JPS59208884A - Manufacture of buried method type semiconductor laser element - Google Patents

Manufacture of buried method type semiconductor laser element

Info

Publication number
JPS59208884A
JPS59208884A JP8265183A JP8265183A JPS59208884A JP S59208884 A JPS59208884 A JP S59208884A JP 8265183 A JP8265183 A JP 8265183A JP 8265183 A JP8265183 A JP 8265183A JP S59208884 A JPS59208884 A JP S59208884A
Authority
JP
Japan
Prior art keywords
layer
buried
gaas
type
growth promoting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8265183A
Other languages
Japanese (ja)
Inventor
Noriyuki Shige
重 則幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8265183A priority Critical patent/JPS59208884A/en
Publication of JPS59208884A publication Critical patent/JPS59208884A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Abstract

PURPOSE:To improve the wetting property of solder at the time of mounting the titled element by flatterning the surface on the side of a multilayer structure by a method wherein a growth promoting layer wherein a GaAs layer grows also at the stripe part is previously provided on a P type clad layer, when the GaAs layer is grown by lamination on a buried layer. CONSTITUTION:An N type GaAlAs clad layer 5, a GaAs active layer 6, a P type Ga1-xAlxAs clad layer 7, and the Ga1-yAly As growth promoting layer 15 are laminated on a GaAs substrate 2. Many mesa etching grooves 16 are provided in parallel in the fixed direction, the P type GaAlAs buried layers 4 are grown, and a GaAs or Ga1-zAlzAs flattened layer 17 is grown. At this time, setting the mixed crystal ratio (y) of the Al of the growth promoting layer 15 at zero causes the buried layer 4 to grow on said layer 15, increasing the ratio (y) does not cause the flattened layer 17 on said layer 15, keeping the ratio (y) at approx. 0.01-0.2 causes said layer 17 also on said layer 15.

Description

【発明の詳細な説明】 本発明は埋込みへテロ形半導体レーザー素子の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a buried hetero semiconductor laser device.

半導体レーザー(レーザーダイオード)としては、Ga
AtAS 系で作られる可視レーザー(官庁外レーザー
)またはInGaAsP系で作られる長波長レーザーか
知られている。また、半導体レーザーX子の一つの構造
として埋込みへテロ〔以下、単にBH(buried−
hetero 5tructure)と称れ〕形の半導
体レーザー素子が知られている。第1図はBH半導体レ
ーザー素子でも最もシンプルな構造のものであシ、たと
えばJ、Appl、Phys。
As a semiconductor laser (laser diode), Ga
Visible lasers made from the AtAS system (non-government lasers) or long wavelength lasers made from the InGaAsP system are known. In addition, as one structure of the semiconductor laser X-ray, a buried hetero
A semiconductor laser device of the type [hetero 5 structure] is known. Figure 1 shows the simplest structure of BH semiconductor laser devices, such as J, Appl, Phys.

45.11.4899.’74  に発表された補遺で
ある。
45.11.4899. This is an addendum published in '74.

Bl)1半導体レーザー累子構造はGa A tA s
系およびInGaAsP系は略同−の構造となっている
。同図はGaAzAs系のBH半導体レーザー素子(以
下単にチップとも称す。)を示す。
Bl)1 Semiconductor laser crystal structure is GaA tA s
The InGaAsP system and the InGaAsP system have approximately the same structure. The figure shows a GaAzAs-based BH semiconductor laser device (hereinafter also simply referred to as a chip).

半導体レーザー素子(チップ)iiin形の(JaAs
基板2を基に形成されていて、中央にストライプ状のダ
ブルへテロ接合構造(ストライプ部)3を有し、かつこ
のダブルへテロ接合構造3の両f411を高比抵抗のp
形GaAzAs からなる埋込み層4で被った構造とな
っている。この構造を形成するには、ウェハと呼ぶn形
のGaAs基板2上にエピタキシャル成長法によってQ
 a A IA s からなる月形クラッド層5、Ga
Asからなる活性M 6 、C4aAtAsからなるp
形りラッド層7を順次形成した後、G a A s基板
2にまで達゛する】対の溝をエツチングによって平行に
% kl、設けてストライブ状のダブルへテロ接合構造
(ストライプ部)3を形/Aする。
Semiconductor laser device (chip) III type (JaAs
It is formed based on a substrate 2, has a striped double heterojunction structure (stripe part) 3 in the center, and both f411 of this double heterojunction structure 3 are made of high resistivity p
The structure is covered with a buried layer 4 made of GaAzAs. To form this structure, Q
Moon-shaped cladding layer 5 consisting of a A IA s , Ga
Active M 6 consisting of As, p consisting of C4aAtAs
After sequentially forming the shaped rad layers 7, a pair of grooves are formed parallel to each other by etching to form a striped double heterojunction structure (stripe portion) 3. Shape/A.

