JP2019014766A - Aquatic plant-derived novel starch - Google Patents

Aquatic plant-derived novel starch Download PDF

Info

Publication number
JP2019014766A
JP2019014766A JP2015229225A JP2015229225A JP2019014766A JP 2019014766 A JP2019014766 A JP 2019014766A JP 2015229225 A JP2015229225 A JP 2015229225A JP 2015229225 A JP2015229225 A JP 2015229225A JP 2019014766 A JP2019014766 A JP 2019014766A
Authority
JP
Japan
Prior art keywords
starch
duckweed
gelatinization
temperature
duckweeds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015229225A
Other languages
Japanese (ja)
Inventor
直良 井ノ内
Naoyoshi Inouchi
直良 井ノ内
和士 岡田
Kazushi Okada
和士 岡田
以顕 川合
Mochiaki Kawai
以顕 川合
勇 近藤
Isamu Kondo
勇 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chitose Lab Corp
Nagase and Co Ltd
Original Assignee
Chitose Lab Corp
Nagase and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chitose Lab Corp, Nagase and Co Ltd filed Critical Chitose Lab Corp
Priority to JP2015229225A priority Critical patent/JP2019014766A/en
Priority to PCT/JP2016/084673 priority patent/WO2017090632A1/en
Publication of JP2019014766A publication Critical patent/JP2019014766A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/212Starch; Modified starch; Starch derivatives, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/04Extraction or purification

Abstract

To provide a novel starch.SOLUTION: Provided is a starch having a gelatinization temperature at a gelatinization starting temperature of 70°C or higher, a number average particle size of 2 to 3 μm, and an amylose content of 30 to 50%. In particular, a starch derived from duckweed. A starch in which the duckweed is one or more duckweed selected from flea duckweed, midget duckweed, duckweed, red duckweed (azolla), water hyacinth, button duckweed, giant canadian pondweed, midget canadian pond weed, water feather, and salvinia.SELECTED DRAWING: Figure 5

Description

本発明は新規澱粉に関する。   The present invention relates to a novel starch.

特許第5569876号には,イネ変異体を用いた澱粉の製造方法が開示されている。   Japanese Patent No. 5569876 discloses a method for producing starch using a rice mutant.

特公昭63−052960号公報には,ウキクサを用いたアルコール,メタンの製造方法が開示されている。特許4923167号公報には,ウキクサ類を用いた有機廃液の有資源化方法が開示されている。国際公開WO2013/136631号パンフレットには,パーム搾油残渣とウキクサ類を用いた堆肥の製造方法が開示されている。   Japanese Patent Publication No. 63-052960 discloses a method for producing alcohol and methane using duckweed. Japanese Patent No. 4923167 discloses a method for recycling organic waste liquid using duckweeds. International publication WO2013 / 136663 pamphlet discloses a method for producing compost using palm oil residue and duckweeds.

特許第5569876号Japanese Patent No. 5569876 特公昭63−052960号公報Japanese Patent Publication No. 63-052960 特許4923167号公報Japanese Patent No. 4923167 国際公開WO2013/136631号パンフレットInternational Publication WO2013 / 136631 Pamphlet

上記のとおり,様々な澱粉が提案されている。新たな特質を有する澱粉は,新たな用途が生ずる。このため従来知られていない澱粉を得ることが望まれる。   As mentioned above, various starches have been proposed. Starch with new properties has new uses. For this reason, it is desired to obtain starch which is not conventionally known.

一般にウキクサ類は,澱粉を蓄える性質に乏しいため,ウキクサ類を用いて澱粉を得ることはなされていない。本発明は,基本的にはウキクサ類に由来する澱粉が,従来の澱粉に見られない特異な物性を有するという実施例による知見に基づく。   In general, duckweeds are poor in the property of storing starch, and therefore duckweeds are not used to obtain starch. The present invention is basically based on the findings of the examples that starch derived from duckweed has unique physical properties not found in conventional starch.

本発明は,澱粉に関する。この澱粉は,
糊化温度が,糊化開始温度が70℃以上であり,
数平均粒子径が2μm以上3μm以下であり,
アミロース含有率が30%以上50%以下である。
この澱粉は,好ましくは,ウキクサ類由来の澱粉である。
ウキクサ類は,好ましくは,ミジンコウキクサ,コウキクサ,ウキクサ,アカウキクサ(アゾラ),ホテイアオイ,ボタンウキクサ,オオカナダモ,コカナダモ,オオフサモ,及びサンショウモからなる群より選ばれる1又は2種以上のウキクサである。
The present invention relates to starch. This starch is
The gelatinization temperature is such that the gelatinization start temperature is 70 ° C or higher,
The number average particle size is 2 μm or more and 3 μm or less,
The amylose content is 30% or more and 50% or less.
This starch is preferably starch derived from duckweeds.
The duckweed is preferably one or more duckweed selected from the group consisting of daphnia, duckweed, duckweed, red duckweed (Azolla), water hyacinth, button duckweed, blue canard, cocanada, offofamo, and salamander.

本発明によれば,これまで存在しなかった特異な物性を有する澱粉を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the starch which has the specific physical property which did not exist until now can be provided.

図1は,栽培池からウキクサ類を収穫する際の図面に替わる写真を示す。FIG. 1 shows a photograph replacing a drawing when duckweed is harvested from a cultivation pond. 図2は,固形分1を静置分離しているときの静置5分経過後の様子を示す図面に替わる写真を示す。FIG. 2 shows a photograph replacing a drawing which shows a state after standing for 5 minutes when the solid content 1 is left and separated. 図3は,固形分3を水に再懸濁し、pH4.0に調整した後静置分離し、回収した上清液の図面に替わる写真を示す。FIG. 3 shows a photograph replacing the drawing of the collected supernatant after resuspending the solid content 3 in water and adjusting the pH to 4.0, followed by stationary separation. 図4は,固形分3を水に再懸濁し、pH4.0に調整した後静置分離し、回収した上清液の図面に替わる顕微鏡写真を示す。FIG. 4 shows a micrograph in place of a drawing of the supernatant obtained by resuspending the solid content 3 in water, adjusting the pH to 4.0, and then separating it by static separation. 図5は,光学顕微鏡による澱粉粒の観察結果を示す図面に替わる写真である。FIG. 5 is a photograph replacing a drawing showing the observation results of starch granules by an optical microscope.

以下,図面を用いて本発明を実施するための形態について説明する。本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜修正したものも含む。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below, but includes those appropriately modified by those skilled in the art from the following embodiments.

本発明の第1の側面は,澱粉に関する。この澱粉の好ましい例は,ウキクサ類由来の澱粉である。ウキクサ類由来の澱粉とは,ウキクサ類を用いて得られる澱粉を意味する。   The first aspect of the present invention relates to starch. A preferable example of this starch is starch derived from duckweeds. The duckweed-derived starch means starch obtained by using duckweed.

澱粉は,炭水化物(多糖類)であり,多数のα-グルコース分子がグリコシド結合によって重合した天然高分子である。   Starch is a carbohydrate (polysaccharide) and is a natural polymer in which a number of α-glucose molecules are polymerized by glycosidic bonds.

