JPS6310352B2 - - Google Patents

Info

Publication number
JPS6310352B2
JPS6310352B2 JP7882481A JP7882481A JPS6310352B2 JP S6310352 B2 JPS6310352 B2 JP S6310352B2 JP 7882481 A JP7882481 A JP 7882481A JP 7882481 A JP7882481 A JP 7882481A JP S6310352 B2 JPS6310352 B2 JP S6310352B2
Authority
JP
Japan
Prior art keywords
hot water
circuit
heat exchanger
water supply
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7882481A
Other languages
Japanese (ja)
Other versions
JPS57192771A (en
Inventor
Masami Imanishi
Toshiro Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7882481A priority Critical patent/JPS57192771A/en
Priority to DE3219277A priority patent/DE3219277C2/en
Publication of JPS57192771A publication Critical patent/JPS57192771A/en
Publication of JPS6310352B2 publication Critical patent/JPS6310352B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、1台のユニツトで、給湯運転、給
湯及び冷房運転を効率よく行なわせるようにした
冷暖房兼用ヒートポンプ式給湯機の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a heat pump type water heater for heating and cooling, which allows a single unit to efficiently perform hot water supply operation, hot water supply operation, and cooling operation.

以下、この発明の一実施例について説明する。
第1図は冷媒回路の構成図であり1は圧縮機、2
は四方切換弁、3は給湯用凝縮コイル3a付貯湯
槽、4は第1の絞り装置であり、上記機器1,
2,3と直列に冷媒配管接続されている。(A)は互
いに直列に冷媒配管接続された給湯用凝縮コイル
3aと第1の絞り装置4とバイパスする電動弁回
路Aであり、電動弁A5を有している。また、(B)
は第1の絞り装置4をバイパスする電動弁回路B
であり、電動弁B6を有している。7は非利用側
となる室外側熱交換器であり、8は室外側熱交換
器7に送風を行なう送風機、9は第2の絞り装置
であり。10は非利用側となる室内側熱交換器で
あり、11は上記室外側熱交換器10に送風を行
なう送風機、12はアキユームレータであり、室
外側熱交換器7、第2の絞り装置9、室内側熱交
換器10、四方切換弁2と直列に冷媒配管接続さ
れている。(C)は第2の絞り装置9と室内側熱交換
器10をバイパスする電動弁回路Cであり、電動
弁C13を有している。
An embodiment of the present invention will be described below.
Figure 1 is a configuration diagram of the refrigerant circuit, where 1 is a compressor, 2
3 is a four-way switching valve, 3 is a hot water storage tank with a condensing coil 3a for hot water supply, 4 is a first throttle device, and the above equipment 1,
2 and 3 are connected in series with refrigerant piping. (A) shows an electric valve circuit A that bypasses the hot water supply condensing coil 3a and the first throttling device 4, which are connected in series with refrigerant piping, and has an electric valve A5. Also, (B)
is an electric valve circuit B that bypasses the first throttle device 4.
and has an electric valve B6. 7 is an outdoor heat exchanger that is not used, 8 is a blower for blowing air to the outdoor heat exchanger 7, and 9 is a second throttle device. 10 is an indoor heat exchanger which is not used, 11 is an air blower that blows air to the outdoor heat exchanger 10, 12 is an accumulator, which includes the outdoor heat exchanger 7 and a second throttle device. 9, the indoor heat exchanger 10 and the four-way switching valve 2 are connected in series with refrigerant piping. (C) is an electric valve circuit C that bypasses the second expansion device 9 and the indoor heat exchanger 10, and has an electric valve C13.

第2図は電気回路図であり、SW−1は運転ス
イツチ、SW−2は冷暖房切換スイツチであり中
性接点を有している。23Wは給湯用凝縮コイル
3a付貯湯槽3内部の給湯水温検知器の水温サー
モスタツトであり、52Cは圧縮機1用電動機の
電磁接触器52F1は室外側送風機8用電動機の
電磁接触器、52F2は室内側送風機11用電動
機の電磁接触器である。またX1は暖房運転指令
用補助継電器、X2は冷房運転指令用補助継電器
であり、各々冷暖房負荷検知器となる室内温度検
知用暖房サーモスタツト、23A1及び冷房サー
モスタツト23A2と直列接続されている。X3
デフロスト運転指令用補助継電器であり、デフロ
ストサーモスタツト26Dと直列接続されてい
る。SV−A,SV−B、及びSV−Cは各々電動
弁A5、電動弁B6及び電動弁C13のコイルで
ある。そしてSV−4は四方切換弁2のコイルで
ある。
FIG. 2 is an electrical circuit diagram, in which SW-1 is an operation switch, SW-2 is an air-conditioning/heating changeover switch, and has a neutral contact. 23W is the water temperature thermostat of the hot water temperature detector inside the hot water storage tank 3 with condensing coil 3a for hot water supply, 52C is the electromagnetic contactor 52F of the motor for the compressor 1 , 1 is the electromagnetic contactor of the motor for the outdoor blower 8, 52F 2 is an electromagnetic contactor for the motor for the indoor blower 11. In addition, X1 is an auxiliary relay for heating operation commands, and X2 is an auxiliary relay for cooling operation commands, which are connected in series with heating thermostat 23A1 and cooling thermostat 23A2 , respectively, for indoor temperature detection, which serve as cooling and heating load detectors. ing. X3 is an auxiliary relay for defrost operation command, and is connected in series with the defrost thermostat 26D. SV-A, SV-B, and SV-C are coils of motor-driven valve A5, motor-driven valve B6, and motor-driven valve C13, respectively. SV-4 is a coil of the four-way switching valve 2.