その後、これらi′1′イf’+lj分に液相エピタキ
シャル成長法によって高比抵抗のp形Ga AzA s
 からなる坤込み層4を形1代し、埋込みへテロ接合を
形成する。
Thereafter, high resistivity p-type Ga AzA s
The embedded layer 4 made of the above is shaped to form a buried heterojunction.

つぎに、絶縁膜(Sin2膜)8をマスクとしてp形り
ラッド層7にZnを拡散(図中拡散領域には点点を施し
である。)してコンタクト層を形成する。そして、主面
trillにCr、Auからなる@極9を設けるととも
に、その反対面であるG a A sM板2の下mK 
AuGe1’li 、Cr 、Auからなる電極10を
設け、骨間および分断を行なうことによってチップlと
する。
Next, using the insulating film (Sin2 film) 8 as a mask, Zn is diffused into the p-type rad layer 7 (diffusion regions are dotted in the figure) to form a contact layer. Then, the @pole 9 made of Cr and Au is provided on the main surface trill, and the lower mK of the Ga A sM plate 2 on the opposite surface is provided.
An electrode 10 made of AuGe1'li, Cr, and Au is provided, and a chip 1 is obtained by performing interosseous separation and division.

ところで、このBHチップ1は埋込み層4の形かこ時へ
テロ成琵のためダブル−\テロづ一□、合(4゛を造(
Hllの成長か早くなり、埋込み層4の内グ1.側が盛
り土かってしまい、ストライブ部分との11)]に1〜
5μrn程度の段差か生じてし圧う。
By the way, in this BH chip 1, due to the formation of a double-terror when the shape of the buried layer 4 is formed, a double
The growth of Hll becomes faster, and the inner layer 1 of the buried layer 4. The side is mounded, and the stripe part and 11)]
A level difference of about 5 μrn will occur.

この結果、第2図に示すように、Pサイドダウンの状態
でソルダー11な介してサブマウント12に固駕した場
合、ツルターか?面才しない窒2同13が生じてしぽう
ことが本発明者によってあきr)かとさgだ。この空洞
13の存在は熱抵抗の昂犬となる結果、発熱、動作電流
増大、発熱を緑り送1−ことになり、劣化の慶因となる
As a result, as shown in FIG. 2, if it is fixed to the submount 12 via the solder 11 in the P side down state, will it be a tsuruter? It is the inventor's responsibility to avoid the occurrence of embarrassing problems. The existence of this cavity 13 increases the thermal resistance, resulting in heat generation, an increase in operating current, and the transmission of heat, which causes deterioration.

また、本発明者はP側電極9にお・けるコンタクト抵抗
の低減化についても着目して見た。QaAlAs系のB
 i−tチップはP (l]11% 極とのコンタクト
はGaAtAs層である。また、(f4aAtAsのコ
ンタクト抵抗1dGaAsの3倍も太きい。
The inventor also focused on reducing the contact resistance of the P-side electrode 9. B of QaAlAs system
The contact with the P(l]11% pole of the i-t chip is a GaAtAs layer. Also, the contact resistance of (f4aAtAs) is three times thicker than that of 1dGaAs.

そこで、本発明者はこの()a A s fg P 1
1i]’M極におけるコンタクト層として使用1−るこ
とヲ7]々、いたつとともに、ダブルへテロ接合構造(
ストライブ部〕上および埋込み層上に()aAs層を一
緒に成長させて′電極部分の平坦化を(2)ることを考
えた。
Therefore, the present inventor has created this ()a A s fg P 1
1i]'Used as a contact layer in the M pole
We considered planarizing the electrode portion (2) by growing an aAs layer (2) on the stripe portion and the buried layer.

