JPS643051B2 - - Google Patents

Info

Publication number
JPS643051B2
JPS643051B2 JP7932479A JP7932479A JPS643051B2 JP S643051 B2 JPS643051 B2 JP S643051B2 JP 7932479 A JP7932479 A JP 7932479A JP 7932479 A JP7932479 A JP 7932479A JP S643051 B2 JPS643051 B2 JP S643051B2
Authority
JP
Japan
Prior art keywords
substrate
solution
growth
dummy wafer
boat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7932479A
Other languages
Japanese (ja)
Other versions
JPS562639A (en
Inventor
Michiharu Ito
Koji Shinohara
Mitsuo Yoshikawa
Hirokazu Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7932479A priority Critical patent/JPS562639A/en
Publication of JPS562639A publication Critical patent/JPS562639A/en
Publication of JPS643051B2 publication Critical patent/JPS643051B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】 本発明は多元半導体結晶の液相成長方法とくに
複数の成長層を形成する方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for liquid phase growth of multicomponent semiconductor crystals, particularly to an improvement in a method for forming a plurality of growth layers.

半導体レーザ素子は通常液相からの多層エピタ
キシヤル成長法によつて製作される。このエピタ
キシヤル成長法はすでに周知であるが、以下第1
図によつて簡単に説明する。
Semiconductor laser devices are usually manufactured by a multilayer epitaxial growth method from a liquid phase. This epitaxial growth method is already well known, but the first method will be described below.
This will be briefly explained using figures.

第1図において、Aは複数の液溜め1,2,3
を有するカーボン製ボート、Bは同じくカーボン
で製した基板保持台である。該基板保持台B面に
は多元半導体たとえばテルル化鉛(PbTe)の単
結晶基板4およびダミーウエハ5が載置保持され
ている。上記単結晶基板4は半導体レーザ素子の
活性部分の支持体となるものであり、またダミー
ウエハは半導体溶液の下層に溜まつた不要不純物
の除去用である。すなわちカーボン製のボートA
を動かす際液溜め1,2,3内に収容された多元
半導体たとえば鉛を含む3元半導体の溶液がカー
ボン製の基板保持台Bの表面と接触することによ
り液相中に不要不純物が混入し易い。そこで単結
晶基板4に溶液7を接触させるに先立ち、ダミー
ウエハ5上に不要不純物を含む結晶を液相の底部
から析出させ、以つて液相を清浄化する。
In FIG. 1, A is a plurality of liquid reservoirs 1, 2, 3.
B is a carbon boat having a substrate holder also made of carbon. A single crystal substrate 4 of a multi-component semiconductor such as lead telluride (PbTe) and a dummy wafer 5 are placed and held on the B surface of the substrate holding table. The single crystal substrate 4 serves as a support for the active portion of the semiconductor laser device, and the dummy wafer is used to remove unnecessary impurities accumulated in the lower layer of the semiconductor solution. In other words, carbon boat A
When the liquid phase is moved, a solution of a multi-component semiconductor, such as a ternary semiconductor containing lead, housed in the liquid reservoirs 1, 2, and 3 comes into contact with the surface of the carbon substrate holder B, and unnecessary impurities are mixed into the liquid phase. easy. Therefore, before bringing the solution 7 into contact with the single crystal substrate 4, crystals containing unnecessary impurities are precipitated from the bottom of the liquid phase on the dummy wafer 5, thereby cleaning the liquid phase.

さらに、この種の液相成長工程においては成長
開始前に、第1図に示したボート位置で図示しな
い加熱用炉の温度を上昇させて、液溜め1内の溶
液6によつて基板表面を溶解させる。この溶解工
程は通常メルトバツク(melt back)と呼ばれ
る。この工程により基板表面の薄層が除去され
て、除去後の表面はエピタキシヤル成長に適する
良好な表面となる。そこで上記炉の温度を下げて
液溜め1内の溶液6を単結晶として基板4の表面
上に成長させる。
Furthermore, in this type of liquid phase growth process, before the growth starts, the temperature of a heating furnace (not shown) is raised at the boat position shown in FIG. Dissolve. This melting process is commonly referred to as melt back. This step removes a thin layer on the surface of the substrate, leaving the surface with a good surface suitable for epitaxial growth. Therefore, the temperature of the furnace is lowered and the solution 6 in the liquid reservoir 1 is grown as a single crystal on the surface of the substrate 4.

