JPS63119227A - Liquid growth method - Google Patents

Liquid growth method

Info

Publication number
JPS63119227A
JPS63119227A JP26455086A JP26455086A JPS63119227A JP S63119227 A JPS63119227 A JP S63119227A JP 26455086 A JP26455086 A JP 26455086A JP 26455086 A JP26455086 A JP 26455086A JP S63119227 A JPS63119227 A JP S63119227A
Authority
JP
Japan
Prior art keywords
solution
growth
sliding
solutions
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26455086A
Other languages
Japanese (ja)
Inventor
Yoichi Sasai
佐々井 洋一
Masato Ishino
正人 石野
Minoru Kubo
実 久保
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26455086A priority Critical patent/JPS63119227A/en
Publication of JPS63119227A publication Critical patent/JPS63119227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent the fluctuation of the solute concentration of the bottom of a growth solution, and to improve the composition of an extremely thin film layer and the reproducibility and uniformity of film thickness by making the area of an upper hole larger than that of a lower hole in the shape of a solution reservoir for sliding growth and forming a slot in a direction perpendicular to the direction of sliding to the lower section of the solution reservoir in extremely thin-film epitaxial growth through a liquid growth method. CONSTITUTION:When an InGaAsP/InP quantum well type epitaxial layer is shaped, upper holes are made larger than lower holes in the shape of solution reservoirs 2', 3', 4' for barrier layer solutions 2, 4 and a well layer solution 3, and lower holes 8, 9, 10 are each formed to said solution reservoirs 2', 3', 4'. The lower holes 8, 9, 10 are formed to a striped shape in the direction rectangular to the direction 11 of sliding. Since loading density applied to the bottoms of growth solutions is increased and the length of the direction 11 of sliding of the bottoms is shortened in the growth solutions received to the solution reservoirs having such a shape, the convection and vibrations and fluctuation of the solutions of the solution bottoms generated at a time when the slider 11 is slid are inhibited. Accordingly, the variation of the composition of solute concentration in the solutions is suppressed, thus allowing growth having reproducibility and uniformity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は極薄膜エピタキシャル層の形成に用いる液相成
長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a liquid phase growth method used for forming ultra-thin epitaxial layers.

従来の技術 従来、量子井戸型層のような極薄膜エピタキシャル層の
形成は、分子線エピタキシャル法や有機2 ′  ・ 金属気相成長方法等が主として用いられ、液相成長方法
は成長速度が速いため極薄膜層(く600人)の厚み制
御が極めて困難なため、殆んど実施されていなかった。
Conventional technology Conventionally, the molecular beam epitaxial method, the organic 2' metal vapor phase epitaxy method, etc. have been mainly used to form ultra-thin epitaxial layers such as quantum well type layers, and the liquid phase epitaxy method has a faster growth rate. Because it is extremely difficult to control the thickness of an extremely thin film layer (600 people), it has rarely been implemented.

ところが成長装置の簡便さ、価格あるいは成長層自体の
結晶性等において現在のところ液相成長法が最も優れて
いることは広く衆知の事実であり、液相成長法によって
制御性良く極薄膜層を形成することは実用上極めて重要
である。
However, it is widely known that the liquid phase growth method is currently the most superior in terms of simplicity of growth equipment, price, and crystallinity of the growth layer itself, and it is possible to form ultrathin film layers with good controllability. Formation is extremely important in practice.

液相成長法で極薄膜のエピタキシャル層を形成すること
に関しては、特願昭59−216654号(特開昭61
−97189号)で出願されている。この特許出願の概
要について以下に簡単に説明する。
Regarding the formation of an ultra-thin epitaxial layer by the liquid phase growth method, Japanese Patent Application No. 59-216654 (Japanese Unexamined Patent Publication No. 61-198)
-97189). The outline of this patent application will be briefly explained below.

液相成長法で極薄膜のエピタキシャル層を形成する場合
、成長速度が速いため、通常1秒以下の非常に短い成長
時間で成長する必要がある。そのため、基板を摺動させ
て溶液と完全に接触させるまでの時間t1と基板を摺動
させて溶液を完全にワイプオフさせるまでの時間t3の
和(11+13)が、基板と溶液とが停止して保持され
る時間t23ベー/ と同程度か長い場合、成長時間が規定出来ず成長層厚が
制御できない。そこで上記特許出願では、溶液と接触さ
せる間は基板を停止することなく一定速度で摺動した状
態で成長を行なう)−摺動成長」の方法をとっている3
、ここで成長時間tgは溶液溜の長さLと摺動速度Vの
比L / ’vで定義される。
When forming an ultra-thin epitaxial layer using a liquid phase growth method, the growth rate is fast, so it is necessary to grow in a very short growth time, usually one second or less. Therefore, the sum (11+13) of the time t1 for sliding the substrate to completely contact with the solution and the time t3 for sliding the substrate and completely wiping off the solution is the sum (11+13) of If the holding time is about the same as or longer than t23 b/, the growth time cannot be defined and the thickness of the grown layer cannot be controlled. Therefore, in the above patent application, a method of ``sliding growth'' is adopted in which growth is performed while the substrate is sliding at a constant speed without stopping while it is brought into contact with the solution.
, where the growth time tg is defined by the ratio L/'v of the length L of the solution reservoir and the sliding speed V.