次に、この発明の作動について説明する。まず
給湯運転時について説明する。第3図は給湯運転
時の冷媒流れ図であり、冷媒流れ方向を、太実線
矢印で示す。
Next, the operation of this invention will be explained. First, the hot water supply operation will be explained. FIG. 3 is a refrigerant flow diagram during hot water supply operation, and the refrigerant flow direction is shown by thick solid arrows.

まず、運転スイツチSW−1を投入すると、給
湯用凝縮コイル3aは貯湯槽3内部の給湯水温が
所定値以下では、水温サーモスタツト23Wは閉
路しており、電磁接触器52Cは付勢され、圧縮
機1は運転を行なう。また、通常デフロストサー
モスタツト26Dが開路の為、補助継電器X3
付勢されず、従つて、常閉接点X3−bは閉路し
ている為、電磁接触器52F1が付勢し、室外側
送風機8は運転を行なう。一方、補助継電器X1
X2,X3は付勢しておらず、各々の常開接点X1
a,X2−a及びX3−aは開路しており、常閉接
点X2−b,X3−bは閉路している。従つて、四
方切換弁2のコイルSV−4、電動弁A5のコイ
ルSV−A電動弁B6のコイルSV−Bは消勢して
おり、電動弁C13のコイルSV−Cのみ付勢し
ている。よつて、四方切換弁2は第3図に示す如
き冷媒流れ方向位置となり、しかも、電動弁回路
A(A)、電動弁回路B(B)は閉路し、電動弁回路C(C)
は開路する。冷媒流れに関しては、圧縮機1より
吐出された高温高圧ガス冷媒は、四方切換弁2を
通り、給湯用凝縮コイル3a付貯湯槽3に導か
れ、低温の給湯水と熱交換し、放熱し、高圧液冷
媒となる。また、貯湯槽3内の給湯水は採熱し、
温度上昇する。そして、給湯水は、槽上部の給湯
水出口14より使用され、使用された水量分のみ
槽下部の市水入口15より供給される。その後、
液冷媒は、第1の絞り装置4により減圧され、室
外側熱交換器7にて蒸発し、電動弁回路C(C)を通
過し、四方切換弁2、アキユームレータ12、及
び圧縮機1に戻る。この場合、第2の絞り装置9
の圧力抵抗が大きい為、蒸発した低温ガス冷媒は
電動弁回路C(C)を通過し、室内側熱交換器10に
寝込むことはない。また、貯湯槽3内給湯水の温
度が所定値以上に上昇すれば、水温サーモスタツ
ト23Wが作動し、その接点は開路する。従つ
て、電磁接触器52C及び52F1は消勢され、
圧縮機1及び室外側送風機8は停止する。再び給
湯水温が降下すれば、水温サーモスタツト23W
が復帰し、運転が再開される。
First, when the operating switch SW-1 is turned on, the water temperature thermostat 23W is closed, and the electromagnetic contactor 52C is energized to compress Machine 1 performs operation. In addition, since the defrost thermostat 26D is normally open, the auxiliary relay X3 is not energized, and therefore the normally closed contact The outside blower 8 is operated. On the other hand, auxiliary relay X 1 ,
X 2 and X 3 are not energized, and each normally open contact X 1
a, X 2 -a and X 3 -a are open, and normally closed contacts X 2 -b and X 3 -b are closed. Therefore, the coil SV-4 of the four-way switching valve 2, the coil SV-A of the electric valve A5, and the coil SV-B of the electric valve B6 are deenergized, and only the coil SV-C of the electric valve C13 is energized. . Therefore, the four-way switching valve 2 is in the position in the refrigerant flow direction as shown in FIG.
is open. Regarding the refrigerant flow, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, is guided to the hot water storage tank 3 with a condensing coil 3a for hot water supply, exchanges heat with low-temperature hot water supply, radiates heat, It becomes a high-pressure liquid refrigerant. In addition, the hot water in the hot water storage tank 3 collects heat,
Temperature rises. Hot water is used from the hot water outlet 14 at the top of the tank, and only the amount of water used is supplied from the city water inlet 15 at the bottom of the tank. after that,
The liquid refrigerant is depressurized by the first throttle device 4, evaporated in the outdoor heat exchanger 7, passes through the electric valve circuit C (C), and is connected to the four-way switching valve 2, the accumulator 12, and the compressor 1. Return to In this case, the second diaphragm 9
Since the pressure resistance is large, the evaporated low-temperature gas refrigerant passes through the electric valve circuit C (C) and does not stay in the indoor heat exchanger 10. Further, if the temperature of the hot water supply in the hot water storage tank 3 rises above a predetermined value, the water temperature thermostat 23W is activated and its contacts are opened. Therefore, magnetic contactors 52C and 52F 1 are deenergized,
The compressor 1 and the outdoor blower 8 are stopped. If the hot water temperature drops again, the water temperature thermostat will change to 23W.
is restored and operation resumes.

