JPS6310975B2 - - Google Patents

Info

Publication number
JPS6310975B2
JPS6310975B2 JP53120692A JP12069278A JPS6310975B2 JP S6310975 B2 JPS6310975 B2 JP S6310975B2 JP 53120692 A JP53120692 A JP 53120692A JP 12069278 A JP12069278 A JP 12069278A JP S6310975 B2 JPS6310975 B2 JP S6310975B2
Authority
JP
Japan
Prior art keywords
wolffia
genus
species
duckweed
microalgae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53120692A
Other languages
Japanese (ja)
Other versions
JPS5548332A (en
Inventor
Ichigoro Sekine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12069278A priority Critical patent/JPS5548332A/en
Publication of JPS5548332A publication Critical patent/JPS5548332A/en
Publication of JPS6310975B2 publication Critical patent/JPS6310975B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明者はさきに閉鎖共存系によるテイラピヤ、
ニロチカ、及びエビ類の養殖法とその装置(昭53
年特許願第110025号)を発明した。本発明はこれ
らの特許出願中、有機性スラツジの生物活性によ
る、生物ガスを利用した、ウオルフイア及びウキ
クサの連続培養法に関連する発明である。 ウオルフイアは種子植物のアオウキクサ科
Lemnaceae.に属する微小な植物で日本には
Wolffia arrhiza wimmer.とWolffia
microscopia Kurz.の2種類を産する。 和名ミヂンコウキクサは体長0.7〜1mmほどの
もので池や沼の水面に浮生している。体形はひよ
うたん形で体の1端に取手のような小さな芽をつ
けている。芽は発達して母体から離れて独立し新
個体となる。つまり酵母と同じ出芽法により繁殖
する。 細胞中には多数の葉緑体を含み光合成を営む、
光合成に必要な炭酸ガスは背面に数多く並ぶ気孔
からとり入れる。気孔の長さは28μ、幅22μほど
楕円形している。水温は20℃〜30℃でさかんに増
殖する。ウキクサ、Spirodela polyrhiza
schleid.アオウキクサ、Lemna paucicostata
Hagelm.は日本各地に自生する多年生の水草でウ
オルフイアと同じく水上に浮生する。ウオルフイ
アと共存して、3〜5cmぐらいの根を水中にさ
げ、根の側方から出芽して繁殖する、秋になると
葉状茎の裏面に冬芽をだし、冬芽は水中に沈んで
越冬し、翌春再び浮上して増殖するアオウキクサ
はウキクサより小形で葉状茎の裏面が帯紫色であ
る。ウオルフイア、ウキクサ、アオウキクサは、
混合培養が可能で栄養は無機塩類合成培地、又は
人畜家禽糞尿、油粕等の濾液(汁)でも培養は可
能である。従来実施されている無機塩類合成培
地、自給肥料培地の1例を挙げると下記の如くで
ある。 (i) 無機塩類合成培地 NH4NO3 0.6g Mgso4・7H2O 0.25g KH2PO4 0.05g KCl 0.05g Feso47H2O 0.003g そ尿脱離液 100ml 水 900ml PH 6.4〜6.8 (ii) 自給肥料培地 腐熟人糞尿の100倍希釈液 腐熟鶏糞の100倍浸出液 腐熟魚汁の100倍液 等がある。これらの従来実施されている方法は、
ウオルフイア、ウキクサ類の形態並びに生理学的
特性から、又培養法及びその管理上から削力化化
すべき問題点を有し、その問題点を挙げると下記
の如くである。 (1) 培養液の調整に手数がかゝる。 (2) 連続培養でないため培養管理上削力化ができ
ない。 (3) ウオルフイヤ、ウキクサの生育を阻害する微
細藻類の除去(水の濾過)が必要である。 (4) 培養液中の栄養濃度を一定にし連続的な供給
方法の確立が必要である。 (5) 経済的な温度の調整が容易にできる技術の確
立が必要である。 本発明は以上の問題点を解決するために、有機
性スラツジ又は菌、藻体沈澱物を用い、これに微
細藻類、光合成細菌、原生動物、輪形動物、節足
動物、好気性バクテリヤを混合接種し、清水を加
えて、好気、光条件の下でこれらの生物活性によ
る、生物ガスを発生させ、入力として一定濃度、
量に有機性廃水又は光合成細菌、微細藻類の生長
液を連続的に流下せしめ、連続的に生物ガスを発
させこれらのガスを栄養源として、ウオルフイ
ア、ウキクサを培養することにより、これらの問
題点を有利に解決することができることを発見し
たものである。これらの有機性スラツジによる生
物ガス発生の安定性はこれに関係する下記諸生物
の食物連鎖による±のフイードバツクにより成立
しているサイバネチツクシステムの構成にほかな
らない。したがつて藻類は一定の増殖はするがウ
オルフイア、ウキクサの生育を阻害する程には増
殖しない。本発明に使用する微生物とその分離法
及び水生植物は下記の通りである。 (1) 微細藻類 Algae. Tetraspora属.Tetraspora gelatinosa種. Palmella属、palmella mucosa種. Asterococcus属.Asterococcus
Limneticus種. Aphanizomenon属.APhanizomenon flos
−aquae種. Osillatria属.Osillatria fenus種. Phormidium属.Phormidium fenue種. (2) 光合成細菌 Photosynthetic bacteria. Rhodthece属.Rhodthece Pendens種. Chromatum属Chromatum minus種. 上記の微生物は土壌藻、細菌類で湿度のある
樹下に豚尿100倍希釈を数回散布し、湿度を保
ち2〜3週間経過すると地面が黒緑褐色に変
る、この表土をかきとり豚尿の50〜100倍液と
混合しフラスコ中に入更に2〜3週間静置する
とフラスコの内面に緑色、赤色の微細藻類、光
合成細菌のコロニーを分離することができる。 (3) 原生動物 Protozoa. Colpoda属.Colpoda cucullus種. Paramcium属.Paramcium bursaria種. Glaucoma属.Glaucoma sintllans種. Stylonychia属.Stylonychia steini種. Vorticella属.Vorticella nebulifera種. Euglena属.Euglena gracilis種. Euglena属.Euglena deses種. (4) 輪形動物 Trohelmithes. Brachionus属.Brachionus Calyciflorus
種. Rotaria属.Rotaria rotatoria種. (5) 節足動物 Arthropada. Scapholeberis属.Scapholeberis
mucronata種. Simocephalus属.Smiocephalus Vetulus
種. Cyclops属.cyclops vicinus種. 上記の微生物は下水溝から容易に採取でき
る。 (6) 好気性バクテリヤ Bacteria Micrococcus属.Micrococcus Luteiis種. Pseudomonas属.Pseudomonas
aeruginosa種. Flavobacterium属.Flavobacterium
aquatile種. Chromobacterium属.Chromobacterium
Violaceum種. 上記の好気性バクテリヤは腐敗魚の体表より容
易に分離できる。図面にしたがい、本発明の実施
例並びにその要領を説明すれば下記の通りであ