ウキクサ類は水生植物であり,水面に浮遊する状態で生育する植物である。ウキクサ類は,根を水中に垂らし,その根から栄養分を吸収し生育する。
ウキクサ類は,ミジンコウキクサ,コウキクサ,ウキクサ,アカウキクサ(アゾラ),ホテイアオイ,ボタンウキクサ,オオカナダモ,コカナダモ,オオフサモ,及びサンショウモからなる群より選ばれることが好ましい。
Duckweed is an aquatic plant that grows in a floating state on the water surface. Duckweed hangs its roots in water and absorbs nutrients from the roots to grow.
The duckweed is preferably selected from the group consisting of daphnia, duckweed, duckweed, red duckweed (Azola), water hyacinth, button duckweed, giant canadian, cocanada, offofsamo, and salamander.

ウキクサ類は,ウキクサ類が栽培されている水培養系からウキクサ類を回収することで得ることができる。ウキクサ類には,パーム搾油廃水を添加した水培養系で栽培したものを用いても良い。パーム搾油廃水を添加した水培養系で栽培したウキクサ類には,デンプンが豊富に含まれている。   Duckweed can be obtained by collecting duckweed from a water culture system in which duckweed is cultivated. For duckweeds, those cultivated in a water culture system to which palm oil wastewater is added may be used. Duckweed cultivated in a water culture system with added palm oil wastewater is rich in starch.

ウキクサ類が,有機廃液を用いて培養されたものであるものが好ましい。   It is preferable that duckweeds are those cultured using organic waste liquid.

本発明の澱粉の物性は,数平均粒子径が2μm以上3μm以下であり,アミロース含有率が30%以上50%以下である。数平均粒子径は,例えば,ステンレス製試験用ふるい(JIS Z8801−1:2006に従う)を用いて粒度調整をした後に,粒度分布測定装置(コールター社LS−130)を用い,エタノールを分散媒として測定すればよい。   As for the physical properties of the starch of the present invention, the number average particle diameter is from 2 μm to 3 μm, and the amylose content is from 30% to 50%. The number average particle size is adjusted, for example, using a stainless steel test sieve (according to JIS Z8801-1: 2006), and then using a particle size distribution analyzer (Coulter LS-130) and ethanol as a dispersion medium. Just measure.

本発明の澱粉の糊化開始温度は70℃以上であるものが好ましい。この糊化開始温度は70℃以上80℃以下であっても,73℃以上76℃以下でもよい。   The gelatinization start temperature of the starch of the present invention is preferably 70 ° C or higher. The gelatinization start temperature may be 70 ° C. or higher and 80 ° C. or lower, or 73 ° C. or higher and 76 ° C. or lower.

次に,ウキクサ類を用いて澱粉を得る方法の例を説明する。この方法は,基本的には,培養液取得工程と,第1の培養工程と,回収工程と,澱粉取得工程とを含む。第2の培養工程は任意である。以下は,第1の培養工程と,第2の培養工程と,回収工程と,澱粉取得工程とをこの順で含む方法に基づいて,ウキクサ類を用いて澱粉を得る方法を説明する。   Next, an example of a method for obtaining starch using duckweed will be described. This method basically includes a culture solution acquisition step, a first culture step, a recovery step, and a starch acquisition step. The second culture step is optional. Hereinafter, a method for obtaining starch using duckweed will be described based on a method including a first culturing step, a second culturing step, a recovery step, and a starch obtaining step in this order.

培養液取得工程は,有機廃液からウキクサ類を培養するための培養液を得るための工程である。有機廃液の例は,パーム搾油廃液,人のし尿含有液又は家畜のし尿含有液である。本発明は,特に,パーム搾油廃液を浄化するために好ましく用いることができる。すなわち,大量に生ずるパーム搾油廃液は,環境汚染の原因である。本発明を用いる,大量に生ずるパーム搾油廃液の貯蔵池を浄化することができる。   The culture solution acquisition step is a step for obtaining a culture solution for cultivating duckweeds from the organic waste solution. Examples of organic effluents are palm oil effluent, human excreta-containing liquids or livestock excreta-containing liquids. Especially this invention can be preferably used in order to purify | purify a perm | palm extraction waste liquid. In other words, a large amount of waste oil from palm oil is a cause of environmental pollution. Using the present invention, it is possible to purify a storage pond of palm oil waste liquor produced in large quantities.

培養液取得工程は,有機廃液を嫌気発酵する嫌気発酵工程と,嫌気発酵工程で発生したメタンガスを回収するメタンガス回収工程と,嫌気発酵工程により嫌気発酵された有機廃液を好気発酵し,培養液を得る好気発酵工程とを含むものがあげられる。嫌気発酵工程の期間の例は,1日以上30日以下であり,5日以上10日以下でもよい。メタンガスを回収する工程において,メタンガスは自然発生するため,ガスを回収する方法によりメタンガスを回収できる。好気発酵工程の例は,1日以上30日以下であり,5日以上10日以下でもよい。嫌気発酵は,桶に有機廃液を入れてメタンガスを発生させればよい。   The culture liquid acquisition process consists of anaerobic fermentation process for anaerobically fermenting organic waste liquid, a methane gas recovery process for recovering methane gas generated in the anaerobic fermentation process, and aerobic fermentation of the organic waste liquid anaerobically fermented by the anaerobic fermentation process. And an aerobic fermentation process for obtaining the above. An example of the period of the anaerobic fermentation process is 1 day or more and 30 days or less, and may be 5 days or more and 10 days or less. In the process of recovering methane gas, since methane gas is naturally generated, it can be recovered by a method of recovering gas. An example of the aerobic fermentation process is 1 day or more and 30 days or less, and may be 5 days or more and 10 days or less. Anaerobic fermentation can be achieved by adding organic waste liquid to the straw and generating methane gas.

培養液取得工程の別の例は,有機廃液を嫌気発酵する嫌気発酵工程及び,好気発酵する好気発酵工程を繰り返し行い,有機廃液から培養液を得るものである。   Another example of the culture liquid acquisition process is to repeatedly perform an anaerobic fermentation process for anaerobically fermenting an organic waste liquid and an aerobic fermentation process for an aerobic fermentation to obtain a culture liquid from the organic waste liquid.

第1の培養工程は,培養液をウキクサ類生育系に添加しつつウキクサ類を培養する工程である。この第1の培養工程において,ウキクサ類が成長し,増殖する。第1の培養工程の期間の例は,1週間以上3ヶ月以下であり,2週間以上1ヶ月以下でもよい。   A 1st culture process is a process of cultivating duckweeds, adding a culture solution to a duckweed growth system. In this first culture step, duckweed grows and proliferates. An example of the period of the first culture step is not less than 1 week and not more than 3 months, and may be not less than 2 weeks and not more than 1 month.