しかし、ダブルへゾロ接合構造の最上層のp形りラッド
層7はGa 、−xAZxAsとなシ、酸化し易いAt
の混晶比Xはたとえばx = 0.3〜0.35程度が
使用されている。このiζめ、(J a A IA s
 からなる埋込み層4をエピタキシャル成長させる除連
続してGaAs欠成長させても、p形りラッド層7上に
は前工程と不工程との間に自然に酸化物か発生している
ことからOa A s層は成長しない。
However, the uppermost p-type rad layer 7 of the double hesozoelectric junction structure is made of Ga, -xAZxAs, and At, which is easily oxidized.
The mixed crystal ratio X used is, for example, about x = 0.3 to 0.35. This iζ, (J a A I A s
Oa The s-layer does not grow.

そこで、本発明者は前b14埋込み層4に積層してGa
A各層を成長させた場合、ストライプ部にもQ a A
 s層か成長するような成長促進層とでもいうような層
をpルクラッド層7上にあらかじめ設けておくことによ
ってストライプ部上方にもG a A s層乞成長させ
ることを考え本発明を成した。
Therefore, the present inventors stacked Ga on the front b14 buried layer 4.
When each layer of A is grown, Q a A also occurs in the stripe part.
The present invention was developed with the idea that by providing in advance on the P cladding layer 7 a layer that can be called a growth promotion layer that causes the growth of the S layer, the G a A S layer can also grow above the stripe portion. .

したがって、本発明の目的はBH半心体レーザー素子に
おける多層構造側表面の平坦化ケ図ることによって、素
子取付時のソルダーの濁れ性の良好化が図れるBH半島
体レーザー素子の製造方法を提供することにある。
Therefore, it is an object of the present invention to provide a method for manufacturing a BH peninsular laser device, which improves the turbidity of solder during device mounting by flattening the surface of the multilayer structure side of the BH half-center laser device. It's about doing.

また、本発明の他の目的はBH半々1体レしザー業子の
多層構造側におけるコンタクト抵抗の低減を圓ることか
できるBH半纏体レしザー累子の製造方法を提供するこ
とにある。
Another object of the present invention is to provide a method for manufacturing a BH semi-integrated leather component which can reduce the contact resistance on the multilayer structure side of the BH half integrated leather component. .

以下、実施列によシ本発明を、*明する。The present invention will be explained below with reference to examples.

第3図(a)〜(e)は本発明の一実施例によるB11
半纒体レーザー素子の製造方法を示1断面図、第4図は
同じ(BH手導体レーザー素子の固足状態をボ丁断面図
である。
FIGS. 3(a) to 3(e) show B11 according to an embodiment of the present invention.
1 is a cross-sectional view showing the manufacturing method of a semi-coated laser element, and FIG.

この実施例のBH半導体レーザー素子(13i−1チツ
プ)は第3図(a)〜<e>に至る手順で製造される。
The BH semiconductor laser device (13i-1 chip) of this embodiment is manufactured by the procedure shown in FIGS. 3(a) to <e>.

同図(a)に示すように、100μm程史の厚さのn形
のUaAs、4板2からなる半導体薄板(ウェハ)14
を用意した後、常用の液相エピタキシャル成灸法によっ
て4層の多層構造を形成する。′1゛なわち、G a 
A s 、−I+¥板2上には1゛eを含んでn形とな
った1、5μm程度の厚さのGaAAASからなる月形
クラッド層5か設けられ、この上にはGaAsからなシ
0.1〜0.2μm程度の厚さの活性層6、Znを含ん
でp形と々っだ2.0μm程度の厚さの(J a 1−
 x A Z x A sからなるp形りラッド層7.
0.5μxn程度の厚さのGa 、−、AtyAsから
なる成長促進層15と順次絖く。前記成長促進層15は
後の工程でZnが拡散されてp形となる領域であること
から、エピタキシャル成長時にはn形あるいはp形のど
ちらの4電形でもよい。この工程では活性層6の上下に
相互に異なる導電形の領域が形成されることによってダ
ブルへテロ接合構造3ができめかる。また、前記p形り
ラッド層7のAtの混晶比Xは通常よく用いられる0、
3〜0.35程度である。また、成長促進層15のAt
の混晶比yは零ではないが極めて小さい数値で、たとえ
ば0.01〜0.2程贋が有効である。
As shown in the figure (a), a semiconductor thin plate (wafer) 14 consisting of four n-type UaAs plates 2 with a thickness of about 100 μm is shown.
After preparing, a four-layer multilayer structure is formed by a commonly used liquid phase epitaxial moxibustion method. ′1, that is, G a
A moon-shaped cladding layer 5 made of GaAAAS with a thickness of about 1.5 μm and containing 1゛e and becoming n-type is provided on the A s , -I+¥ plate 2, and on top of this a moon-shaped cladding layer 5 made of GaAAAS is provided. An active layer 6 with a thickness of about 0.1 to 0.2 μm, a p-type layer 6 containing Zn and a thickness of about 2.0 μm (J a 1-
P-shaped rad layer 7 consisting of x A Z x A s.
A growth promoting layer 15 made of Ga, -, and AtyAs and having a thickness of about 0.5 .mu.xn is formed. Since the growth promoting layer 15 is a region in which Zn is diffused in a later step and becomes p-type, it may be of either the n-type or p-type, which is a quadrielectric type, during epitaxial growth. In this step, regions of different conductivity types are formed above and below the active layer 6, resulting in a double heterojunction structure 3. Further, the At mixed crystal ratio X of the p-type rad layer 7 is usually 0,
It is about 3 to 0.35. Furthermore, At of the growth promoting layer 15
Although the mixed crystal ratio y is not zero, it is an extremely small value, and a fake is effective, for example, by about 0.01 to 0.2.

