JPS63110604A - Quenched thin strip magnet - Google Patents

Quenched thin strip magnet

Info

Publication number
JPS63110604A
JPS63110604A JP61254670A JP25467086A JPS63110604A JP S63110604 A JPS63110604 A JP S63110604A JP 61254670 A JP61254670 A JP 61254670A JP 25467086 A JP25467086 A JP 25467086A JP S63110604 A JPS63110604 A JP S63110604A
Authority
JP
Japan
Prior art keywords
weight
praseodymium
cerium
earth element
thin strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61254670A
Other languages
Japanese (ja)
Other versions
JPH0531803B2 (en
Inventor
Ryoji Omachi
大町 良治
Hiroshi Yamamoto
洋 山元
Mitsuru Nagakura
永倉 充
Takehiko Miyauchi
宮内 岳彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP61254670A priority Critical patent/JPS63110604A/en
Publication of JPS63110604A publication Critical patent/JPS63110604A/en
Publication of JPH0531803B2 publication Critical patent/JPH0531803B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the quenched thin strip magnet having high magnetic characteristics at the cost lower than that of an Nd-Fe-B sintered permanent magnet alloy by a method wherein the cerium in the range of prescribed- quantity is cojointly used with the praseodymium in the quantity of the prescribed range. CONSTITUTION:A ternary rare-earth element is formed and used by adding serium of 1-10 wt. % to praseodymium of 1-39 wt. %. To be more precise, said rare-earth element has the composition shown by RXFeYBZ (R is the rare- earth element consisting of Pr of 1-39 wt. %, Nd of 60-98 wt. % and Ce of 1-10 wt. %, Fe indicates iron, and B indicates boron, and the quantative ratio of R, Fe and B is 33-35 wt. % for X, 60-66 wt. % for Y and 0.8-1.2 wt. % for Z). When cerium is reduced to 1 wt. % or less and praseodymium is reduced to 1 wt. % or less, the formation of a thin strip becomes difficult. Also, when cerium exceeds 10 wt. % and praseodymium exceeds 39 wt. %, saturated magnetization Is becomes low, and it is brought into the state that it can not be used.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は急冷薄帯磁石に関する。更に詳細には、本発明
はセリウムを添加した希土類元素−鉄一ホウ素系の急冷
薄帯磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a quenched ribbon magnet. More specifically, the present invention relates to a rare earth element-iron-boron quenched ribbon magnet doped with cerium.

〈従来の技術〉 従来より希土類元素−鉄一ホウ素系永久磁石合金として
Nd−Fe−B系焼結磁石が公知であり、この合金材料
はS m −Co系永久磁石合金に比較して原料が入手
しやすく、比較的安価で且つ高性能であることから特に
注目を集めている。また、ジジム系希土類元素を含有す
る鉄−ホウ素系焼結磁石も公知である。更に、Nd−F
e−B系の薄帯磁石も公知である。
<Prior art> Nd-Fe-B based sintered magnets have been known as rare earth element-iron-boron based permanent magnet alloys, and this alloy material requires less raw material than S m -Co based permanent magnet alloys. It is attracting particular attention because it is easily available, relatively inexpensive, and has high performance. Further, iron-boron sintered magnets containing didymium rare earth elements are also known. Furthermore, Nd-F
E-B type ribbon magnets are also known.

〈発明が解決しようとする問題点〉 しかしながら、近年の電気電子機器の小型化、高効率化
の要求を満たすには更に安価で高磁気特性を有する永久
磁石が要望される。
<Problems to be Solved by the Invention> However, in order to meet the recent demands for smaller size and higher efficiency of electrical and electronic equipment, permanent magnets that are cheaper and have higher magnetic properties are required.

〈発明の目的〉 従って、本発明の目的は、Nd−Fe−B系焼結体永久
磁石合金より更に安価で高磁気特性を有する急冷薄帯磁
石を提供することを目的とする。
<Objective of the Invention> Accordingly, an object of the present invention is to provide a quenched ribbon magnet that is cheaper than a Nd-Fe-B based sintered permanent magnet alloy and has high magnetic properties.