ウキクサ類生育系の例は,土壌により構成された液体収容部と,液体収容部に収容されたウキクサ類及び液体とを含むものである。ウキクサ類生育系の具体例は,パーム搾油廃液を貯蔵した池である。土壌には微生物が存在する。この微生物が,ウキクサ類の発酵に有益に寄与する。   An example of a duckweed growth system includes a liquid storage unit composed of soil, and a duckweed and a liquid stored in the liquid storage unit. A specific example of duckweed growth systems is a pond that stores palm oil waste liquor. There are microorganisms in the soil. This microorganism contributes beneficially to the fermentation of duckweeds.

第2の培養工程は,培養液の添加量を第1の培養工程に比べて軽減した状態でウキクサ類を培養する工程である。このように,培養液の添加量を軽減すると,ウキクサ類が成長や増殖を止め,デンプンを蓄える。第2の培養工程の期間の例は,1日以上1カ月以下であり,5日以上2週間以下でもよい。   The second culturing step is a step of cultivating duckweeds in a state where the addition amount of the culture solution is reduced as compared with the first culturing step. Thus, when the amount of the culture solution added is reduced, duckweeds stop growing and multiplying and store starch. An example of the period of the second culture step is 1 day or more and 1 month or less, and 5 days or more and 2 weeks or less.

第2の培養工程の例は,培養液の添加量を第1の培養工程における培養液の添加量の1/10以下に軽減した状態でウキクサ類を培養するものである。   In the second culturing step, duckweeds are cultured in a state where the amount of the culture solution added is reduced to 1/10 or less of the amount of the culture solution added in the first culture step.

第2の培養工程の上記とは別の例は,培養液の添加量を第1の培養工程における培養液の添加量の1/10以下に軽減した状態で,5日以上ウキクサ類を培養する。   In another example of the second culture step, duckweeds are cultured for 5 days or more in a state where the addition amount of the culture solution is reduced to 1/10 or less of the addition amount of the culture solution in the first culture step. .

回収工程は,第2の培養工程を経た培養後のウキクサ類を回収する工程である。この回収したウキクサ類は,そのまま農地に頒布すると肥料になる。特にこのウキクサ類は,有機リン系物質を多く含んでいるため,有機肥料として有効に利用できる。   The recovery step is a step of recovering duckweed after culturing after the second culturing step. These recovered duckweeds become fertilizers when they are distributed as they are on farmland. In particular, these duckweeds can be effectively used as organic fertilizers because they contain a lot of organic phosphorus substances.

回収工程の好ましい例は,ウキクサ類生育系において沈降したウキクサ類を回収する工程を含むものである。沈降したウキクサ類は,澱粉を多く含む。このため,沈降したウキクサ類を回収することで効率的に,有機廃液を澱粉化できる。   A preferred example of the recovery step includes a step of recovering duckweed that has settled in the duckweed growth system. The settled duckweed is rich in starch. For this reason, organic waste liquid can be efficiently starched by recovering the settled duckweeds.

ウキクサ類から澱粉を得るためには,公知の方法を適宜用いればよい。澱粉を得る方法の例は,亜硫酸浸漬法,及びアルカリ浸漬法である。アルカリ浸漬法は,低濃度のアルカリ性薬品や石灰,草木灰等で調製したアルカリ液に穀粒を浸漬することで,穀物の組織を柔らかくし,澱粉と蛋白質の結合を解離し,穀粒から澱粉を分離精製する。   In order to obtain starch from duckweeds, a known method may be used as appropriate. Examples of methods for obtaining starch are the sulfurous acid immersion method and the alkali immersion method. The alkali soaking method is to immerse the grain in an alkaline solution prepared with low-concentration alkaline chemicals, lime, grass ash, etc., soften the grain structure, dissociate starch and protein bonds, and remove starch from the grain. Separate and purify.

アルカリ浸漬法では,例えば,浸漬液用の濃度約0.2%の水酸化ナトリウム水溶液を入れた浸漬槽に,裁断したウキクサ類を原料として張込む。そして,1〜2日間浸漬することで,澱粉と蛋白質の結合が解離する。その後湿式製粉で澱粉を調製する。1回目の浸漬の後,浸漬液のみを新たなアルカリ液に更新し,数回の浸漬を繰返す。   In the alkali dipping method, for example, the cut duckweed is put as a raw material in a dipping tank containing a sodium hydroxide aqueous solution having a concentration of about 0.2% for the dipping solution. And the coupling | bonding of starch and protein dissociates by being immersed for 1-2 days. Thereafter, starch is prepared by wet milling. After the first dipping, only the dipping solution is replaced with a new alkaline solution, and dipping is repeated several times.

ウキクサ類を栽培池からタモ網(ネット直径40cm,深さ60cm)で掬い70L容量の麻袋に収穫した(図1)。図1は,栽培池からウキクサ類を収穫する際の図面に替わる写真を示す。
収穫したままでは石や泥,枯れ枝,水生生物,が混入しているため,水を張ったプールに浸し,混入物の除去を行った。
Duckweeds were harvested from cultivation ponds using a tamo net (net diameter 40cm, depth 60cm) in a 70L capacity hemp bag (Fig. 1). FIG. 1 shows a photograph replacing a drawing when duckweed is harvested from a cultivation pond.
As it was harvested, stones, mud, dead branches, and aquatic organisms were mixed in. Soaked in a pool filled with water and removed the contaminants.

ウキクサ類をステンレスザル(直径20cm,深さ7cm)を用いて回収し,コロイドミル(マウンテック社製,PUCコロイドミル)にて破砕を行った。破砕時にはウキクサ湿重量と等量の水を加水し,均一な破砕液になるまで破砕液を循環させた。破砕開始時のクリアランスを0.24mmに設定し,ウキクサの形状が無くなるまで循環させ破砕した後に,クリアランスを0.04mmに変更し5分間継続し,破砕液を回収した。クリアランス0.24mmで循環した。ウキクサ類の葉状体が一部残っている。クリアランス0.04mmで循環した。   Duckweeds were collected using a stainless monkey (diameter 20 cm, depth 7 cm) and crushed in a colloid mill (Mounttech, PUC colloid mill). At the time of crushing, water equivalent to the wet weight of duckweed was added, and the crushing liquid was circulated until a uniform crushing liquid was obtained. The clearance at the start of crushing was set to 0.24 mm, and after crushing until the shape of the duckweed disappeared, the clearance was changed to 0.04 mm and continued for 5 minutes to collect the crushing liquid. Circulation was performed with a clearance of 0.24 mm. Part of the duckweed leaves remains. Circulation with clearance of 0.04mm.

回収した破砕液をプレス機専用の布袋(SAKAYA製,PRESS BAG B1)に詰め,揉み搾り,ある程度ジュースを分離した後に,プレス機(SAKAYA製,Hydraulic Press B1 1PH)を用いて布袋をプレスし,ジュースを回収した。   The collected crushed liquid is packed in a press bag (made by SAKAYA, PRESS BAG B1), squeezed and juice is separated to some extent, and then the cloth bag is pressed using a press machine (made by SAKAYA, Hydraulic Press B1 1PH). Juice was collected.

回収したジュースを500Gの遠心力で5分間の遠心分離をすることで固形分1として回収した。   The collected juice was collected as a solid content 1 by centrifuging for 5 minutes with a centrifugal force of 500G.