る。透明プラスチツク深層タンク2,3の底部に
緩衝汚泥33,34を予め、30cm程度いれる、緩
衝汚泥は、粘土35g、硅藻土35g、酢酸10g、酢
酸ソーダ20gを混合した、緩衝土15%、炭酸カル
シウム10%、有機性スラツジ75%を混合したもの
である。深層タンク2,3の中央にそれぞれヒル
ター(砂又はウレタン)29,30を設ける。深
層タンク2の下層に汚水流入口1をとりつける。
汚水はエアー噴出管49によりエアレーシヨンさ
れヒルター30を介して上層(光合成細菌を予め
増殖する)に流入する。光合成細菌増殖液は上層
水流入口31より、移流パイプ52流出口32を
介し深層タンク3の下層に入り、エアー噴出管4
8によりエアレーシヨンされつゝヒルター29を
介して上層に流れる。この過程で汚水は光合成細
菌の増殖により紅色の生長液となる。この場合、
深層タンク3の上層に微細藻類生長液を予め満た
しておくと光合成細菌、微細藻類の混合生長液と
することができる。これらの混合生長液はポンプ
28の作動により、フードバルブ56より流入バ
ルブ25,27を介して、ウオルフイア培養槽
4,5に入る、ウオルフイア培養槽4,5は予め
有機性フラツジ6,7を底面よりエアパイプ20
エアー噴出管41,42を介し、ステツプエアレ
ーシヨンし、ウオルフイア培養槽の上面、透明プ
ラスチツク上蓋43,58及び下面、透明プラス
チツク底44,57とし、有機性スラツジ6,7
は好気、明条件の下におく、入力として流入バル
ブ25,27を介して入つてきた微細藻類、光合
成細菌混合生長液は有機性スラツジと混合され、
好気、明条件の下でステツプエアーレーシヨンさ
れ、有機性スラツヅ中に共存する生物群の食物連
鎖の給源となり、これら生物活性による生物ガス
の発生を氷続させる。発生した生物ガスは水に溶
解し、ウオルフイア培養液4の如くセツトされ
た、ウオルフイア24の栄素源となりウオルフイ
アは増殖する。ウオルフイア62はウオルフイア
培養槽5の如くブレーキレバー11,12をオフ
とし、収穫用ベルト23を水面に浮上させ回転シ
ヤフト16,46を右回転させ、スクレバー14
により溢流水と共に、バケツト38にかき落され
水は流出口53,54より放流される。生物活性
沈澱物(有機性スラツジ)6,7の調節は生物活
性沈澱物流入口21,22より同流出口バルブ2
6,55,37により流出コンポスト処理され
る。ウオルフイア培養槽4,5深層タンク2,3
の上蓋にはそれぞれ通気孔バルブをとりつけ、空
気の流通及び槽内温度の過上昇を防止する。以上
の実施要領により、ウオルフイア、ウキクサを混
合培養し下記のような結果を得た。水温25℃〜28
℃にて1m3当り生草体1.1Kg乾草体(水分6.6%)
55gを得た、1回の収穫に要した日数は12日間で
あつた。その混合草体の1般分析結果は表の如
くであつた。
The inventor first developed Tilapiya using a closed coexistence system.
Cultivation method and equipment for Nirochika and shrimp (1973)
(Patent Application No. 110025). The present invention relates to a method for continuously cultivating Wolffia and Duckweed using biogas by the biological activity of organic sludge while these patents are pending. Wolfia is a seed plant of the Lemnaceae family.
A microscopic plant belonging to the Lemnaceae.
Wolffia arrhiza wimmer. and Wolffia
It produces two types of microscopia Kurz. The Japanese name for this plant is 0.7 to 1 mm long, and it floats on the surface of ponds and swamps. It has a gourd-shaped body with a small handle-like bud attached to one end of its body. The bud develops and separates from the mother's body to become an independent individual. In other words, it reproduces using the same budding method as yeast. Cells contain many chloroplasts and carry out photosynthesis.
The carbon dioxide necessary for photosynthesis is taken in through the many stomata on the back. The pores are oval in shape, with a length of 28μ and a width of 22μ. It proliferates at water temperatures of 20°C to 30°C. Duckweed, Spirodela polyrhiza
schleid.Lemna paucicostata
Hagelm. is a perennial aquatic plant that grows wild in various parts of Japan, and like Wolfia, it floats on water. It coexists with Wolfia, and propagates by lowering its roots of about 3 to 5 cm into water and sprouting from the sides of the roots. In autumn, winter buds appear on the underside of the leaf-like stems, and the winter buds sink into the water and overwinter, and the next season. The duckweed that emerges again in the spring and multiplies is smaller than the duckweed, and the underside of the leafy stems is purplish. Wolfia, duckweed, and duckweed are
Mixed culture is possible, and culture can be performed using a synthetic medium containing inorganic salts as nutrients, or filtrate (juice) of human, animal, poultry, excrement, oil cake, etc. An example of a conventional inorganic salt synthetic medium and a self-sufficient fertilizer medium is as follows. (i) Inorganic salt synthetic medium NH 4 NO 3 0.6g Mgso 4・7H 2 O 0.25g KH 2 PO 4 0.05g KCl 0.05g Feso 4 7H 2 O 0.003g Sore excreta 100ml Water 900ml PH 6.4-6.8 ( ii) Self-sufficient fertilizer culture medium There are 100 times diluted liquid of rotten human waste, 100 times leachate of rotten ripe chicken manure, 100 times liquid of rotten ripe fish juice, etc. These conventional methods are
