, a 2.0 μm-thick p-InP current blocking layer 15 is formed on the n-InP buffer layer 12, and p-InP is formed on the mesa.
The clad layer 15a is laminated. At this time, the growth of the p-InP clad layer 15a is stopped at a thickness of about 1 μm, and (11
1) It is a face. Then, an n-InP layer is laminated,
N with a height of 0.8 μm so that the top of the mesa is left on the side of the mesa
-InP current blocking layer 16 is laminated. At this time, n-In
The P layer is a p-InP clad layer 15 having a (111) plane.
It is not laminated on a. Then, p-InP clad layer 1
7. p-GaInAs contact layer 18 is laminated. According to the present embodiment, the number of vapor phase growth times is two. The compound semiconductor material is not limited to the above-mentioned embodiment,
Further, the conductivity types of p and n may be reversed.

【0007】[0007]

【発明の効果】以上説明したように本発明によれば、第
1導電型化合物半導体基板面上に、第1導電型化合物半
導体クラッド層、活性層および第2導電型化合物半導体
クラッド層が順次積層された<011>または<0 −
11>方向のメサストライプ形状部を形成し、次いで、
有機金属気相成長(MOCVD)法により、メサストラ
イプ形状部側面を上端部分を残して第2導電型化合物半
導体電流阻止層、第1導電型化合物半導体電流阻止層で
順次埋め込み、次いで、第2導電型化合物半導体クラッ
ド層を積層するため、選択成長用マスクを使用しないの
で、埋め込み成長の際に歪みがはいることがなく、素子
の信頼性が向上し、また、気相成長回数が減少するとい
う優れた効果がある。
As described above, according to the present invention, the first conductivity type compound semiconductor clad layer, the active layer and the second conductivity type compound semiconductor clad layer are sequentially laminated on the surface of the first conductivity type compound semiconductor substrate. <011> or <0 −
11> direction mesa stripe shape part is formed, and then
By the metal organic chemical vapor deposition (MOCVD) method, the side surface of the mesa stripe shape part is sequentially filled with the second conductivity type compound semiconductor current blocking layer and the first conductivity type compound semiconductor current blocking layer, leaving the upper end portion, and then the second conductivity type. Since a type compound semiconductor clad layer is laminated, a mask for selective growth is not used, so there is no strain during buried growth, the device reliability is improved, and the number of vapor phase growth is reduced. It has an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(c)は本発明に係る半導体レーザ素
子の製造方法の一実施例の工程説明図である。
1A to 1C are process explanatory views of an embodiment of a method for manufacturing a semiconductor laser device according to the present invention.

【図2】(a)〜(d)は従来の半導体レーザ素子の製
造方法の工程説明図である。
2A to 2D are process explanatory views of a conventional method for manufacturing a semiconductor laser device.

【符号の説明】[Explanation of symbols]

11 n−InP基板 12 n−InPバッファ層 13 多重量子井戸活性層 14 p−InPクラッド層 15 p−InP電流阻止層 15a p−InPクラッド層 16 n−InP電流阻止層 17 p−InPクラッド層 18 p−GaInAsコンタクト層 11 n-InP substrate 12 n-InP buffer layer 13 multiple quantum well active layer 14 p-InP clad layer 15 p-InP current blocking layer 15a p-InP clad layer 16 n-InP current blocking layer 17 p-InP clad layer 18 p-GaInAs contact layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型化合物半導体基板面上に、第
1導電型化合物半導体クラッド層、活性層および第2導
電型化合物半導体クラッド層が順次積層された<011
>または<0 −11>方向のメサストライプ形状部を
形成し、次いで、有機金属気相成長(MOCVD)法に
より、メサストライプ形状部側面を上端部分を残して第
2導電型化合物半導体電流阻止層、第1導電型化合物半
導体電流阻止層で順次埋め込み、次いで、第2導電型化
合物半導体クラッド層を積層することを特徴とする半導
体レーザ素子の製造方法。
1. A first conductivity type compound semiconductor clad layer, an active layer and a second conductivity type compound semiconductor clad layer are sequentially stacked on a surface of a first conductivity type compound semiconductor substrate <011.
Of the second conductivity type compound semiconductor current blocking layer by forming a mesa stripe-shaped portion in the <> or <0-11> direction and then leaving the upper end portion on the side surface of the mesa stripe-shaped portion by a metal organic chemical vapor deposition (MOCVD) method. A method of manufacturing a semiconductor laser device, comprising: sequentially burying a first conductivity type compound semiconductor current blocking layer, and then stacking a second conductivity type compound semiconductor clad layer.
JP26418192A 1992-09-07 1992-09-07 Manufacture of semiconductor laser element Pending JPH0690064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26418192A JPH0690064A (en) 1992-09-07 1992-09-07 Manufacture of semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26418192A JPH0690064A (en) 1992-09-07 1992-09-07 Manufacture of semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH0690064A true JPH0690064A (en) 1994-03-29

Family

ID=17399595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26418192A Pending JPH0690064A (en) 1992-09-07 1992-09-07 Manufacture of semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH0690064A (en)

Similar Documents

Publication Publication Date Title
JP3019884B2 (en) Semiconductor device and manufacturing method thereof
JP2827326B2 (en) Manufacturing method of semiconductor laser
JPS60169184A (en) Semiconductor laser
JPH0690064A (en) Manufacture of semiconductor laser element
JPH03250684A (en) Manufacture of mesa buried type optical semiconductor device
JPH0474488A (en) Semiconductor laser and manufacture thereof
KR100281919B1 (en) Semiconductor laser diode and manufacturing method thereof
JPS62179790A (en) Semiconductor laser
JPH084180B2 (en) Semiconductor laser device and method of manufacturing the same
JPH01281785A (en) Semiconductor laser and its manufacture
JPS5884483A (en) Buried hetero-structure semiconductor laser
JPS59181084A (en) Semiconductor laser device
US7598106B2 (en) Optical semiconductor device and fabrication method therefor
JP2921925B2 (en) Method for manufacturing semiconductor device
JP4441085B2 (en) Semiconductor laser device and manufacturing method thereof
JPH07297497A (en) Semiconductor laser and its manufacturing method
JPS6244440B2 (en)
JPH0677605A (en) Semiconductor element and fabrication thereof
JP2566985B2 (en) Semiconductor device and manufacturing method thereof
JPH06350188A (en) Semiconductor laser element
JPH07120832B2 (en) Semiconductor laser device
JPS63271991A (en) Manufacture of semiconductor laser element
JPS63104485A (en) Manufacture of semiconductor device
JPH0677600A (en) Manufacture of semiconductor laser element
JPS6289384A (en) Manufacture of semiconductor laser