この固形分1には繊維質やタンパク質が多く含まれているため,固形分1の重量の10倍量の水に懸濁して遠心分離にて沈殿を回収する工程を3回繰り返した。その後,固形分1の重量の10倍量の水に再懸濁し,5分間の静置分離により繊維質を沈降させた(図2)。図2は,固形分1を静置分離しているときの静置5分経過後の様子を示す図面に替わる写真を示す。   Since this solid content 1 contains a large amount of fiber and protein, the process of suspending in water 10 times the weight of the solid content 1 and collecting the precipitate by centrifugation was repeated three times. After that, it was resuspended in 10 times the weight of the solid content and settled by standing for 5 minutes (Fig. 2). FIG. 2 shows a photograph replacing a drawing which shows a state after standing for 5 minutes when the solid content 1 is left and separated.

上清のみを回収し,遠心濃縮により固形分2を回収した。固形分2を50℃の乾燥機に投入し,表面にひび割れが生じる程度乾燥させ,その後,室内にて風乾した。   Only the supernatant was recovered, and the solid content 2 was recovered by centrifugal concentration. Solid content 2 was put into a dryer at 50 ° C., dried to such an extent that cracks occurred on the surface, and then air-dried indoors.

乾燥した固形分2を固形分2の重量の10倍量の水に懸濁し,5N水酸化ナトリウム溶液を用いて懸濁液のpHを8.0に調整後,遠心分離にて固形分3を回収した。   The dried solid 2 was suspended in water 10 times the weight of the solid 2 and the pH of the suspension was adjusted to 8.0 using 5N sodium hydroxide solution, and then the solid 3 was recovered by centrifugation. .

固形分3の重量の10倍量の水を加水し,硫酸を用いてpH4.0に調整し,静置分離と遠心分離を行い,固形分4を回収した(図3,図4)。図3は,固形分3を水に再懸濁し、pH4.0に調整した後静置分離し、回収した上清液の図面に替わる写真を示す。図4は,固形分3を水に再懸濁し、pH4.0に調整した後静置分離し、回収した上清液の図面に替わる顕微鏡写真を示す。回収した固形分4は風乾により乾燥させた。   Water of 10 times the weight of the solid content 3 was added, adjusted to pH 4.0 with sulfuric acid, stationary separation and centrifugation were performed, and the solid content 4 was recovered (FIGS. 3 and 4). FIG. 3 shows a photograph replacing the drawing of the collected supernatant after resuspending the solid content 3 in water and adjusting the pH to 4.0, followed by stationary separation. FIG. 4 shows a micrograph in place of a drawing of the supernatant obtained by resuspending the solid content 3 in water, adjusting the pH to 4.0, and then separating it by static separation. The collected solid content 4 was dried by air drying.

固形分量が7.5%,デンプン含有量が7.6%のウキクサ類4kgからデンプン含有量が67.3%の固形分2を26g回収した。アルカリ処理,酸処理により再精製し,デンプン含有量97.2%の固形分4を14g回収した。デンプン回収効率としては63%である。デンプン含有量の測定にはStarch (HK) Assay Kit(Sigma社製)を用いて行った。     26 g of solid content 2 having a starch content of 67.3% was recovered from 4 kg of duckweed having a solid content of 7.5% and a starch content of 7.6%. It was re-purified by alkali treatment and acid treatment, and 14 g of solid content 4 having a starch content of 97.2% was recovered. The starch recovery efficiency is 63%. The starch content was measured using Starch (HK) Assay Kit (manufactured by Sigma).

実施例1により得られたウキクサ澱粉(サンプルA,サンプルB)の分析結果を以下に示す。サンプルAは午前に収穫したウキクサから得られた澱粉サンプルであり、サンプルBは16時に収穫したウキクサから得られた澱粉サンプルである。   The analysis results of duckweed starch (sample A, sample B) obtained in Example 1 are shown below. Sample A is a starch sample obtained from duckweed harvested in the morning, and sample B is a starch sample obtained from duckweed harvested at 16:00.

(1)ウキクサ澱粉の精製
ウキクサ澱粉(サンプルA,サンプルB)の精製をショック(Schoch)の方法に従って行った。すなわち,イソアミルアルコール/水(1:3(v/v))を用いて試料澱粉の振とうと遠心分離を繰り返し,試料中のタンパク質および色素などを除去した。十分に水洗いした後,シャーレに移し上清の水を除去し,シリカゲルの入ったデシケーター内で十分に乾燥させ,乳鉢中で均一な粉末になるように粉砕し,以後の実験に用いた。
(1) Purification of duckweed starch Duckweed starch (sample A, sample B) was purified according to the method of Schoch. That is, the sample starch was repeatedly shaken and centrifuged using isoamyl alcohol / water (1: 3 (v / v)) to remove proteins and pigments in the sample. After thoroughly washing with water, it was transferred to a petri dish and the supernatant water was removed, dried thoroughly in a desiccator containing silica gel, ground in a mortar to form a uniform powder, and used in subsequent experiments.

(2)水分含量の測定
加熱乾燥法による水分含量は、サンプルA,Bともに11.0%であった。
(2) Measurement of moisture content The moisture content by the heat drying method was 11.0% for both Samples A and B.

(3)ヨウ素・澱粉複合体吸収曲線から求める青価および最大吸収波長の測定
(サンプルAおよびサンプルBの測定)
青価(ヨウ素・澱粉複合体吸収曲線の680nmにおける吸光度)は試料澱粉の見かけのアミロース含量およびアミロペクチンの側鎖長の長短の影響を受ける測定値,吸収曲線の最大吸収波長(λmax)は主に見かけのアミロース含量を反映する値として考えられている。
(3) Measurement of blue value and maximum absorption wavelength obtained from iodine-starch composite absorption curve (Measurement of Sample A and Sample B)
The blue value (absorbance at 680 nm of the iodine-starch complex absorption curve) is a measured value affected by the apparent amylose content of the sample starch and the length of the side chain length of amylopectin, and the maximum absorption wavelength (λmax) of the absorption curve is mainly It is considered as a value that reflects the apparent amylose content.

Figure 2019014766
Figure 2019014766

測定の結果,サンプルAとサンプルBのそれぞれの青価は,0.55と0.50,λmaxはそれぞれ598nmと592nmであった。   As a result of the measurement, the blue values of Sample A and Sample B were 0.55 and 0.50, and λmax was 598 nm and 592 nm, respectively.

穀類澱粉の1つの米澱粉の結果と比較すると,モチ米澱粉,ウルチ米(中アミロース米)澱粉,高アミロース米澱粉の一般的な青価は,それぞれ0.07,0.23,0.33,λmaxはそれぞれ526nm,562nm,590nm程度であった。米澱粉と比べてλmaxの測定値が高かったことから,ウキクサ澱粉は高アミロースタイプであること,また,λmaxに比べて青価が高いことから,アミロペクチンの側鎖長が長いことが推定された。   Compared with the results of one rice starch of cereal starch, the general blue values of mochi rice starch, uruchi rice (medium amylose rice) starch and high amylose rice starch are 0.07, 0.23, 0.33 and λmax are 526 nm, respectively. It was about 562nm and 590nm. Since the measured value of λmax was higher than that of rice starch, duckweed starch was a high amylose type, and since the blue value was higher than λmax, it was estimated that the side chain length of amylopectin was long .