つぎに、同図中)に示すように、所定方向にメサエッチ
ング7416を平行に多数設けてストライプ部3を定間
隔に形成する。メサエッチングはGaAs基板2に達す
るようにする。また、活性層6の幅は略2μm程度とな
っている。
Next, as shown in the figure), a large number of mesa etches 7416 are provided in parallel in a predetermined direction to form striped portions 3 at regular intervals. Mesa etching is made to reach the GaAs substrate 2. Further, the width of the active layer 6 is approximately 2 μm.

つぎに、同図(C)に示すように、液相エピタキシャル
成長法によって、このメサエツチング溝16部にZnを
含んだGaAtAsからなるp形の埋込み層4を成長さ
せる。そして、埋込み層4が成長促進層15の表面(上
端)に達した時点でTeン含んだn形のGaAsあるい
はG a 、−z A Z z A s カラなる平坦
化層17を成長させ、たとえば0.5μn1程度の厚さ
に形成する。平坦化層17は彼達する′電極とのコンタ
クト層となることがら、コンタクト抵抗の高いGaAt
As j ’)もOa A sの方が望ましい。そこで
平坦化層17はQaAsまたはG a 1 + z A
 tz A sでもAtの混晶比Z ノ9i値か小さい
ものを選択する。
Next, as shown in FIG. 3C, a p-type buried layer 4 made of GaAtAs containing Zn is grown in the mesa etched groove 16 by liquid phase epitaxial growth. Then, when the buried layer 4 reaches the surface (upper end) of the growth promoting layer 15, a flattening layer 17 of n-type GaAs containing Ten or a Ga, -z AZ z As empty layer 17 is grown, for example. It is formed to a thickness of about 0.5 μn1. The planarization layer 17 is made of GaAt with high contact resistance because it becomes a contact layer with the electrode.
As j '), Oa As is also more desirable. Therefore, the planarization layer 17 is made of QaAs or Ga 1 + z A
Also for tzA s, a value smaller than the At mixed crystal ratio Z9i value is selected.

一方、1JIJ記成長促進層15のAtの混晶比yは零
としてG a A sとしておくと、埋込み層4の成長
時に同時に成長促進層15上にも埋込み層4を構成する
p形GaAtAS が成長してしまうことがら、所期の
目的であるチップの多層々11造側表団の平坦化が図れ
なくなる。したがって、成長促進層15のA4の混晶比
yは零を採用できないことに々る。
On the other hand, if the At mixed crystal ratio y of the growth promoting layer 15 in 1JIJ is set to zero and GaAs, then the p-type GaAtAS constituting the buried layer 4 will simultaneously grow on the growth promoting layer 15 during the growth of the buried layer 4. Because of this growth, it becomes impossible to achieve the intended purpose of flattening the multi-layered side surface of the chip. Therefore, the mixed crystal ratio y of A4 in the growth promoting layer 15 often cannot be set to zero.

また、yの数値を大きくすれば、埋込み1@4上に平坦
化層17をいくら成長させても成長促進層15上には成
長しガい。そこで、前述のようにyの数値を0.01〜
0.2程度にしておくと、成長促進層15上にも平坦化
層17が同様に成長し始める。
Furthermore, if the value of y is increased, no matter how much the planarizing layer 17 is grown on the buried 1@4, it will not grow on the growth promoting layer 15. Therefore, as mentioned above, change the value of y from 0.01 to
When the value is set to about 0.2, the planarizing layer 17 starts to grow on the growth promoting layer 15 as well.