上述の半導体レーザ素子の製造工程中で基板4
と最初に接触させる液相はバツフア層形成用の液
相6であり、この後にボートAを矢印イの方向に
ずらし、活性層成長用溶液7を基板4に接触させ
て活性層となる成長層を形成する。完成後の半導
体レーザの発光波長は上記活性層の組成によつて
定まるから、精密に所望波長に合致した出力光を
得るには活性層の組成を厳密に規定しなければな
らない。
During the manufacturing process of the semiconductor laser device described above, the substrate 4
The first liquid phase that is brought into contact with the substrate 4 is the liquid phase 6 for forming a buffer layer.After this, the boat A is shifted in the direction of arrow A, and the active layer growth solution 7 is brought into contact with the substrate 4 to form a growth layer that will become an active layer. form. Since the emission wavelength of the completed semiconductor laser is determined by the composition of the active layer, the composition of the active layer must be strictly defined in order to obtain output light precisely matching the desired wavelength.

しかるに上述した従来のエピタキシヤル成長法
によれば、メルトバツクを行う際にダミーウエハ
5が活性層成長用溶液7内に多少とも溶解し、そ
のために活性層成長用溶液7の組成が変動し、結
果として成長した活性層の組成が当初の設計値と
異なつてくるという不都合があつた。
However, according to the conventional epitaxial growth method described above, the dummy wafer 5 dissolves to some extent in the active layer growth solution 7 during meltback, and as a result, the composition of the active layer growth solution 7 fluctuates. There was an inconvenience that the composition of the grown active layer differed from the originally designed value.

本発明は前述の問題点を解決したものであつ
て、所要成長層の数よりも余分の液溜めを有する
ボートを使用して、メルトバツクの際にダミーウ
エハ成分が液相中に溶出することに基因する液相
組成の変動を防止することを可能とした新しい多
元半導体結晶の液相成長法を提供せんとするもの
である。
The present invention solves the above-mentioned problem, which is caused by using a boat having an extra liquid reservoir than the required number of growth layers, which causes dummy wafer components to dissolve into the liquid phase during meltback. The purpose of the present invention is to provide a new method for liquid phase growth of multicomponent semiconductor crystals that makes it possible to prevent fluctuations in the liquid phase composition.

以下図面を用いて本発明に係る液相成長法の一
実施例について詳細に説明する。なお以下各図に
おいて第1図と同等部分には同一符号を付した。
An embodiment of the liquid phase growth method according to the present invention will be described in detail below with reference to the drawings. Note that in the following figures, the same parts as in FIG. 1 are given the same reference numerals.

第2図は本発明に係る液相成長法におけるメル
トバツク時の状態を示したもので、本実施例は鉛
−すず−テルル(Pb1−χ Snχ Te)を液相か
ら成長させる場合である。
FIG. 2 shows the state during meltback in the liquid phase growth method according to the present invention, and in this example, lead-tin-tellurium (Pb 1 -χ Snχ Te) is grown from the liquid phase.

本実施例において使用するボートA′の有する
液溜めは、第1図のボートAに比し1箇所多い。
この余分の液溜め9内にはバツフア層成長用溶液
6と同一組成の溶液10が収容されている。上記
余分の液溜め9はバツフア層成長用溶液6を収容
している液溜め1よりも前位にあるため、その内
容液10は上記液溜め1の内容液6に先立つて基
板4の表面に接触する。そこで第2図に示すよう
に基板4に溶液10が、ダミーウエハ5に溶液6
が、それぞれ接触した状態で炉温を上昇させてメ
ルトバツクを行う。このとき活性層成長用の液溜
め2はダミーウエハ5と離れているので溶液7内
にダミーウエハ5が溶解する恐れはまつたく無
い。
Boat A' used in this embodiment has one more liquid reservoir than boat A in FIG.
This extra liquid reservoir 9 contains a solution 10 having the same composition as the buffer layer growth solution 6. Since the extra liquid reservoir 9 is located in front of the liquid reservoir 1 containing the buffer layer growth solution 6, its contents 10 reach the surface of the substrate 4 before the contents 6 of the liquid reservoir 1. Contact. Therefore, as shown in FIG.
Meltback is performed by raising the furnace temperature while the two are in contact with each other. At this time, since the liquid reservoir 2 for growing the active layer is separated from the dummy wafer 5, there is no possibility that the dummy wafer 5 will dissolve in the solution 7.