従来の前記特許出願で用いられている装置系の概略図を
第4図に示す。1は基板、2,3.4は成長溶液、6は
摺動可能な基板を収納するスライダー、6は成長溶液を
収納する溶液ホルダー、7はボート台である。しかしな
がら多重量子井戸構造を作製する場合、成長溶液2,4
をバリア層溶液、3を極薄膜の井戸層溶液とすると、基
板1をバリア層溶液2と4間で往復摺動させて成長する
ことになるが、この際、井戸層の禁止帯幅がわずかずつ
ずれてしまい、多重量子井戸層の自然放出光の半値幅が
広がってし15組成変動の現象が発生する3、その原因
としては、基板1を摺動させる際、ノ1戸層溶液3の底
表面がスライダー5と接触しているため、井戸層溶液3
の底表面がゆすられて溶液中の溶質に対流が起きて、溶
質濃度のゆらぎ変動が発生するためと考えられる。寸だ
、基板を動かしながら成長するため、基板表面と成長溶
液の間の濡れも悪く、膜厚の不均一性も生じている。
A schematic diagram of the apparatus system used in the conventional patent application is shown in FIG. 1 is a substrate, 2, 3.4 is a growth solution, 6 is a slider that accommodates the slidable substrate, 6 is a solution holder that accommodates the growth solution, and 7 is a boat stand. However, when creating a multiple quantum well structure, the growth solution 2, 4
If 3 is a barrier layer solution and 3 is a well layer solution for an extremely thin film, the substrate 1 will be grown by sliding back and forth between barrier layer solutions 2 and 4, but at this time, the forbidden band width of the well layer will be small. As a result, the half-width of the spontaneously emitted light of the multi-quantum well layer widens, and a phenomenon of compositional fluctuation occurs3.The reason for this is that when the substrate 1 is slid, the Since the bottom surface is in contact with the slider 5, the well layer solution 3
This is thought to be because the bottom surface of the solution is shaken, causing convection in the solute in the solution, causing fluctuations in the solute concentration. Because the growth occurs while the substrate is being moved, wetting between the substrate surface and the growth solution is poor, resulting in non-uniform film thickness.

発明が解決しようとする問題点 上記の如〈従来の方法では、液相成長法による極薄膜、
とりわけ多重量子井戸構造の作製の際、各井戸層の組成
が僅かずっ異なり、また膜厚の不均一性も生じるという
欠点があった。本発明では、各井戸層の組成を均一化し
、膜厚も均一性良く栃層化するための手法を提供するも
のである。
Problems to be Solved by the Invention As mentioned above, in the conventional method, ultra-thin films by liquid phase growth,
In particular, when a multi-quantum well structure is fabricated, the composition of each well layer is slightly different, and the film thickness is non-uniform. The present invention provides a method for making the composition of each well layer uniform and forming a well layer with good uniformity in thickness.

問題点を解決するための手段 上記の問題点を解決するため、成長は前述の摺動成長法
で行ない、成長溶液を収納する溶液溜の形状を、上穴の
面積を下穴の面積より大きくし、前記下穴の形状がスト
ライプ状になった構造にすることによって、成長溶液の
底部の溶質濃度のゆらぎを防いで、極薄膜層の組成およ
び膜厚の再現性、均一性の向上を図るものである。
Means for Solving the Problems In order to solve the above problems, growth is performed using the sliding growth method described above, and the shape of the solution reservoir that stores the growth solution is changed so that the area of the upper hole is larger than the area of the lower hole. By forming the pilot holes into a striped structure, it is possible to prevent fluctuations in the solute concentration at the bottom of the growth solution, thereby improving the reproducibility and uniformity of the composition and thickness of the ultra-thin film layer. It is something.