代表的なイモ澱粉と比較してみると,市販のイモから調製したサツマイモ澱粉とジャガイモ澱粉の青価はそれぞれ0.35,0.58,λmaxは593nm,589nmであった。これらの結果から,ウキクサ澱粉の構造は,穀類澱粉よりもイモ澱粉,強いて言えばジャガイモ澱粉の構造に近いと推定される。   When compared with typical potato starches, the blue values of sweet potato starch and potato starch prepared from commercial potatoes were 0.35, 0.58 and λmax were 593 nm and 589 nm, respectively. From these results, it is estimated that the structure of duckweed starch is closer to that of potato starch, or potato starch than cereal starch.

(4)澱粉をイソアミラーゼで枝切りした後に中圧ゲル濾過する分析法を用いたアミロース含量とアミロペクチンの鎖長分布の測定   (4) Measurement of amylose content and amylopectin chain length distribution using an analysis method in which starch is debranched with isoamylase and then subjected to medium pressure gel filtration.

常法により,中圧ゲル濾過法によりサンプルBの澱粉のアミロース含量とアミロペクチンの鎖長分布を調べた。   The amylose content of the starch of sample B and the chain length distribution of amylopectin were examined by a conventional method by medium pressure gel filtration.

Figure 2019014766
Figure 2019014766

Fr.I(アミロース画分に相当)の含量は31.9%,Int.Fr.(中間画分)の含量が7.8%,Fr.II(アミロペクチンの長鎖画分)の含量は20.1%,Fr.III(アミロペクチンの短鎖画分)の含量は40.2%,アミロペクチンの長鎖に対する短鎖の割合 (Fr.III / Fr.II) は2.0であった。米澱粉のアミロース含量の場合,モチ米0%,
低アミロース米5−15%,中アミロース米15−20%,高アミロース米25−30%であり,(Fr.III / Fr.II) の値は2.5−3.0である。
The content of Fr.I (corresponding to amylose fraction) is 31.9%, the content of Int.Fr. (intermediate fraction) is 7.8%, the content of Fr.II (long chain fraction of amylopectin) is 20.1%, Fr. The content of III (short chain fraction of amylopectin) was 40.2%, and the ratio of short chain to long chain of amylopectin (Fr.III / Fr.II) was 2.0. In the case of amylose content of rice starch,
Low amylose rice is 5-15%, medium amylose rice is 15-20%, high amylose rice is 25-30%, and the value of (Fr.III / Fr.II) is 2.5-3.0.

(5)パルスドアンペロメトリー検出器を用いた陰イオン交換クロマトグラフィ
ー(HPAEC-PAD)によるアミロペクチンの短鎖領域の単位鎖長分布の測定
(5) Measurement of unit chain length distribution of the short region of amylopectin by anion exchange chromatography (HPAEC-PAD) using a pulsed amperometric detector

ヨウ素吸収曲線の青価および中圧ゲル濾過法の結果から,アミロペクチンの側鎖長が長いことが予想されたので,糊化温度と密接な関係のあるアミロペクチンの短鎖領域の側鎖長分布について、サンプルBを用いて、HPAEC-PAD法で測定した。   As the side chain length of amylopectin was predicted from the blue value of iodine absorption curve and the result of medium pressure gel filtration, the side chain length distribution of the short chain region of amylopectin closely related to the gelatinization temperature Sample B was measured by the HPAEC-PAD method.

アミロペクチンの単位鎖長分布を50量体まで測定し,6量体−50量体までの全検出ピーク面積の合計に対して,最短鎖領域(6−12量体;Fr.A)の検出ピーク面積の合計が占める割合(%)を測定した結果,既知の種々植物澱粉よりも低い値11.1%を示した。(通常の米澱粉で26−27%,長鎖が多く,糊化温度の高い米澱粉で22%程度,極端に短鎖が少なく長鎖が多いアミロペクチンをもつアミロース・エクステンダー(amylose-extender ; ae)変異体米の澱粉でも16%であった。)Fr.A含量が低いとアミロペクチン側鎖長が長く,その澱粉の糊化温度が高いことを数多くの澱粉の測定結果から確認している。したがって,ウキクサ澱粉の糊化温度は非常に高いことが予想される。   Measure the amylopectin unit chain length distribution up to 50 mer, and detect the peak of the shortest chain region (6-12 mer; Fr.A) with respect to the total detection peak area from 6mer to 50mer. As a result of measuring the ratio (%) of the total area, the value was 11.1% lower than that of various known plant starches. (Amylose-extender (amylose-extender; ae) with amylopectin, 26-27% for regular rice starch, 22% for rice starch with high long chain, high gelatinization temperature, about 22%, extremely short chain and long chain ) Mutant rice starch was also 16%.) It was confirmed from the measurement results of many starches that the side chain length of amylopectin is long when the Fr.A content is low and the gelatinization temperature of the starch is high. Therefore, the gelatinization temperature of duckweed starch is expected to be very high.

(6)光学顕微鏡による澱粉粒の観察
光学顕微鏡を用いて,400倍の倍率でウキクサ澱粉粒の観察を行った。その結果を図5に示す。図5は,光学顕微鏡による澱粉粒の観察結果を示す図面に替わる写真である。図5においては,サンプルAおよびサンプルBを、サンプル(1)およびサンプル(2)と表記している。その結果,澱粉粒は通常入手可能な植物澱粉の中で最も粒径の小さい米澱粉(直径約5μm)よりもさらに小さい2−3μmであった。
(6) Observation of starch granules with an optical microscope Duckweed starch granules were observed with an optical microscope at a magnification of 400 times. The result is shown in FIG. FIG. 5 is a photograph replacing a drawing showing the observation results of starch granules by an optical microscope. In FIG. 5, sample A and sample B are denoted as sample (1) and sample (2). As a result, the starch granules were 2-3 μm, which was even smaller than the rice starch (diameter: about 5 μm) having the smallest particle size among the commonly available plant starches.

生澱粉分解酵素による酵素消化性は,一般に澱粉粒径が小さいほど,澱粉の単位重量あたりの表面積が大きくなるので,表面から澱粉粒を分解する生澱粉分解酵素による消化性が高いことが知られている。そこで,次に澱粉粒の酵素消化性を調べた。   Enzymatic digestibility with raw starch-degrading enzymes is generally known to be higher due to raw starch-degrading enzymes that degrade starch granules from the surface because the smaller the starch particle size, the greater the surface area per unit weight of starch. ing. Therefore, the enzyme digestibility of starch granules was examined next.