Due to the morphology and physiological characteristics of Wolffia and Duckweed, there are problems that need to be reduced in terms of culture methods and management, and the problems are listed below. (1) It takes time to prepare the culture solution. (2) Since it is not a continuous culture, it is not possible to reduce the cutting force in terms of culture management. (3) It is necessary to remove microalgae (water filtration) that inhibits the growth of Wolffia and duckweed. (4) It is necessary to establish a continuous supply method that keeps the nutrient concentration in the culture solution constant. (5) It is necessary to establish technology that allows economical temperature adjustment easily. In order to solve the above problems, the present invention uses organic sludge, bacteria, and algae precipitates, and inoculates them with a mixture of microalgae, photosynthetic bacteria, protozoa, rotifers, arthropods, and aerobic bacteria. Then, by adding fresh water and generating biogases due to these biological activities under aerobic light conditions, a constant concentration as input,
These problems can be solved by continuously flowing organic wastewater or the growth liquid of photosynthetic bacteria and microalgae into the water, continuously emitting biological gas, and culturing Wolffia and duckweed using these gases as nutrients. It was discovered that the problem can be solved advantageously. The stability of biogas generation by these organic sludges is due to the composition of a cybernetic system that is established by the feedback from the food chain of the following organisms related to this. Therefore, although algae proliferate to a certain degree, it does not proliferate to the extent that it inhibits the growth of Wolffia and Duckweed. The microorganisms, their isolation methods, and aquatic plants used in the present invention are as follows. (1) Microalgae Algae. Tetraspora genus. Tetraspora gelatinosa species. Genus Palmella, species palmella mucosa. Genus Asterococcus. Asterococcus
Limneticus species. Genus Aphanizomenon. APhanizomenon flos
-aquae species. Genus Osillatria. Osillatria fenus species. Genus Phormidium. Phormidium fenue species. (2) Photosynthetic bacteria. Rhodthece genus. Rhodthece Pendens species. Genus Chromatum, species Chromatum minus. The above microorganisms are soil algae and bacteria, and by spraying 100 times diluted pig urine several times under humid trees, maintaining humidity and after 2 to 3 weeks, the ground turns dark greenish brown. When mixed with a 50 to 100 times solution and placed in a flask and allowed to stand for another 2 to 3 weeks, colonies of green and red microalgae and photosynthetic bacteria can be isolated on the inner surface of the flask. (3) Protozoa. Genus Colpoda. Colpoda cucullus species. Genus Paramcium. Paramcium bursaria species. Genus Glaucoma. Glaucoma sintllans species. Genus Stylonychia. Stylonychia steini species. Genus Vorticella. Vorticella nebulifera species. Genus Euglena. Euglena gracilis species. Genus Euglena. Euglena deses species. (4) Rotifers Trohelmithes. Genus Brachionus. Brachionus Calyciflorus
seed. Genus Rotaria. Rotaria rotatoria species. (5) Arthropod Arthropada. Scapholeberis genus. Scapholeberis
mucronata species. Genus Simocephalus. Smiocephalus Vetulus
seed. Genus Cyclops. cyclops vicinus species. The above microorganisms can be easily collected from sewers. (6) Aerobic bacteria Bacteria Micrococcus genus. Micrococcus Luteiis species. Genus Pseudomonas. Pseudomonas
aeruginosa species. Genus Flavobacterium. Flavobacterium