作   用 5−・ −に記手段に基づく作用は以下の通りである。即ち溶液
溜の形状を上記のようにすることにより、成長溶液の底
部の方向に溶液の自重が集中し、かつ前記底部の溝幅が
狭くなっているので前記溶液の底部はスライダーの摺動
に対して流動がかなり緩和されて、前記溶液の底部にお
ける溶質濃度はほとんど変化しなくなり、組成、膜厚の
均一性を向上させることができる。
The effects based on the means described in Effect 5-- are as follows. That is, by making the shape of the solution reservoir as described above, the weight of the solution is concentrated toward the bottom of the growth solution, and since the width of the groove at the bottom is narrow, the bottom of the solution is not easily moved by the sliding of the slider. On the other hand, the flow is considerably relaxed, so that the solute concentration at the bottom of the solution hardly changes, and the uniformity of the composition and film thickness can be improved.

実施例 以下に本発明の一実施例を第1図を用いて説明する3、
なお、第1図中、第4図と同一構成部分には同一番号を
例して説明を省略する。また以下では説明を簡単にかつ
具体化するために、InGaAsP/InPの届:子井
戸型エピタキシャル層の形成例について示す。
Example 3 An example of the present invention will be described below with reference to FIG.
Note that in FIG. 1, the same components as those in FIG. 4 are designated by the same reference numerals, and explanations thereof will be omitted. In order to simplify and make the explanation more concrete, an example of forming an InGaAsP/InP well type epitaxial layer will be described below.

ここで本実施例におけるボート構造と従来のものとの差
異は、第1図、第4図を比較してわかるように、本実施
例では、バリア層溶液2,4および井戸R6溶液3の溶
液溜2’、3’、4’の形状につい−C11−穴の方が
下穴に比べ大きく、また前記溶液6 ′・ /′ 溜2’、 3’、 4’の下穴8,9.10がそれぞれ
設けられている点にある。ここで前記下穴8,9.10
は摺動方向10に対して直角の方向にストライブ状に形
成されている。このような形状の溶液溜に収納される成
長溶液において、溶液の底部にかかる加重密度が増大し
、かつ底部の摺動方向11の長さが小さいためスライダ
ー11の摺動時に起きる溶液底部の溶液の対流および振
動ゆらぎが抑えられる。したがって溶液中の溶質濃度の
組成変動が抑えられ再現性、均一性のある成長が可能と
なる。
Here, the difference between the boat structure in this example and the conventional one is that, as can be seen by comparing FIG. 1 and FIG. Regarding the shape of the reservoirs 2', 3', and 4', the hole C11 is larger than the pilot hole, and the pilot holes 8, 9, 10 of the solution 6', /' reservoirs 2', 3', and 4' are larger than the pilot hole. are provided for each. Here, the pilot holes 8, 9.10
are formed in a stripe shape in a direction perpendicular to the sliding direction 10. In a growth solution stored in a solution reservoir having such a shape, the weight density applied to the bottom of the solution increases, and the length of the bottom in the sliding direction 11 is small, so that the solution at the bottom of the solution occurs when the slider 11 slides. convection and vibration fluctuations are suppressed. Therefore, fluctuations in the composition of the solute concentration in the solution are suppressed, making it possible to achieve reproducible and uniform growth.

成長条件は溶液ンーク620 ’C1時間、冷却速度o
、5°C/分で温度を降下させ、590″Cがら水素ガ
ス雰囲気中で成長を行なった。第1図aにおいて、成長
の開始はまずスライダー5を一定速度vBで摺動して、
InP基板1を溝8下を通過させてInPバリア層を成
長し、引き続いてスライダー5を一定速度Vwで摺動し
てInP基板1を溝9下を通過させてI nGaAs 
P井戸層を成長し、最後に第1図すのようにスライダー
5を一定速度VBで摺7 ′−・ 動してInP基板1を溝10下を通過させてInP基板
1層を成長し、単一量子井戸構造が完了する。
The growth conditions were a solution temperature of 620'C for 1 hour, and a cooling rate of o.
, the temperature was lowered at a rate of 5°C/min, and growth was performed in a hydrogen gas atmosphere at 590°C. In Fig. 1a, the growth was started by first sliding the slider 5 at a constant speed vB.
The InP substrate 1 is passed under the groove 8 to grow an InP barrier layer, and then the slider 5 is slid at a constant speed Vw to pass the InP substrate 1 under the groove 9 to grow an InP barrier layer.
A P well layer is grown, and finally, as shown in Figure 1, the slider 5 is moved at a constant speed VB to pass the InP substrate 1 under the groove 10 to grow one layer of the InP substrate. The single quantum well structure is completed.