(7)粗グルコアミラーゼ剤ダビアーゼK-27による澱粉粒の酵素消化性の測定

強力な生澱粉分解酵素である粗グルコアミラーゼ剤ダビアーゼK-27(長瀬産業株式会社)を用いて常法によりウキクサ澱粉のサンプルBの酵素消化性を調べた。
(7) Enzymatic digestibility of starch granules with crude glucoamylase agent Daviase K-27

Enzymatic digestibility of duckweed starch sample B was examined by a conventional method using a crude glucoamylase agent Daviase K-27 (Nagase Sangyo Co., Ltd.), which is a powerful raw starch degrading enzyme.

Figure 2019014766
Figure 2019014766

直径が約15μmのノーマルコーンスターチ(ウルチトウモロコシ澱粉;NCS)と酵素消化性の比較を行った。まず,反応24時間後にはサンプルBのウキクサ澱粉もNCSもどちらも完全にグルコースにまで分解していた。反応1時間後では,澱粉粒が小さいためか,ウキクサ澱粉の消化性のほうが若干高かったが,それ以後は単位重量当たりの表面積が小さいNCSの消化性が高いという結果が得られた。この結果は,ウキクサ澱粉粒のほうが酵素と接触するのに十分な表面積をもっているにもかかわらず,NCSよりも消化性が悪いことから,NCSより酵素に対する抵抗性が高い構造を持っていると考えられる。   Enzymatic digestibility was compared with normal corn starch (Ulchi corn starch; NCS) with a diameter of about 15 μm. First, 24 hours after the reaction, both duckweed starch and NCS of sample B were completely degraded to glucose. One hour after the reaction, the digestibility of duckweed starch was slightly higher, probably because the starch granules were small, but after that, the results showed that NCS with a small surface area per unit weight was highly digestible. This result suggests that duckweed starch granules have a structure that is more resistant to enzymes than NCS because they are less digestible than NCS, even though they have a sufficient surface area to contact the enzyme. It is done.

(8) 大容量型示差走査熱量測定計micro DSC IIIを用いたウキクサ澱粉の糊化温度と糊化熱量の測定   (8) Measurement of gelatinization temperature and gelatinization heat of duckweed starch using a large-capacity differential scanning calorimeter micro DSC III

ウキクサ澱粉の糊化温度と糊化熱量をmicro DSC III (Setaram,フランス)を用いて,澱粉:水(1:2.5),昇温速度1℃/minで115℃まで測定した。結果を表4に示す。   The gelatinization temperature and the amount of gelatinization of duckweed starch were measured up to 115 ° C using a micro DSC III (Setaram, France) at starch: water (1: 2.5) at a heating rate of 1 ° C / min. The results are shown in Table 4.

Figure 2019014766
Figure 2019014766

生澱粉の糊化開始温度(To)が75℃近くで,糊化ピーク温度(Tp)が80℃以上,糊化終了温度(Tc)が100℃付近の澱粉は,他の植物澱粉ではほとんど見当たらない。市販のジャガイモ澱粉のToは60℃,Tpが64℃,Tcが71℃であるので,ウキクサ澱粉はジャガイモ澱粉の糊化が終了してから,糊化が始まることになる。糊化熱量 (ΔH) はジャガイモ澱粉の約18 J/gよりは幾分低いが,サツマイモ澱粉の約15 J/gと同等以上の高い糊化熱量を示した。   The starch whose gelatinization start temperature (To) of raw starch is close to 75 ° C, the gelatinization peak temperature (Tp) is 80 ° C or higher, and the gelatinization end temperature (Tc) is around 100 ° C is almost not found in other plant starches. Absent. Since To of commercial potato starch is 60 ° C., Tp is 64 ° C., and Tc is 71 ° C., duckweed starch begins to gelatinize after potato starch has been gelatinized. Although the heat of gelatinization (ΔH) was somewhat lower than about 18 J / g of potato starch, it showed a high heat of gelatinization equivalent to or higher than about 15 J / g of sweet potato starch.

(9) 大容量型示差走査熱量測定計micro DSC IIIを用いた老化ウキクサ澱粉の糊化温度と糊化熱量の測定   (9) Measurement of gelatinization temperature and gelatinization heat of aged duckweed starch using a large-capacity differential scanning calorimeter micro DSC III

上記のようにウキクサ澱粉を115℃まで測定した後,DSC容器ごと,冷蔵庫(5℃)で7日間放置することにより,ウキクサ澱粉を老化させ,再びその老化したウキクサ澱粉の糊化温度と糊化熱量をmicro DSC III を用いて,昇温速度1℃/minで測定した。結果を表5に示す。   After measuring duckweed starch to 115 ° C as described above, duckweed starch is aged by allowing it to stand in a refrigerator (5 ° C) for 7 days together with the DSC container, and then gelatinizing temperature and gelatinization of the aged duckweed starch again The amount of heat was measured using a micro DSC III at a heating rate of 1 ° C / min. The results are shown in Table 5.

Figure 2019014766
Figure 2019014766

老化澱粉の糊化ピーク温度と糊化終了温度はいずれも老化澱粉としては極めて高温であり,老化澱粉の糊化熱量も高いことから,強固な多量の老化澱粉が形成されたと考えられる。すなわち,老化しやすい澱粉と考えられる。   The gelatinization peak temperature and gelatinization end temperature of aging starch are both extremely high for aging starch and the amount of heat for gelatinization of aging starch is high, which suggests that a large amount of strong aging starch was formed. In other words, it is considered to be an aging starch.

ウキクサ澱粉はアミロース含量が高く,アミロペクチン側鎖が極めて長く,糊化温度も非常に高い澱粉である。そのため,老化しやすく,老化した澱粉は熱的に非常に強固と言える。   Duckweed starch is a starch with high amylose content, extremely long amylopectin side chains, and very high gelatinization temperature. Therefore, it is easy to age, and it can be said that aged starch is very strong thermally.

(10)ラピッドビスコアナライザー (Rapid Visco Analyser;RVA) による粘度
測定
RVA-4(Newport Scientific,オーストラリア)を用いて,10%澱粉懸濁液に30℃(1分間),30℃→95℃(13分間,昇温速度5℃/min),95℃(6分間保持),95℃→50℃(9分間,降温速度5℃/min),50℃(10分間保持)という温度プログラムにおける粘度曲線を測定した。サンプルAとサンプルBのウキクサ澱粉のそれぞれの各種特性値は次の通りである。
(10) Viscosity measurement with Rapid Visco Analyzer (RVA)
Using RVA-4 (Newport Scientific, Australia), 30 ° C (1 minute), 30 ° C → 95 ° C (13 minutes, heating rate 5 ° C / min), 95 ° C (6 minutes) Hold), 95 ° C → 50 ° C (9 minutes, temperature drop rate 5 ° C / min), and 50 ° C (hold 10 minutes) temperature curve. Various characteristic values of the duckweed starches of Sample A and Sample B are as follows.