このyの数値は本発明者が実験によって求めたもので、
上下限値はこれに限定されないが略この種間と推定でき
る。
This value of y was determined by the inventor through experiments,
The upper and lower limits are not limited to these, but can be estimated to be approximately between these species.

また、埋込み層4が成長促進層15の上端に達した時点
で平坦化層17の成長に切)変える操作は、成長促進層
15の上面と埋込み層4の盛シ上がシ部分との間に段差
が生じないうちに平坦化層17を成長させ、チップのス
トライプ部3およびその両側領域に対応する表面の平坦
化を図るためであシ、かつ有効であることによる。
Furthermore, when the buried layer 4 reaches the upper end of the growth promoting layer 15, the operation of changing the growth of the flattening layer 17 is performed between the upper surface of the growth promoting layer 15 and the portion where the top of the buried layer 4 is raised. This is because the planarization layer 17 is grown before a step is formed on the surface of the chip, and the surface corresponding to the stripe portion 3 of the chip and the regions on both sides of the chip are planarized.

また、平坦化層17をn形にすることは、絶縁膜を用い
て電流狭窄化を行なった場合、絶縁膜による段差が生じ
、チップの表面の平坦化が損なわれることを嫌ってでの
ことで、p形の埋込み層4との間で逆バイアスとなるよ
うにするためである。
In addition, the planarization layer 17 is made n-type because, if current confinement is performed using an insulating film, steps will be created due to the insulating film, and the planarization of the chip surface will be impaired. This is to create a reverse bias between the p-type buried layer 4 and the p-type buried layer 4.

したがって、GaAs層板をp形とするチップではこの
平坦化層4はp形となる。
Therefore, in a chip in which the GaAs layer plate is p-type, this flattening layer 4 is p-type.

つぎに、同図(d)で示すように常用のホトエツチング
技術を用いてp形りラッド鳩7の途中に丘でストライプ
状にZnを拡散(拡敢狽城には点点2施して、))る。
Next, as shown in Figure (d), Zn was diffused in a stripe pattern in the middle of the P-shaped rad pigeon 7 using a commonly used photoetching technique (two dots were applied on the ridge). Ru.

)してコンタクト層なりに成する。その後、ホトエツチ
ング時に用いたマスクを除去し、平坦化層17上にCr
、Auからなるp形の電憾9を形成し、かつウェハ14
の1面にAu(jeN i、 Cr 。
) to form a contact layer. Thereafter, the mask used during photoetching is removed, and Cr is deposited on the planarization layer 17.
, a p-type electric field 9 made of Au is formed, and the wafer 14 is
Au (jeN i, Cr.

Auからなるn形の電極1oを形成づ−る。An n-type electrode 1o made of Au is formed.

つぎに、ウェハ14に外力を加え又臂開→面に旧って襞
間するとともに、埋込み鳩4の中央部分で分断して同図
(e)で示1−ように、たとえFJ、 300 X40
0μmn口のチップ1を得る。
Next, an external force is applied to the wafer 14, and the wafer 14 is folded in the open direction, and the wafer 14 is divided at the center of the implantation dovetail 4, as shown in FIG.
A chip 1 with a diameter of 0 μm is obtained.

このようなりHチップ1はp彫箪極9とのコンタクトは
GaAs層あるいはAtの混晶比Zの数111!。
In this way, the contact between the H-chip 1 and the p-carved pole 9 is made of GaAs or At with a mixed crystal ratio Z of 111! .

が零に近い数値となっているため、コンタクト抵抗Rc
は従来のUaAzAsの略狛程度ともなる。
is close to zero, so the contact resistance Rc
is approximately the same as that of conventional UaAzAs.

B)1チツプにあってはコンタクト抵抗Rcはシリーズ
抵抗R8の60%程度を占める。この結果、シリーズ抵
抗R5は従来の10Ω程度のものが5Ω程度となり、コ
ンタクト部の熱発生の低減、さらには素子の長寿命化が
図れる。
B) In one chip, the contact resistance Rc accounts for about 60% of the series resistance R8. As a result, the series resistance R5 is reduced to approximately 5 Ω from the conventional approximately 10 Ω, thereby reducing heat generation at the contact portion and further extending the life of the element.