なお多重量子井戸型構造の場合は、上述の工程に引き続
いてスライダー6を往復摺動させることに」ニーて作製
可能となる。ここで溶液溜2/ 、 3/ 、 4/の
寸法に関し、基板1の摺動方向の長さをLとした時、溶
液溜2’、3’、4’の上穴の摺動方向の長さはして溝
8,9.10の摺動方向の長さはそれぞれL/Nとし/
こ。しかしながら成長溶液の組成に」:って成長速度が
異なるので、膜厚の制御性の観点からNの値をそれぞれ
任意に変えて最適な条件で成長すると良い。寸だ第1図
には示していないが成長溶液上に重しを付加してやれば
より一層の効果が期待できる。
In the case of a multi-quantum well type structure, it can be manufactured by sliding the slider 6 back and forth following the above-mentioned process. Regarding the dimensions of the solution reservoirs 2/, 3/, and 4/, when the length of the substrate 1 in the sliding direction is L, the length of the upper hole of the solution reservoirs 2', 3', and 4' in the sliding direction is The lengths of the grooves 8, 9, and 10 in the sliding direction are L/N, respectively.
child. However, since the growth rate differs depending on the composition of the growth solution, from the viewpoint of controllability of the film thickness, it is preferable to arbitrarily change the value of N and grow under optimal conditions. Although it is not shown in Figure 1, an even greater effect can be expected if a weight is added on top of the growth solution.

次に本発明の他の実施例について第2図を用いて説明す
る。本実施例と前記実施例との異なる点に+1、溶液溜
2,3.4中に同様に溝8,9.10を設けただけでな
く傾斜11.12.13を付加した所にある1、これに
よって下穴8,9.10中の溶液に加重密度が増加し、
スライダー5の摺動時に起きる成長溶液底部の溶質濃度
のゆらぎ変動がよく抑えられる。したがって極薄膜成長
に対して組成、膜厚の制御性の向上が期待できる。
Next, another embodiment of the present invention will be described using FIG. 2. The difference between this example and the previous example is +1, in that not only grooves 8, 9, 10 were similarly provided in the solution reservoirs 2, 3, 4, but also slopes 11, 12, 13 were added. , this increases the weighted density of the solution in the pilot holes 8, 9, and 10,
Fluctuations in the solute concentration at the bottom of the growth solution that occur when the slider 5 slides are well suppressed. Therefore, improved controllability of composition and film thickness can be expected for ultra-thin film growth.

次に本発明のさらに他の実施例について第3図を用いて
説明する。本実施例と前記第1の実施例と異々る点は、
溶液溜2,3.4中に同様に溝14゜15.16を設け
ているが前記溝14,15.16の形状を第3図のよう
に側面を傾斜状にしている点にある。これによって溝1
4,15.16中の溶液に加重密度が増加し、スライダ
ー6の摺動時に起きる成長溶液底部の溶質濃度のゆらぎ
変動がより抑えられ、極薄膜成長に対して組成、膜厚の
制御性の向上が期待できる。
Next, still another embodiment of the present invention will be described with reference to FIG. The differences between this embodiment and the first embodiment are as follows:
Similarly, grooves 14.degree. 15.16 are provided in the solution reservoirs 2, 3.4, but the shape of the grooves 14, 15.16 is such that the side surfaces thereof are inclined as shown in FIG. This allows groove 1
The weighted density of the solution in 4, 15.16 is increased, and fluctuations in the solute concentration at the bottom of the growth solution that occur when the slider 6 slides are further suppressed, making it possible to control the composition and film thickness for ultra-thin film growth. We can expect improvement.

発明の効果 以上のように、本発明によれば、液相成長法による極薄
膜エピタキシャル成長において、摺動成長を用いて成長
する際、溶液溜の形状を上穴面積が下穴面積より太きく
し、前記溶液溜の下部に摺動方向に対して直角な方向に
溝穴を設けてやることによって、スライダーの摺動時に
起きる成長法9 ベーノ 液底部の溶質濃度のゆらぎ変動が抑えられ、組成。
Effects of the Invention As described above, according to the present invention, in ultrathin film epitaxial growth by liquid phase growth, when growing using sliding growth, the shape of the solution reservoir is such that the upper hole area is larger than the lower hole area, By providing a slot in the lower part of the solution reservoir in a direction perpendicular to the sliding direction, fluctuations in the solute concentration at the bottom of the Boehno liquid that occur when the slider slides can be suppressed and the composition can be reduced.

膜厚の均一な極薄膜層が再現性良く作製できる。Ultra-thin film layers with uniform thickness can be produced with good reproducibility.