Figure 2019014766
Figure 2019014766

まず,粘度上昇開始温度が90℃付近であり,既知の植物澱粉の中で最も高い。この結果は,HPAEC-PAD法で調べたFr.A含量の異常に低い値や,DSCによって測定した高い糊化温度の結果から予想できた結果ではあるが,90℃という異常に高い値を示したのはピーク粘度が140RVU前後と低い粘度であることも要因と考えられる。すなわち,粘度が低い澱粉糊は粘度が装置によって感知されにくいため,比較的高温で粘度上昇が開始されるためである。   First, the viscosity increase starting temperature is around 90 ° C, the highest among the known plant starches. This result shows an unusually high value of 90 ° C, although it can be predicted from the abnormally low value of Fr.A content investigated by the HPAEC-PAD method and the result of the high gelatinization temperature measured by DSC. Another reason is that the peak viscosity is as low as around 140 RVU. That is, the starch paste having a low viscosity is difficult to detect by the apparatus, so that the viscosity increase starts at a relatively high temperature.

また,ピーク粘度と最低粘度がほぼ同じ値を示すことから,ブレークダウンが異常に低い澱粉であった。セットバックはモチ性澱粉に似た低い値を示した。   Moreover, since the peak viscosity and the minimum viscosity were almost the same value, the starch had an abnormally low breakdown. The setback showed a low value similar to waxy starch.

ウキクサ澱粉は高アミロースタイプの澱粉なので,アミロース含量と高い正の相関関係のあるセットバックが非常に低いのは意外であった。また,DSCによる老化澱粉の糊化熱量が高かったことから,老化しやすい澱粉と予想されたが,老化しやすい澱粉のRVAのセットバック値は高い値を示すという傾向にも合致しない結果となった。この要因として,RVA容器内での95℃までの加熱では,ウキクサ澱粉は十分には糊化しておらず,95℃から50℃への温度低下時の澱粉ゲルの硬化現象が起こりにくいと考えられる。   Since duckweed starch is a high amylose type starch, it was surprising that setback, which has a high positive correlation with amylose content, was very low. In addition, since the heat of gelatinization of aging starch by DSC was high, it was expected to be aging starch, but the RVA setback value of aging starch was not consistent with the tendency to show a high value. It was. The reason for this is that duckweed starch is not sufficiently gelatinized by heating up to 95 ° C in an RVA container, and it is considered that the starch gel does not harden easily when the temperature drops from 95 ° C to 50 ° C. .

(11)膨潤力と溶解度の測定
澱粉の膨潤力と溶解度の測定は,以下の方法で行った。
(11) Measurement of swelling power and solubility The swelling power and solubility of starch were measured by the following methods.

目盛り付き10mL容スピッツロールに澱粉50mgを精秤し,蒸留水10mLを加え,ブロックヒーターにセットし,所定の液温になるようにブロックヒーターを調節しながらミクロスパテルを用いてスピッツロール内の澱粉懸濁液を30分間撹拌した後,スピッツロールをブロックヒーターから外し,水道水の入った容器内で数分浸すことで冷却した。その後1日以上室温で放置して,糊の体積が一定になった後,スピッツロールの目盛りで糊の体積を読み取ることにより膨潤力を,上清液の全糖量をフェノール・硫酸法で測定することで溶解度を算出した。   Weigh accurately 50 mg of starch into a 10 mL spitz roll with a scale, add 10 mL of distilled water, set it on a block heater, adjust the block heater to a predetermined liquid temperature, and use a micro spatula to suspend the starch suspension in the spitz roll. After stirring the suspension for 30 minutes, the Spitz roll was removed from the block heater and cooled by immersing it in a container containing tap water for several minutes. After standing at room temperature for 1 day or more after that, the volume of glue became constant, and the swelling power was measured by reading the volume of glue with the scale of Spitzroll, and the total sugar content of the supernatant was measured by phenol / sulfuric acid method The solubility was calculated.

Figure 2019014766
Figure 2019014766

DSC,RVAの測定結果から,ウキクサ澱粉は糊化温度が異常に高く,粘度が低いことが分かっているので,75℃から10℃刻みで,ウルチ性トウモロコシ澱粉(NCS)を対照試料として膨潤力および溶解度を測定した。
その結果,予想通りウキクサ澱粉は85℃程度までは,あまり糊化しないために,膨潤力も溶解度もNCSよりも低く,95℃で30分加熱しても,NCSほどには膨潤も溶解もしないことを確認した。
From the results of DSC and RVA measurements, it is known that duckweed starch has an unusually high gelatinization temperature and low viscosity. Therefore, the swelling power of lucid corn starch (NCS) as a control sample in increments of 75 to 10 ° C And solubility was measured.
As a result, as expected, duckweed starch does not gelatinize much until around 85 ° C, so its swelling power and solubility are lower than NCS, and even when heated at 95 ° C for 30 minutes, it does not swell and dissolve as much as NCS. It was confirmed.

上記の結果より,以下のことがいえる。
ウキクサ澱粉は,澱粉粒の直径が2−3μmと米澱粉(5μm)よりも小さく,サトイモや雑穀のアマランス,キノアの澱粉に近い(これら極小粒澱粉も,糊化温度が高いものが多い。またジャガイモやコムギ,オオムギなどの澱粉で,それぞれの同じ澱粉試料中でも,大粒より小粒のほうが糊化温度が高い。)。ウキクサ澱粉は,米澱粉の代わりに,高級紙のコーティングに使えると考えられる。
From the above results, the following can be said.
Duckweed starch has a starch granule diameter of 2-3 μm, which is smaller than rice starch (5 μm), and is close to taro, millet amaranth, and quinoa starch (most of these very small starches have a high gelatinization temperature. (Starch of potato, wheat, barley, etc., even in the same starch sample, the gelatinization temperature of the small grains is higher than the large ones.) Duckweed starch can be used for high-grade paper coating instead of rice starch.

ウキクサ澱粉は極小粒の割には生澱粉分解酵素の作用を受けにくい。すなわち,ウキクサ澱粉は酵素に対する抵抗性の強い粒構造をしている。ウキクサ澱粉は,難消化性澱粉(レジスタントスターチ)として利用されうる。   Duckweed starch is less susceptible to the action of raw starch degrading enzymes for its very small grains. That is, duckweed starch has a grain structure with strong resistance to enzymes. Duckweed starch can be used as resistant starch.

ウキクサ澱粉は,糊化温度が異常に高い。言い換えるとウキクサ澱粉は,糊化しにくい。ウキクサ澱粉を高温で処理しても生澱粉が糊液中に残る。ウキクサ澱粉は,独特の食感の糊液として利用されうる。   Duckweed starch has an unusually high gelatinization temperature. In other words, duckweed starch is difficult to gelatinize. Even if duckweed starch is processed at a high temperature, raw starch remains in the paste. Duckweed starch can be used as a paste with a unique texture.

ウキクサ澱粉は,アミロース含量が30%以上と高い。ウキクサ澱粉は,アミロペクチン側鎖が異常に長い。ウキクサ澱粉は,プラスチックやフイルム成形用澱粉として利用されると共に,新しい食材として利用されうる。   Duckweed starch has a high amylose content of over 30%. Duckweed starch has an unusually long amylopectin side chain. Duckweed starch can be used as a new food material as well as used as a starch for molding plastics and films.