このようにしてメルトバツク工程が終わればボ
ートAを矢印イの方向に移動させて、第3図に示
すようにバツフア層成長用溶液6が基板4の表面
に接触するようにし、炉温を低下させてバツフア
層となる成長層を基板4の新しい表面上に成長さ
せる。なお第3図の状態では活性層成長用溶液7
がダミーウエハ5と接触しているが、炉温が低下
しているためダミーウエハの溶解、すなわちダミ
ーウエハの溶液7中へのメルトバツクは起こらな
い。したがつて溶液7の組成変動は生じないが、
ダミーウエハ5による液相の清浄化に関しては第
1図の場合と何ら変わりがない。
When the melt-back process is completed in this way, the boat A is moved in the direction of arrow A so that the buffer layer growth solution 6 comes into contact with the surface of the substrate 4 as shown in FIG. 3, and the furnace temperature is lowered. A growth layer, which will become a buffer layer, is then grown on the new surface of the substrate 4. In addition, in the state shown in FIG. 3, the active layer growth solution 7
is in contact with the dummy wafer 5, but since the furnace temperature has decreased, the dummy wafer does not melt, that is, the dummy wafer does not melt back into the solution 7. Therefore, there is no change in the composition of solution 7, but
Regarding the cleaning of the liquid phase by the dummy wafer 5, there is no difference from the case shown in FIG.

上述のようにしてバツフア層とする成長層の形
成が終れば、あとは従来の方法と同様にボート
A′を矢印イの方向に動かして、第4図に示すご
とく活性層成長用の溶液7を基板4上面に接触さ
せて活性層となる成長層を形成し、しかる後さら
にボートA′を動かしてトツプ層成長用溶液8か
らトツプ層となる成長層を基板4上に積層して形
成すれば液相エピタキシヤル成長工程は終了す
る。この工程によれば活性層成長用液相中へ半導
体物質の溶け込みがまつたく無いから、作成直後
の溶液と精密に同一組成の活性層を形成すること
ができ、したがつてレーザ出力として活性層の理
論的組成に正確に対応する波長の光を取り出すこ
とができる。本発明者らの実験によれば、従来の
成長法によつて製作した半導体レーザは発光波長
において設計値に比し最大±0.5μm程度の誤差を
免れなかつたが、本発明の成長法によつた場合に
は上記誤差を±0.2μm以内に収めることができ
た。
Once the growth layer that will become the buffer layer has been formed as described above, the rest is done by boating as in the conventional method.
Move the boat A' in the direction of arrow A to bring the solution 7 for active layer growth into contact with the upper surface of the substrate 4 to form a growth layer that will become the active layer, as shown in Figure 4, and then move the boat A' further. The liquid phase epitaxial growth process is then completed by laminating and forming a growth layer that will become the top layer on the substrate 4 from the top layer growth solution 8. According to this process, since the semiconductor material does not dissolve into the liquid phase for active layer growth, it is possible to form an active layer with exactly the same composition as the solution immediately after preparation, and therefore the active layer can be used as a laser output. It is possible to extract light at a wavelength that exactly corresponds to the theoretical composition of . According to experiments conducted by the present inventors, semiconductor lasers manufactured using the conventional growth method had an error of up to ±0.5 μm compared to the design value in the emission wavelength, but the growth method of the present invention In this case, the above error could be kept within ±0.2 μm.

なおダミーウエハとしては活性層と同質のもの
を用いるのが理想的であるが、若干の組成差があ
つても差支えない。また多結晶でもよい。
Although it is ideal to use a dummy wafer of the same quality as the active layer, it is acceptable if there is a slight difference in composition. It may also be polycrystalline.