【図面の簡単な説明】 第1図は本発明の一実施例における液相成長方法を説明
する成長ボートの断面図、第2図は本発明の第2の実施
例における成長ボートの断面図、第3図は本発明の第3
の実施例における成長ボートの断面図、第4図は従来の
液相成長方法を説明するだめの成長ボートの断面図であ
る。 1・・・・・・基板、2,4・・・・・・バリア層溶液
、3・川・・井戸層溶液、8,9.10・・・・・・下
穴、11 、12゜13・・・・・・溶液溜の傾斜状側
壁、14,15.16・・・・・・溝の傾斜状側壁。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a sectional view of a growth boat illustrating a liquid phase growth method in an embodiment of the present invention, and FIG. 2 is a sectional view of a growth boat in a second embodiment of the present invention. Figure 3 shows the third embodiment of the present invention.
FIG. 4 is a sectional view of a growth boat for explaining the conventional liquid phase growth method. 1...Substrate, 2,4...Barrier layer solution, 3.River...Well layer solution, 8,9.10...Prepared hole, 11, 12゜13 ... Sloped side wall of solution reservoir, 14, 15.16 ... Slanted side wall of groove.

Claims (1)

【特許請求の範囲】[Claims] 基板を収納する基板ホルダーと溶液を収納する溶液ホル
ダーを有し、前記基板ホルダーと前記溶液ホルダーが相
対的に摺動可能な成長ボートを用いて、前記基板ホルダ
ーと前記溶液ホルダーとが相対的に停止することなく摺
動状態で成長して極薄膜エピタキシャル成長を行なうに
際し、前記溶液ホルダーに具備した溶液溜の上穴面積を
下穴面積より大きくし、前記下穴の形状がストライプ状
になっていることを特長とする液相成長方法。
Using a growth boat that has a substrate holder for storing a substrate and a solution holder for storing a solution, and in which the substrate holder and the solution holder are movable relative to each other, the substrate holder and the solution holder are relatively slidable. When performing ultrathin film epitaxial growth by growing in a sliding state without stopping, the area of the upper hole of the solution reservoir provided in the solution holder is made larger than the area of the pilot hole, and the shape of the pilot hole is striped. A liquid phase growth method characterized by:
JP26455086A 1986-11-06 1986-11-06 Liquid growth method Pending JPS63119227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26455086A JPS63119227A (en) 1986-11-06 1986-11-06 Liquid growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26455086A JPS63119227A (en) 1986-11-06 1986-11-06 Liquid growth method

Publications (1)

Publication Number Publication Date
JPS63119227A true JPS63119227A (en) 1988-05-23

Family

ID=17404824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26455086A Pending JPS63119227A (en) 1986-11-06 1986-11-06 Liquid growth method

Country Status (1)

Country Link
JP (1) JPS63119227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164309A (en) * 1986-12-26 1988-07-07 Nec Corp Liquid growth method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164309A (en) * 1986-12-26 1988-07-07 Nec Corp Liquid growth method

Similar Documents

Publication Publication Date Title
US4215319A (en) Single filament semiconductor laser
US4050964A (en) Growing smooth epitaxial layers on misoriented substrates
US4142924A (en) Fast-sweep growth method for growing layers using liquid phase epitaxy
JPS63119227A (en) Liquid growth method
Waterman et al. Reflection high‐energy electron diffraction study of Sb incorporation during molecular‐beam epitaxy growth of GaSb and AlSb
JPS62128522A (en) Liquid growth method
Araki et al. Fabrication of InGaAs quantum wires and dots by selective molecular beam epitaxial growth on various mesa-patterned (001) InP substrates
Zhang et al. Short‐pulse supersonic nozzle beam epitaxy: A new approach for submonolayer controlled growth
JPS62245691A (en) Manufacure of semiconductor laser
CA1163350A (en) Semiconductor laser
JPH0310222B2 (en)
JP2641539B2 (en) Method for manufacturing semiconductor device
Novák et al. InGaP/GaAs/InGaP quantum wires grown on pre-patterned substrates by MOVPE
JPS61161708A (en) Formation of thin film
SU773792A1 (en) Method of obtaining semiconductor varizone heterostructures
JPH04254321A (en) Liquid phase epitaxial growth method
JPH0210799B2 (en)
JPS6286884A (en) Manufacture of semiconductor device
JPH01203291A (en) Semiconductor substrate holder for vapor growth
JPH01183183A (en) Manufacture of semiconductor laser
JPH0760795B2 (en) Vapor phase thin film forming equipment
JPS59110113A (en) Liquid phase epitaxial growth
JPS63136515A (en) Liquid phase epitaxy method
JPH0786685A (en) Molecular beam epitaxial growth method
JPS60225423A (en) Method for liquid phase epitaxial growth