Aquatile species. Genus Chromobacterium. Chromobacterium
Violaceum species. The above aerobic bacteria can be easily isolated from the body surface of decaying fish. Embodiments of the present invention and their procedures will be described below with reference to the drawings. Approximately 30 cm of buffer sludge 33, 34 is placed in advance at the bottom of transparent plastic deep tanks 2, 3.The buffer sludge is a mixture of 35 g of clay, 35 g of diatomaceous earth, 10 g of acetic acid, and 20 g of sodium acetate, 15% buffer soil, and carbonic acid. It is a mixture of 10% calcium and 75% organic sludge. Hilters (sand or urethane) 29 and 30 are provided in the center of the deep tanks 2 and 3, respectively. A sewage inlet 1 is attached to the lower layer of a deep tank 2.
The waste water is aerated by the air jet pipe 49 and flows through the Hilter 30 into the upper layer (in which photosynthetic bacteria are preliminarily grown). The photosynthetic bacteria growth liquid enters the lower layer of the deep tank 3 from the upper layer water inlet 31 through the advection pipe 52 and the outlet 32, and then enters the lower layer of the deep tank 3 through the upper layer water inlet 31 and the air jet pipe 4.
It is aerated by 8 and flows to the upper layer via Hilter 29. During this process, sewage turns into a red growth liquid due to the proliferation of photosynthetic bacteria. in this case,
If the upper layer of the deep tank 3 is filled with a microalgae growth solution in advance, a mixed growth solution of photosynthetic bacteria and microalgae can be obtained. These mixed growth liquids enter the Wolffia culture tanks 4 and 5 through the food valve 56 and the inflow valves 25 and 27 by the operation of the pump 28. More air pipe 20
Step aeration is carried out through the air jet pipes 41 and 42 to form the upper surface of the Wolffia culture tank, the transparent plastic upper lid 43 and 58 and the lower surface, the transparent plastic bottom 44 and 57, and the organic sludge 6 and 7.
is kept under aerobic and light conditions, and the mixed growth solution of microalgae and photosynthetic bacteria that enters as input through the inflow valves 25 and 27 is mixed with organic sludge.
It is step-aired under aerobic and light conditions, becomes a food chain source for the organisms that coexist in the organic sludge, and continues to generate biogases due to these biological activities. The generated biological gas is dissolved in water and becomes a nutrient source for Wolffia 24, which is set as Wolffia culture solution 4, and the Wolffia grows. The Wolfia 62, like the Wolfia culture tank 5, turns off the brake levers 11 and 12, floats the harvesting belt 23 to the water surface, rotates the rotary shafts 16 and 46 clockwise, and rotates the scraper 14.
The water is scraped into the bucket 38 together with the overflow water and discharged from the outlet ports 53 and 54. The biologically active sediments (organic sludge) 6 and 7 are controlled by the same outlet valve 2 from the biologically active sediment inlets 21 and 22.
6, 55, and 37, the outflow is composted. Wolfia culture tank 4, 5 deep tank 2, 3
A vent valve is installed on each top lid to prevent air circulation and excessive rise in temperature inside the tank. According to the above procedure, Wolffia and Duckweed were mixedly cultured and the following results were obtained. Water temperature 25℃~28
Fresh grass 1.1Kg hay per 1m3 at ℃ (6.6% moisture)
The number of days required for one harvest was 12 days, yielding 55 g. The general analysis results of the mixed plant were as shown in the table.