〈発明の構成〉 本発明によれば、 一般式: %式% (式中、RはPr1〜39重量%、Nd60〜98重量
%及びCel〜10重量%からなる希土類元素であり、
Feは鉄並びにBはホウ素を表わし、R,Fe、Bの量
比は各々Xが33〜35重量%、Yが60〜66重量%
並びに2が0.8〜1.2重量%を示す)で表示される
組成を有する急冷薄帯磁石が提供される。
<Structure of the invention> According to the present invention, the general formula: % formula % (wherein R is a rare earth element consisting of Pr 1 to 39% by weight, Nd 60 to 98% by weight and Cel to 10% by weight,
Fe represents iron and B represents boron, and the quantitative ratio of R, Fe, and B is 33 to 35% by weight for X and 60 to 66% by weight for Y, respectively.
and 2 represents 0.8 to 1.2% by weight).

〈発明の説明〉 以下1本発明を更に詳細に説明する。<Description of the invention> The present invention will be explained in more detail below.

本発明の急冷薄帯磁石材料として使用する希土類元素は
プラセオジム(Pr)1〜39重量%、セリウム(Ce
)1〜10重量%、ネオジム(Nd)60〜98重量%
からなる希土類元素を用いる(工業上不可避な不純物を
含有するものも使用できる)。
The rare earth elements used as the quenched ribbon magnet material of the present invention are praseodymium (Pr) 1 to 39% by weight, cerium (Ce
) 1 to 10% by weight, neodymium (Nd) 60 to 98% by weight
(Those containing industrially unavoidable impurities can also be used.)

本発明では天然に存在する希土類元素より、軽希土骨の
セリウム(Ce)、ランタン(La)等及び重希土分の
サマリウム(Sm)、ユーロピウム(Eu)、ガドリニ
ウム(Gd)、イツトリウム(Y)等を各方面の用途に
応じて分離した後に副生する、酸化ネオジム75〜85
重量%、酸化プラセオジム10〜20重量%、酸化セリ
ウム1〜15重量%からなる混合物(ジジム化合物)を
利用して酸化物溶融塩電解法により希土類元素金属混合
物を得ることができるので、ネオジムを単体として含む
従来のNd−Fe−B系永久磁石合金材料に比して大幅
に安価であり、工業的規模での生産が可能である。もち
ろん、別個に調製されたネオジム、プラセオジム、セリ
ウム金属を溶融炉にて合金化して用いることもできる。
In the present invention, from naturally occurring rare earth elements, light rare earth elements such as cerium (Ce) and lanthanum (La), and heavy rare earth elements such as samarium (Sm), europium (Eu), gadolinium (Gd), and yttrium (Y) are used. ) Neodymium oxide 75 to 85, which is a by-product after separating products according to various uses.
A rare earth metal mixture can be obtained by oxide molten salt electrolysis using a mixture (didymium compound) consisting of praseodymium oxide, 10-20% by weight, and cerium oxide, 1-15% by weight. It is significantly cheaper than conventional Nd-Fe-B permanent magnet alloy materials, and can be produced on an industrial scale. Of course, separately prepared neodymium, praseodymium, and cerium metals can be alloyed in a melting furnace and used.

本発明の急冷薄帯磁石では希土類元素としてネオジム単
体を用いずにプラセオジム1〜39重量%、セリウム1
〜10重量%を更に加え三元系希土類元素として用いる
点に大きな特徴を有する。
In the quenched ribbon magnet of the present invention, 1 to 39% by weight of praseodymium, 1 to 39% by weight of praseodymium, 1 to 3% by weight of cerium, and 1 to 39 wt.
It has a major feature in that it is used as a ternary rare earth element by further adding ~10% by weight.