以上説明した実施例はPb1−χSNχTeを成長さ
せる場合であつたが、ダミーウエハを使用しかつ
メルトバツクを伴う液相エピタキシヤル法であれ
ば、砒化ガリウム(GaAs)系の2元または3元
半導体、他のカルコゲン系多元半導体、水銀−カ
ドミウム−テルル(Hg1−χCdχTe)等を対象と
する場合にも本発明の方法を有効に適用すること
ができる。
The embodiment described above was for growing Pb 1 -χSNχTe, but if a liquid phase epitaxial method using a dummy wafer and involving meltback is used, a gallium arsenide (GaAs) based binary or ternary semiconductor, The method of the present invention can also be effectively applied to other chalcogen-based multicomponent semiconductors, such as mercury-cadmium-tellurium (Hg 1 -χCdχTe).

本発明に係る液相成長法によれば、メルトバツ
クの際に液相の組成変動を防止することができる
ので精密に予定組成と合致する組成のエピタキシ
ヤルの成長層が得られる優れた利点がある。ゆえ
に、とくに出力光の波長を精密に所望値に合わせ
ることを要求される、大気分析装置の光源として
使用する半導体赤外線レーザ素子の製造等に適用
してきわめて有利である。
According to the liquid phase growth method according to the present invention, it is possible to prevent compositional fluctuations in the liquid phase during meltback, so there is an excellent advantage that an epitaxial growth layer having a composition that precisely matches the planned composition can be obtained. . Therefore, it is extremely advantageous especially when applied to the manufacture of semiconductor infrared laser elements used as light sources of atmospheric analysis devices, which require precisely adjusting the wavelength of output light to a desired value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の液相成長法に用いる装置の要部
断面図、第2図〜第4図は本発明の液相成長法を
適用した半導体レーザ素子の製造工程の一例を順
次に示す断面図である。 A,A:ボート、B:基板保持台、1,2,
3:液溜め、6:バツフア層成長用溶液、7:活
性層成長用溶液、8:トツプ層成長用溶液、9:
液溜め、10:メルトバツク用溶液。
FIG. 1 is a cross-sectional view of a main part of an apparatus used in the conventional liquid phase growth method, and FIGS. 2 to 4 are cross-sectional views sequentially showing an example of the manufacturing process of a semiconductor laser device to which the liquid phase growth method of the present invention is applied. It is a diagram. A, A: Boat, B: Substrate holding stand, 1, 2,
3: Liquid reservoir, 6: Buffer layer growth solution, 7: Active layer growth solution, 8: Top layer growth solution, 9:
Liquid reservoir, 10: Solution for melt bag.

Claims (1)