また、このようなりHチップ1は第4図に示ずように、
ザブマウント12の導電層」8上にソルダー11を介し
て固定1−る除、p形電極9を介して接続しても接続面
中央部は従来のように窪みを有することなく平担である
ことから、ソルダー11の濡れ性が悪くなることもなく
なり、空洞を生じることもなく密着ツーる。このため、
熱抵抗も設計値を越えることかなく、スクリーニング歩
留も向上する。
Moreover, as shown in FIG. 4, the H chip 1 is as shown in FIG.
Even if it is fixed on the conductive layer 8 of the submount 12 via the solder 11, and is connected via the p-type electrode 9, the central part of the connection surface should be flat without having a depression as in the conventional case. Therefore, the wettability of the solder 11 does not deteriorate, and the solder 11 adheres closely without forming a cavity. For this reason,
The thermal resistance does not exceed the design value, and the screening yield also improves.

なお、不発明は前記実施例に1辰定されるものではなく
、他の構造のBH手導体レーザー素子の製造にも適用で
きる。たとえば、いずれも公知であるが、活性層の隣り
に光ガイド層を設けて光出力を向上させた構造、埋込み
層を二層構造として、下層をブロッキング層としてリー
ク電流の低減化を図った構造等、ダブルへテロ接合稿造
上と埋込み層上との間に段差ケ有するBHH導体レーザ
ー素子の製造に適用できる。
It should be noted that the invention is not limited to the above-mentioned embodiments, and can be applied to the manufacture of BH hand conductor laser elements having other structures. For example, both of these are well known, such as a structure in which a light guide layer is provided next to the active layer to improve optical output, and a structure in which the buried layer is a two-layer structure and the lower layer is a blocking layer to reduce leakage current. The present invention can be applied to the manufacture of a BHH conductor laser device having a step between the double heterojunction structure and the buried layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第11y、iは従来のHH午非導体レーザー素子示す世
f面図、 第2図は同じ(B)I半4体レーザー、べ子の71−<
良固定状態を示1−断■図、 第3図(a)〜(e)は不発明の一実7#1iylJ 
PCよる13トi半纒体し〜ザー素子の製造方法馨示1
M団図、第4図は同じ(131−1半4体レーザー八寸
のし」定状態を示す断面図である。 1・・・半尋坏し−ザー累子(チノズノ、2・・(Ja
As基板、3・・・ダブルへテロ接合構造、4・リイ込
・り層、5・・n形りラッド層、6・・・活性層、7・
・p彬りラッド層、8・・・絶絃膜、9,10・・′龜
1歩、11・・・ソルダー、12・・・サブマウント、
13・・・とと洞、14・・・半導体薄板(ウェハ)、
15・・・成&促連層、16・・・メサエツチング溝、
17・・・平坦化ツメ1.18・・・導電層。 代理人 升埋士  高 倫 明 人  ゛・、・  )
11y, i is a world-f plane view showing a conventional HH nonconductor laser element.
Figure 1-Cross-section ■ shows a good fixing state, Figures 3 (a) to (e) are a fruit of non-invention 7#1iylJ
13 I semicircular body by PC - method for manufacturing a thermal element 1
The M group diagram and Figure 4 are the same (131-1 half-four body laser eight-inch cross-sectional view) showing the steady state. Ja
As substrate, 3...double heterojunction structure, 4. re-incorporated layer, 5...n-shaped rad layer, 6... active layer, 7.
・P bending rad layer, 8... Absent film, 9, 10...' 1 step, 11... Solder, 12... Submount,
13... Toto-do, 14... Semiconductor thin plate (wafer),
15... Growth & promotion layer, 16... Mesa etching groove,
17... Flattening claw 1.18... Conductive layer. Agent: Mr. Takashi Akira ゛・、・)

Claims (1)