ウキクサ澱粉は,老化しやすい。ウキクサ澱粉は,老化澱粉の構造が強固である。ウキクサ澱粉は,老化食品の春雨などに利用されうる。ウキクサ澱粉は,新しい食材として利用されうる。   Duckweed starch is easy to age. Duckweed starch has a strong structure of aging starch. Duckweed starch can be used in vermicelli for aged foods. Duckweed starch can be used as a new food.

ウキクサ澱粉は,高温でも膨潤,溶解しにくく,糊化しても粘度が低い。このため,例えばオブラートに利用できる。   Duckweed starch does not swell or dissolve even at high temperatures, and its viscosity is low even when gelatinized. For this reason, it can be used for an oblate, for example.

本発明は,新規の澱粉を提供するものであり,食品分野や化学品分野において利用されうる。


The present invention provides a novel starch and can be used in the food and chemical fields.


Claims (3)

糊化温度が,糊化開始温度が70℃以上であり,
数平均粒子径が2μm以上3μm以下であり,
アミロース含有率が30%以上50%以下である澱粉。
The gelatinization temperature is such that the gelatinization start temperature is 70 ° C or higher,
The number average particle size is 2 μm or more and 3 μm or less,
Starch having an amylose content of 30% or more and 50% or less.
請求項1に記載の澱粉であって,ウキクサ類由来の澱粉。 The starch according to claim 1, wherein the starch is derived from duckweeds. 請求項2に記載の澱粉であって,
前記ウキクサ類が,ミジンコウキクサ,コウキクサ,ウキクサ,アカウキクサ(アゾラ),ホテイアオイ,ボタンウキクサ,オオカナダモ,コカナダモ,オオフサモ,及びサンショウモからなる群より選ばれる1又は2種以上のウキクサである澱粉。
The starch according to claim 2,
Starch, wherein the duckweed is one or more duckweeds selected from the group consisting of daphnia, duckweed, duckweed, duckweed (Azola), water hyacinth, button duckweed, giant canadian, cocanada, offofamo, and salamander.
JP2015229225A 2015-11-24 2015-11-24 Aquatic plant-derived novel starch Pending JP2019014766A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015229225A JP2019014766A (en) 2015-11-24 2015-11-24 Aquatic plant-derived novel starch
PCT/JP2016/084673 WO2017090632A1 (en) 2015-11-24 2016-11-22 Novel starch derived from aqueous plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015229225A JP2019014766A (en) 2015-11-24 2015-11-24 Aquatic plant-derived novel starch

Publications (1)

Publication Number Publication Date
JP2019014766A true JP2019014766A (en) 2019-01-31

Family

ID=58764098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015229225A Pending JP2019014766A (en) 2015-11-24 2015-11-24 Aquatic plant-derived novel starch

Country Status (2)

Country Link
JP (1) JP2019014766A (en)
WO (1) WO2017090632A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112794920A (en) * 2021-01-15 2021-05-14 江南大学 Method for extracting duckweed dormant body starch
CN115010816A (en) * 2022-05-20 2022-09-06 青岛农业大学 Duckweed starch extraction equipment and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551319A (en) * 1978-06-12 1980-01-08 Osaka Seiken Yuugen Production of pulp by algae
JPS5548332A (en) * 1978-09-30 1980-04-07 Ichigorou Sekine Continuously cultivating of *uorufia* lemnaceae by using biological gas obtaine by biologically activating organic sludge
JPH06113690A (en) * 1992-09-08 1994-04-26 Toshiro Sekine Fixation of carbon dioxide gas with wolfia or duckweed
MY155251A (en) * 2010-05-17 2015-09-30 Aic Tokyo Inc Organic waste resource recovery method using duckweed
JP5834840B2 (en) * 2011-11-30 2015-12-24 日東紡績株式会社 Glass fiber sizing agent and glass fiber fabric using the same
MY167385A (en) * 2012-03-16 2018-08-16 Chitose Laboratory Corp Method for producing compost using duckweeds
CN103609304B (en) * 2013-11-22 2015-08-19 中国科学院成都生物研究所 A kind of method of quick raising duckweed content of starch
CN103947529B (en) * 2014-05-12 2015-12-30 中国科学院成都生物研究所 Improve the method for duckweed starch and crude protein yield and sewerage nitrogen and phosphor clearance simultaneously
CN104839025A (en) * 2015-05-25 2015-08-19 北京大学深圳研究生院 Culture method of high-starch duckweeds

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112794920A (en) * 2021-01-15 2021-05-14 江南大学 Method for extracting duckweed dormant body starch
CN112794920B (en) * 2021-01-15 2022-01-11 江南大学 Method for extracting duckweed dormant body starch
CN115010816A (en) * 2022-05-20 2022-09-06 青岛农业大学 Duckweed starch extraction equipment and method
CN115010816B (en) * 2022-05-20 2023-09-19 青岛农业大学 Duckweed small-particle starch extraction equipment and extraction method

Also Published As

Publication number Publication date
WO2017090632A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
Öner Microbial production of extracellular polysaccharides from biomass
Mohanty et al. Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation
Arshad et al. Resistant starch evaluation and in vitro fermentation of lemantak (native sago starch), for prebiotic assessment
US20090075353A1 (en) Method of producing bio-ethanol
Benjamin et al. Bio-ethanol production from banana peel by simultaneous saccharification and fermentation process using cocultures Aspergillus niger and Saccharomyces cerevisiae
Liu et al. Impact of deficit irrigation on sorghum physical and chemical properties and ethanol yield
Lee et al. Starch characterization and ethanol production of duckweed and corn kernel
Yang et al. Characteristics of traditional Chinese shanlan wine fermentation
Dos Santos et al. Bioconversion of agro-industrial wastes into xanthan gum
Mishra et al. Selection and utilization of agro-industrial waste for biosynthesis and hyper-production of pullulan: a review
Ramli et al. Extraction and characterization of starch from microalgae and comparison with commercial corn starch
Zabed et al. A comparative evaluation of agronomic performance and kernel composition of normal and high sugary corn genotypes (Zea mays L.) grown for dry-grind ethanol production
CN101886042A (en) Method for constructing composite bacteria system for decaying maize straws
WO2017090632A1 (en) Novel starch derived from aqueous plant
Fujita et al. Characterization of starch-accumulating duckweeds, Wolffia globosa, as renewable carbon source for bioethanol production
JP2006312157A (en) Method for producing lactic acid/succinic acid from rice straw and the like with high efficiency, and method for producing gypsum-based soil improvers/building materials
CN101885628B (en) Planting medium for manufacturing water hyacinth and preparation method thereof
CN104630017A (en) Method for improving storage stability of fruit wine
Samah et al. Production of Ethanol from Cocoa Pod Hydrolysate.
CN101597804B (en) Corn fiber extraction technology
Ngamput et al. The effect of differentiation of hydrolysis time towards ethanol levels produced through Ulva lactuca fermentation
CN107574213A (en) A kind of method that corn peptide is prepared using fermenting bacillus natto
Archibong et al. Ethanol production from cassava wastes (pulp and peel) using alcohol tolerant yeast isolated from palm wine
Medić et al. Effect of planting date on maize starch structure, properties, and ethanol production
JP2004344084A (en) Alcohol fermentative yeast