【特許請求の範囲】 1 結晶成長用基板上にバツフア層、活性層、ト
ツプ層をこの順にスライド式液相エピタキシヤル
成長法により連続成長させる方法において、 結晶成長用基板およびダミーウエハを保持する
基板保持台と、4つの液溜めを有しかつ各個の液
溜め内に多元半導体の液相を収容したボートとを
上下に重ね、 上記第1および第2の液溜めに収容したバツフ
ア層成長用溶液を上記基板およびダミーウエハの
表面にそれぞれ接触させて基板およびダミーウエ
ハの表層部分を上記各溶液内に溶解させ、 ついでボートと基板保持台とを相対的に移動さ
せてボート中の第2の液溜めに収容されたバツフ
ア層成長用溶液を基板に、第3の液溜め内の活性
層成長用溶液をダミーウエハにそれぞれ接触させ
かつ液温を低下させつつ基板およびダミーウエハ
の表面に各容液から多元半導体結晶を析出成長さ
せ、 その後ボートを基板保持台に対して移動させて
第3の液溜めの活性層成長用溶液を基板表面に、
第4の液溜め内のトツプ層用溶液をダミーウエハ
表面に接触させ、各溶液から多元半導体結晶を析
出成長させ、 その後ボートを基板保持台に対して移動させて
第4の液溜めのトツプ層成長用溶液を基板表面に
接触させて多元半導体結晶を析出成長させること
を特徴とする多元半導体結晶の液相成長法。
[Claims] 1. A method for successively growing a buffer layer, an active layer, and a top layer in this order on a crystal growth substrate by a sliding liquid phase epitaxial growth method, comprising: a substrate holder for holding a crystal growth substrate and a dummy wafer; A platform and a boat having four liquid reservoirs each containing a multi-component semiconductor liquid phase are stacked one on top of the other, and the buffer layer growth solution contained in the first and second liquid reservoirs is placed one above the other. The surfaces of the substrate and dummy wafer are brought into contact with each other to dissolve the surface layer portions of the substrate and dummy wafer in the respective solutions, and then the boat and the substrate holder are moved relatively to each other and placed in a second liquid reservoir in the boat. The prepared buffer layer growth solution is brought into contact with the substrate, and the active layer growth solution in the third reservoir is brought into contact with the dummy wafer, and multi-component semiconductor crystals are grown from each solution onto the surfaces of the substrate and dummy wafer while lowering the solution temperature. After that, the boat is moved relative to the substrate holder and the active layer growth solution in the third reservoir is applied to the substrate surface.
The top layer solution in the fourth reservoir is brought into contact with the surface of the dummy wafer, and multi-component semiconductor crystals are precipitated and grown from each solution, and then the boat is moved relative to the substrate holder to grow the top layer in the fourth reservoir. A liquid phase growth method for multi-component semiconductor crystals, characterized in that multi-component semiconductor crystals are precipitated and grown by bringing a solution into contact with a substrate surface.
JP7932479A 1979-06-22 1979-06-22 Liquid phase growth of multiple element semiconductor crystal Granted JPS562639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7932479A JPS562639A (en) 1979-06-22 1979-06-22 Liquid phase growth of multiple element semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7932479A JPS562639A (en) 1979-06-22 1979-06-22 Liquid phase growth of multiple element semiconductor crystal

Publications (2)

Publication Number Publication Date
JPS562639A JPS562639A (en) 1981-01-12
JPS643051B2 true JPS643051B2 (en) 1989-01-19

Family

ID=13686693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7932479A Granted JPS562639A (en) 1979-06-22 1979-06-22 Liquid phase growth of multiple element semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS562639A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2517774Y2 (en) * 1991-06-24 1996-11-20 株式会社フクハラ Drain discharge device

Also Published As

Publication number Publication date
JPS562639A (en) 1981-01-12

Similar Documents

Publication Publication Date Title
US3897281A (en) Method for epitaxially growing a semiconductor material on a substrate from the liquid phase
US3960618A (en) Epitaxial growth process for compound semiconductor crystals in liquid phase
US3715245A (en) Selective liquid phase epitaxial growth process
JPS643051B2 (en)
US3891478A (en) Deposition of epitaxial layer from the liquid phase
JPS58120600A (en) Epitaxial growth method of 2-5 family compound semiconductor
US4366009A (en) Method of manufacturing semiconductor structures by epitaxial growth from the liquid phase
JPS626338B2 (en)
Dutt et al. A novel multi-slice LPE boat: I. Preliminary results on InGaAs alloys
JPS6311596A (en) Liquid phase epitaxy for multiple element compound semiconductor by two-phase melt method
JP2823760B2 (en) Liquid phase epitaxial growth equipment
JP3151277B2 (en) Liquid phase epitaxial growth method
JPS62128522A (en) Liquid growth method
JPS5937855B2 (en) Liquid phase epitaxial growth equipment
JP2975740B2 (en) Liquid phase epitaxial growth method
JPH0322052B2 (en)
JPH10178027A (en) Liquid phase epitaxial growth method and liquid phase growth device
JPH01179386A (en) Manufacture of semiconductor laser
JPH0352241A (en) Liquid-phase epitaxy
JPS5821831A (en) Method for liquid phase epitaxial growth
JPS63308313A (en) Manufacturing equipment for semiconductor
JPH0258769B2 (en)
JPH043101B2 (en)
JPH07302740A (en) Gaas single crystal substrate for liquid phase epitaxial growth
JPS5820796A (en) Epitaxial growing apparatus in liquid phase