Ce−FeB系合金材料はNd−Fe−B系合金材料に
比して飽和磁化Isが前者の場合1.16テスラ(T)
、後者の場合1.57テスラ(T)、また異方性磁場H
aが前者では3.7MA/m、後者では12 M A 
/ mと極端に差があるため、セリウムを永久磁石材料
中に含ませると飽和磁化、保磁力が低くなり、高磁気特
性が得られないと推測されていた。故に、磁石材料中に
はセリウムをできる限り除去することが常識とされてい
た。しかしながら、驚くべきことに特許請求の範囲に記
載する特定範囲の量のセリウムを、特定範囲の量のプラ
セオジムと併用することにより、ネオジム単体を用いる
場合よりも保磁力が大きく、従って最大エネルギー積が
大きい永久磁石が得られる。
Ce-FeB alloy material has a saturation magnetization Is of 1.16 Tesla (T) compared to Nd-Fe-B alloy material.
, in the latter case 1.57 Tesla (T), and the anisotropic magnetic field H
a is 3.7 MA/m in the former case and 12 MA/m in the latter case.
/m, it was assumed that if cerium was included in the permanent magnet material, the saturation magnetization and coercive force would be lowered, making it impossible to obtain high magnetic properties. Therefore, it has been common knowledge to remove as much cerium as possible from magnet materials. Surprisingly, however, the use of cerium in the specified range of amounts described in the claims in combination with praseodymium in the specified ranges results in a greater coercive force than when neodymium alone is used, and therefore a maximum energy product. A large permanent magnet can be obtained.

セリウムが1重量%未満、プラセオジムが1重量%未満
となると薄帯の製造が困難となり、また一方セリウムが
10重量%、プラセオジムが39重量%を越えると、飽
和磁化Isが低くなり、使用できない。
If cerium is less than 1% by weight and praseodymium is less than 1% by weight, it will be difficult to manufacture a ribbon. On the other hand, if cerium is more than 10% by weight and praseodymium is more than 39% by weight, the saturation magnetization Is becomes low and it cannot be used.

本発明に用いるホウ素としては純ボロン、フェロボロン
等を用いることができ、不純物としてケイ素、アルミニ
ウム、炭素等を含んでいてもよい。
As the boron used in the present invention, pure boron, ferroboron, etc. can be used, and silicon, aluminum, carbon, etc. may be included as impurities.

また鉄としては電解鉄、純鉄、低炭素軟鉄等を用いるこ
とができる。
Further, as the iron, electrolytic iron, pure iron, low carbon soft iron, etc. can be used.

本発明では上述の希土類元素33〜35重量%。In the present invention, 33 to 35% by weight of the above-mentioned rare earth elements.

鉄60〜66重量%及びホウ素0.8〜1.2重量%の
範囲の組成とする。希土類元素が33重量%未満では保
磁力が低下し、一方35重量%を越えると強磁性相の量
が減少し、飽和磁化Isが低下する。また、ホウ素が0
.8重量%未満では安定な強磁性相が得られない。また
、ホウ素量の増加に伴い飽和磁化Isが低下し、1.2
重量%以上では高特性が得られない。
The composition ranges from 60 to 66% by weight of iron and 0.8 to 1.2% by weight of boron. When the rare earth element content is less than 33% by weight, the coercive force decreases, while when it exceeds 35% by weight, the amount of ferromagnetic phase decreases and the saturation magnetization Is decreases. Also, boron is 0
.. If it is less than 8% by weight, a stable ferromagnetic phase cannot be obtained. In addition, as the amount of boron increases, the saturation magnetization Is decreases to 1.2
If the amount is more than % by weight, high properties cannot be obtained.

本発明の急冷薄帯磁石を製造するにあたっては、まず原
料金属を1500℃程度にて溶解し、鋳造して合金イン
ゴットを調製する。この希土類合金インゴットを次いで
1550℃〜1560℃程度の温度範囲で不活性ガス、
例えば高純度のアルゴン、ヘリウム、等の雰囲気中で融
解し、融解物を単ロール上に射出し、ロール周速度7.
9〜19.6 m7秒、好ましくは7.9〜15.7m
/秒にて急冷して急冷薄帯磁石を作製できる。
In manufacturing the quenched ribbon magnet of the present invention, first, raw metal is melted at about 1500° C. and cast to prepare an alloy ingot. This rare earth alloy ingot is then heated with an inert gas in a temperature range of about 1550°C to 1560°C.
For example, it is melted in an atmosphere of high-purity argon, helium, etc., and the melt is injected onto a single roll at a peripheral speed of 7.
9-19.6 m7 seconds, preferably 7.9-15.7 m
A quenched thin ribbon magnet can be produced by quenching at a rate of 1/2 seconds.