【特許請求の範囲】[Claims] 1、  GaAs基板の主面に順次エピタキシャル層を
成長させてダブルへテロ接合構造を形成する工程と、エ
ツチングによってダブルへテロ接合構造をストライプ状
に残す工程と、前記エツチングによって除去された部分
に埋込み層を形成する工程とを有する埋込みへテロ形半
導体レーザー素子の製造方法において、前記ダブルへテ
ロ接合構造形成時に最上層に比較的混晶比の小なるGa
AzAsからなる成長促進層を形成するとともに、埋込
み層形成時には埋込み層の成長端が前記成長促進層に達
した段階で埋込み層および成長促進層上に亘って連続し
てエピタキシャル成長を行ないGaAsまたはGa A
 IA s からなシかつ中央部表面が平坦となる平坦
化層を形成することを特徴とする埋込みへテロ形半導体
レーザー素子の製造方法。
1. A step of sequentially growing epitaxial layers on the main surface of the GaAs substrate to form a double heterojunction structure, a step of leaving the double heterojunction structure in a stripe shape by etching, and filling the portion removed by the etching. In the method for manufacturing a buried hetero-type semiconductor laser device comprising the step of forming a layer, Ga having a relatively low mixed crystal ratio is added to the uppermost layer when forming the double hetero junction structure.
A growth promoting layer made of AzAs is formed, and when the buried layer is formed, when the growth end of the buried layer reaches the growth promoting layer, epitaxial growth is continuously performed over the buried layer and the growth promoting layer to form GaAs or GaA.
1. A method for manufacturing a buried hetero semiconductor laser device, comprising forming a flattening layer that is not IA s and has a flat central surface.
JP8265183A 1983-05-13 1983-05-13 Manufacture of buried method type semiconductor laser element Pending JPS59208884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8265183A JPS59208884A (en) 1983-05-13 1983-05-13 Manufacture of buried method type semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8265183A JPS59208884A (en) 1983-05-13 1983-05-13 Manufacture of buried method type semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS59208884A true JPS59208884A (en) 1984-11-27

Family

ID=13780330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8265183A Pending JPS59208884A (en) 1983-05-13 1983-05-13 Manufacture of buried method type semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS59208884A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287082A (en) * 1987-05-19 1988-11-24 Sharp Corp Semiconductor laser element
US5028563A (en) * 1989-02-24 1991-07-02 Laser Photonics, Inc. Method for making low tuning rate single mode PbTe/PbEuSeTe buried heterostructure tunable diode lasers and arrays
US5119388A (en) * 1989-02-24 1992-06-02 Laser Photonics, Inc. Low tuning rate PbTe/PbEuSeTe buried quantum well tunable diode lasers and arrays

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287082A (en) * 1987-05-19 1988-11-24 Sharp Corp Semiconductor laser element
US5028563A (en) * 1989-02-24 1991-07-02 Laser Photonics, Inc. Method for making low tuning rate single mode PbTe/PbEuSeTe buried heterostructure tunable diode lasers and arrays
US5119388A (en) * 1989-02-24 1992-06-02 Laser Photonics, Inc. Low tuning rate PbTe/PbEuSeTe buried quantum well tunable diode lasers and arrays

Similar Documents

Publication Publication Date Title
JP2017130657A (en) Optical semiconductor element manufacturing method and optical semiconductor element
US4870468A (en) Semiconductor light-emitting device and method of manufacturing the same
JPH0332080A (en) Semiconductor light emitting element and manufacture thereof
JPH0474877B2 (en)
CN106532432A (en) Method of manufacturing surface-emitting semiconductor laser element
JPS59208884A (en) Manufacture of buried method type semiconductor laser element
JPH088486A (en) Method of manufacturing patterned mirror vcsel by using selective growth
JPH05102615A (en) Semiconductor device and manufacture thereof
JPS60251689A (en) Semiconductor laser element and manufacture thereof
JPS5884483A (en) Buried hetero-structure semiconductor laser
JPH01281785A (en) Semiconductor laser and its manufacture
JPS5885584A (en) Semiconductor laser
JPH088483A (en) Semiconductor laser and manufacture thereof
JPS6119186A (en) Manufacture of two-wavelength monolithic semiconductor laser array
JPH0377391A (en) Semiconductor laser
JPH08111565A (en) Semiconductor optical element and manufacture thereof
JPH06120615A (en) Manufacture of semiconductor laser element
KR100304658B1 (en) Semiconductor laser device and method for fabricating the same
JPH0677605A (en) Semiconductor element and fabrication thereof
JPH023314B2 (en)
JPS6355229B2 (en)
JPH09199788A (en) Semiconductor laser with buried hetero-structure, and its manufacture
JPH0810779B2 (en) Semiconductor laser
JPS6355996A (en) Semiconductor light emitting device
JPH067621B2 (en) Semiconductor laser device and method of manufacturing the same