【表】 本発明の効果と利点は下記の如くである。 (1) 培養液の調整をする必要がなく培養管理が削
力化でき且つ連続培養できシステム化が容易で
ある。 (2) ウオルフイア、ウキクサの生育を阻害する藻
類の除去(水濾過)の必要がない。 (3) 経済的に温度の調整ができ温度の高、低によ
り、蛋白質生産とでんぷん生産を任意に行うこ
とができる。 (4) 有機性廃水の三次処理に利用できる。 (5) 放流水の生物学的酸素要求量。 入口400ppm.出口10ppm以下 SS.入口300ppm.出口20ppm以下 とすることができる。
[Table] The effects and advantages of the present invention are as follows. (1) There is no need to adjust the culture solution, so culture management can be done with less effort, continuous culture can be carried out, and systemization is easy. (2) There is no need to remove algae (water filtration) that inhibits the growth of Wolffia and Duckweed. (3) Temperature can be adjusted economically, and protein production and starch production can be carried out at will by adjusting the temperature high or low. (4) Can be used for tertiary treatment of organic wastewater. (5) Biological oxygen demand of the effluent. Inlet 400ppm. Outlet 10ppm or less. SS. Inlet 300ppm. Outlet 20ppm or less.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例並びにその要領を示す切
断面説明図である。1は汚水流入口バルブ、2,
3は透明プラスチツク深層タンク、4,5はウオ
ルフイア培養槽、6,7は生物活性沈澱物(有機
性スラツジ)8,9は通気孔バルブ、10,1
1,12,13はブレーキレバー、14,45は
スクレパー、15,16,17,46は回転シヤ
フト、18,19はバネ20,47はエアパイ
プ、21,22は生物活性沈澱物流入口、41,
42はエアー噴出管23,61は収穫用網ベル
ト、24,62はウオルフイア、25,27は流
入バルブ、28はポンプ、29,30はフイルタ
ー31は上層水流入口、32は流出口、33,3
4は緩衝汚泥、35,36は汚泥調節バルブ、2
6,55,37は生物活性沈澱物流出口バルブ、
38,39はバケツト、40はブロアー、41,
42,48,49はエアー噴出管、43,58,
59,60は透明プラスチツク上蓋、44,57
は透明プラスチツク底、50,51は通気孔バル
ブ、52は移流パイプ、53,54は流出口、5
6はフードバルブ。
The drawings are cross-sectional explanatory views showing an embodiment of the present invention and its principle. 1 is a wastewater inlet valve, 2,
3 is a transparent plastic deep tank, 4 and 5 are Wolffia culture tanks, 6 and 7 are biologically active sediments (organic sludge) 8 and 9 are vent valves, 10 and 1
1, 12, 13 are brake levers, 14, 45 are scrapers, 15, 16, 17, 46 are rotating shafts, 18, 19 are springs 20, 47 are air pipes, 21, 22 are biologically active precipitate inlets, 41,
42 is an air jet pipe 23, 61 is a harvesting net belt, 24, 62 is a Wolffia, 25, 27 is an inflow valve, 28 is a pump, 29, 30 is a filter 31 is an upper layer water inlet, 32 is an outlet, 33, 3
4 is buffer sludge, 35 and 36 are sludge control valves, 2
6, 55, 37 are biologically active precipitate outlet valves;
38, 39 is a bucket, 40 is a blower, 41,
42, 48, 49 are air jet pipes, 43, 58,
59, 60 are transparent plastic top lids, 44, 57
5 is a transparent plastic bottom, 50 and 51 are vent valves, 52 is an advection pipe, 53 and 54 are outlet ports, 5
6 is the hood valve.