〈発明の効果〉 本発明の急冷薄帯磁石は高い保磁力特性を示し、かつ耐
食性も極めて良好である。また、本発明の薄帯磁石の製
造は非常に実施が容易であり、かつコストも安価である
。従って、本発明の方法により製造した急冷薄帯磁石は
工業製品として有用性が高く、例えばボンド磁石、セン
サー等の材料として有用である。
<Effects of the Invention> The quenched ribbon magnet of the present invention exhibits high coercive force characteristics and has extremely good corrosion resistance. Furthermore, manufacturing the ribbon magnet of the present invention is very easy to implement and is inexpensive. Therefore, the quenched ribbon magnet produced by the method of the present invention is highly useful as an industrial product, for example, as a material for bonded magnets, sensors, etc.

〈実施例〉 以下、本発明を実施例につき説明する。<Example> Hereinafter, the present invention will be explained with reference to examples.

実施例1 酸化物溶融塩電解法にてジジム化合物より希土類元素合
金(Nd  80wt%、Pr15wt%。
Example 1 A rare earth element alloy (Nd 80 wt%, Pr 15 wt%.

Ce5wt%)500gを製造し、Feとして電解鉄9
55.3 g 、 B 14,7 gと共にアルミナル
ツボに入れ、l0KVAの高周波真空溶解炉中にてアル
ゴン気中1550℃にて溶解して合金インゴットを製造
した。この合金インゴットの主組成は34重量%R−6
5重量%Fa−1重量%Bである。
Produce 500g of Ce5wt%) and use electrolytic iron9 as Fe.
55.3 g of B and 14.7 g of B were placed in an alumina crucible and melted at 1550° C. in an argon atmosphere in a 10 KVA high frequency vacuum melting furnace to produce an alloy ingot. The main composition of this alloy ingot is 34% by weight R-6
5% by weight Fa-1% by weight B.

次いで、合金インゴットを温度1550℃にて高周波炉
中で溶融し、高純度アルゴンガス雰囲気中でロール周速
度を3.9m /秒、7.9m/秒、11.8m/秒、
15.8m/秒、19.6m /秒、23.6m/秒、
及び31.4m/秒として、片ロール液体急冷法により
急冷し、急冷薄帯磁石を各々製造”した。
Next, the alloy ingot was melted in a high-frequency furnace at a temperature of 1550°C, and the roll circumferential speed was set to 3.9 m/sec, 7.9 m/sec, 11.8 m/sec, and in a high-purity argon gas atmosphere.
15.8m/sec, 19.6m/sec, 23.6m/sec,
and 31.4 m/sec by a single roll liquid quenching method to produce quenched ribbon magnets.

製造した薄帯磁石の磁石特性はパルス着磁後、東英工業
社製振動試料型磁力計(V、S、M、)を用いて薄帯の
まま測定した。
The magnetic properties of the manufactured thin ribbon magnets were measured as they were after pulse magnetization using a vibrating sample magnetometer (V, S, M, manufactured by Toei Kogyo Co., Ltd.).

これらの結果を以下の第1表に示す。These results are shown in Table 1 below.

第1表 米国、リサーチ・ケミカル社製のNdメタル(純度99
.9%)、Prメタル(純度99%)、Ceメタル(純
度99.9%)を使用した以外は実施例1と同様の方法
により同様の組成の合金インゴットを作成し、ロール周
速度を11.8 m/秒として本発明の急冷薄帯磁石を
製造し、その磁気特性を測定した。その結果を第2表に
記載する。
Table 1: Nd metal manufactured by Research Chemical Co., USA (purity 99)
.. An alloy ingot with the same composition as in Example 1 was prepared by the same method as in Example 1 except that Pr metal (purity 99%) and Ce metal (purity 99.9%) were used, and the roll peripheral speed was set to 11.9%). A quenched ribbon magnet of the present invention was manufactured at a speed of 8 m/sec, and its magnetic properties were measured. The results are listed in Table 2.

ル狡鮭 Ceメタルを使用しなかった以外は、実施例2と同様の
方法により急冷薄帯磁石を製造し、その磁性特性を測定
した。その結果を第2表に記載する。
A quenched ribbon magnet was produced in the same manner as in Example 2, except that Ce metal was not used, and its magnetic properties were measured. The results are listed in Table 2.