Claims (1)

【特許請求の範囲】[Claims] 1 有機性スラツジまたは菌藻体沈澱物に、明細
書中に記載された微細藻類、光合成細菌、原生動
物、輪形動物、節足動物、好気性バクテリヤの一
種または数種を混合接種し、清水を加え、好気、
明条件の下で生物活性による生物ガスCO2
NH4、O2を発生させ、入力として一定濃度、量
の有機性廃水または光合成細菌、微細藻類生長液
を流下せしめ、連続的に生物ガスを発生させ、ウ
オルフイア、ウキクサを連続培養することを特徴
とする有機性スラツジの生物活性による生物ガス
を利用したウオルフイア、ウキクサの連続培養
法。
1 Organic sludge or algae sediment is inoculated with one or more of the microalgae, photosynthetic bacteria, protozoa, rotifers, arthropods, and aerobic bacteria listed in the specification, and fresh water is added. In addition, aerobic
Biological gas CO 2 due to biological activity under light conditions,
It is characterized by generating NH 4 and O 2 and flowing down a certain concentration and amount of organic wastewater or photosynthetic bacteria or microalgae growth liquid as input, continuously generating biological gas, and continuously culturing Wolffia and duckweed. A continuous cultivation method for Wolffia and Duckweed using biogas produced by the biological activity of organic sludge.
JP12069278A 1978-09-30 1978-09-30 Continuously cultivating of *uorufia* lemnaceae by using biological gas obtaine by biologically activating organic sludge Granted JPS5548332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12069278A JPS5548332A (en) 1978-09-30 1978-09-30 Continuously cultivating of *uorufia* lemnaceae by using biological gas obtaine by biologically activating organic sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12069278A JPS5548332A (en) 1978-09-30 1978-09-30 Continuously cultivating of *uorufia* lemnaceae by using biological gas obtaine by biologically activating organic sludge