Claims (1)

【特許請求の範囲】 一般式: R_XFe_YB_Z (式中、RはPr1〜39重量%、Nd60〜98重量
%及びCe1〜10重量%からなる希土類元素であり、
Feは鉄並びにBはホウ素を表わし、R、Fe、Bの量
比は各々Xが33〜35重量%、Yが60〜66重量%
並びにZが0.8〜1.2重量%を示す)で表示される
組成を有する急冷薄帯磁石。
[Claims] General formula: R_XFe_YB_Z (wherein, R is a rare earth element consisting of 1 to 39% by weight of Pr, 60 to 98% by weight of Nd, and 1 to 10% by weight of Ce,
Fe represents iron and B represents boron, and the quantitative ratio of R, Fe, and B is 33 to 35% by weight for X and 60 to 66% by weight for Y, respectively.
and Z represents 0.8 to 1.2% by weight).
JP61254670A 1986-10-28 1986-10-28 Quenched thin strip magnet Granted JPS63110604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61254670A JPS63110604A (en) 1986-10-28 1986-10-28 Quenched thin strip magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61254670A JPS63110604A (en) 1986-10-28 1986-10-28 Quenched thin strip magnet

Publications (2)

Publication Number Publication Date
JPS63110604A true JPS63110604A (en) 1988-05-16
JPH0531803B2 JPH0531803B2 (en) 1993-05-13

Family

ID=17268229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61254670A Granted JPS63110604A (en) 1986-10-28 1986-10-28 Quenched thin strip magnet

Country Status (1)

Country Link
JP (1) JPS63110604A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110544569A (en) * 2019-08-24 2019-12-06 宁波合力磁材技术有限公司 neodymium-iron-boron magnet and production process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609852A (en) * 1983-06-24 1985-01-18 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン High energy stored rare earth-iron magnetic alloy
JPS60254708A (en) * 1984-05-31 1985-12-16 Daido Steel Co Ltd Manufacture of permanent magnet
JPS61174364A (en) * 1985-09-17 1986-08-06 Mori Kaneo Permanent magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609852A (en) * 1983-06-24 1985-01-18 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン High energy stored rare earth-iron magnetic alloy
JPS60254708A (en) * 1984-05-31 1985-12-16 Daido Steel Co Ltd Manufacture of permanent magnet
JPS61174364A (en) * 1985-09-17 1986-08-06 Mori Kaneo Permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110544569A (en) * 2019-08-24 2019-12-06 宁波合力磁材技术有限公司 neodymium-iron-boron magnet and production process thereof

Also Published As

Publication number Publication date
JPH0531803B2 (en) 1993-05-13

Similar Documents

Publication Publication Date Title
US4402770A (en) Hard magnetic alloys of a transition metal and lanthanide
JP3057448B2 (en) Rare earth permanent magnet
US3421889A (en) Magnetic rare earth-cobalt alloys
JP2713404B2 (en) Magnetic material for permanent magnet comprising iron, boron and rare earth metal and method for producing the same
JPH0316761B2 (en)
JPH01175205A (en) Rare earth permanent magnet
JPH056322B2 (en)
JPS61195954A (en) Permanent magnet alloy
JPH0316762B2 (en)
US4973415A (en) Rapidly quenched ribbon magnet and plastic magnet containing powders of the rapidly quenched ribbon magnet
JPS63110604A (en) Quenched thin strip magnet
JPH06207204A (en) Production of rare earth permanent magnet
JPH0422008B2 (en)
JP2787447B2 (en) Quenched ribbon magnet with high remanence
JPH0422006B2 (en)
JP2001006911A (en) Manufacture of rare earth permanent magnet
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JPS63241142A (en) Ferromagnetic alloy
JPH0355540B2 (en)
CN118507189A (en) Nano composite permanent magnet material and preparation method thereof
JPH02192102A (en) Permanent magnet
JPS601808A (en) Permanent magnet
JPS62170455A (en) Permanent magnet alloy
JPS62158852A (en) Permanent magnet material
JPH02145739A (en) Permanent magnet material and permanent magnet

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term