Publications (2)

Publication Number Publication Date
JPS5548332A JPS5548332A (en) 1980-04-07
JPS6310975B2 true JPS6310975B2 (en) 1988-03-10

Family

ID=14792593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12069278A Granted JPS5548332A (en) 1978-09-30 1978-09-30 Continuously cultivating of *uorufia* lemnaceae by using biological gas obtaine by biologically activating organic sludge

Country Status (1)

Country Link
JP (1) JPS5548332A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289127A (en) * 1986-06-07 1987-12-16 株式会社ダイワパックス Apparatus for growing plant
JP2019014766A (en) * 2015-11-24 2019-01-31 株式会社ちとせ研究所 Aquatic plant-derived novel starch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056063A (en) * 1973-09-13 1975-05-16
JPS5266A (en) * 1975-06-20 1977-01-05 Sumitomo Chem Co Ltd Method of treating activated sludge in waste water from plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056063A (en) * 1973-09-13 1975-05-16
JPS5266A (en) * 1975-06-20 1977-01-05 Sumitomo Chem Co Ltd Method of treating activated sludge in waste water from plant

Also Published As

Publication number Publication date
JPS5548332A (en) 1980-04-07

Similar Documents

Publication Publication Date Title
KR101333902B1 (en) Converged device for an agriculture and aquaculture
US20190098850A1 (en) Microalgae-based soil inoculating system and methods of use
KR102239383B1 (en) Aquaponics ginseng cultivation system based on Biofloc technology
CN211241202U (en) Three-dimensional co-culture device for seawater-resistant vegetables and aquatic animals
KR102084308B1 (en) Land aquaculture system for laver
JPH02242629A (en) Producing method for microslgae and pisces by mutualism between them
CN108298675A (en) A kind of drop nitrogen subtracts the lake water ecological restoring method of phosphorus
CN109626766A (en) A kind of ecology of urban river is regulated and stored the construction method in lake
CN107148899A (en) A kind of method for culturing seedlings for improving ice dish planting percent
CN101503264A (en) Method for ectopically and ecologically repairing eutrophication water
CN109122531A (en) A kind of light and shade of the intensive circulating water cultivation of Ecology is fitted into Greenhouse System and cultural method
KR101710301B1 (en) Method for red sea cucumber aquaculture using adhesive microalgae isolated from jeju lava seawater
CN209135151U (en) A kind of chimeric Greenhouse System of the intensive circulating water cultivation light and shade of Ecology
CN105309388B (en) A kind of daphnia heatproof acclimation method and the method for carrying out restoration of the ecosystem to water body using daphnia
KR20190033819A (en) Hydroponic cultivation and fish farming equipment combined water purification system
RU2140735C1 (en) Method for cleaning animal complex, farm and poultry houses sewage water by means of adapted complex of microalgae, higher aquatic plants, zooplankton and fish
CN113040045B (en) Aquatic animal and plant internal circulation growth and reproduction co-culture system
CN116098109A (en) Industrial pond culture system
CN213881396U (en) Annual large-scale aquaculture system for snail and shellfish aquatic products
CN109430120A (en) Mangrove area cultivates mudskipper method using marine culture wastewater
JPS6310975B2 (en)
CN112106706A (en) Large-scale aquaculture technology for snail and shellfish aquatic products and annual production system
CN109081448B (en) Method for planting organic nymphaea hybrid in stepped mode
CN109329132B (en) Method for breeding big mudskipper in mangrove forest area
CN113170754A (en) Fancy carp and vegetable symbiotic recirculating aquaculture system and method