次に、給湯及び冷房運転時について説明する。
第4図は給湯及び冷房運転時の冷媒流れ図であ
り、冷媒流れ方向を、太実線矢印にて示す。ま
ず、運転スイツチSW−1を投入し、冷暖房切換
スイツチSW−2を「冷」側にセツトすると、室
内冷房用サーモスタツト23A2は、所定設定値
以上では閉路しており、補助継電器X2は付勢す
る。また、貯湯槽3の給湯水水温が所定値以下で
は、前述の如く、水温サーモスタツト23Wは閉
路しており、また、補助継電器X2が付勢してい
る為、その常開接点X2−aも同時に閉路してい
る。従つて電磁接触器52C,52F1は付勢さ
れ、圧縮機1及び室外側送風機8は運転を行な
う。その他の補助継電器X1,X3は消勢されてい
る為、各々の常開接点X1−a,X3−aは開路、
常閉接点X3−bは閉路のまゝである為、四方切
換弁2のコイルSV−4、電動弁A,C5,13
のコイルSV−A,SV−Cは消勢、電動弁B6の
コイルSV−Bは付勢され、電動弁回路A(A),C
(C)は閉路、電動弁回路B(B)は開路となる。同時に
電磁接触器52F2が付勢され、室内側送風機1
1が運転する。冷媒流れに関しては、圧縮機1、
四方切換弁2と流れ、凝縮コイル付貯湯槽3、電
動弁回路B(B)、及び室外側熱交換器7にて凝縮
し、第2の絞り装置9にて減圧され、室内側熱交
換器10にて、室内の空気より採熱し、蒸発し、
四方切換弁2、アキユームレータ12、圧縮機1
へと戻る。この運転において、室内を冷房し、室
内の空気温度が、所定値まで降下すれば、室内冷
房用サーモスタツト23A2が作動し、その接点
が閉路する。この接点の開路により、補助継電器
X1,X2,X3はすべて消勢され、電動弁コイル及
び電磁接触器の消勢、付勢状態は前述の給湯運転
時と同様となり、給湯運転を続行する。一方、給
湯及び冷房運転時、貯湯槽3内給湯水の水温が上
昇し、水温サーモスタツト23Wが作動し、その
接点が開路しても、冷房要求があれば補助継電器
X2の常開接点X2−aが閉路している為、運転は
続行される。また、この場合、給湯用凝縮コイル
3a付貯湯槽3内では給湯水温が高温になつてい
るので、凝縮能力が減少する為、その分、室外側
熱交換器7にて補うよう制御回路(図示せず)に
より送風機8の風量を制御するようにしている。
Next, hot water supply and cooling operations will be explained.
FIG. 4 is a refrigerant flow diagram during hot water supply and cooling operations, and the refrigerant flow direction is indicated by thick solid line arrows. First, when the operation switch SW-1 is turned on and the air-conditioning/heating selector switch SW-2 is set to the "cold" side, the indoor cooling thermostat 23A2 is closed at a predetermined setting value or higher, and the auxiliary relay X2 is closed. energize. Furthermore, when the hot water temperature of the hot water storage tank 3 is below a predetermined value, the water temperature thermostat 23W is closed as described above, and since the auxiliary relay X2 is energized, its normally open contact X2- A is also closed at the same time. Therefore, the electromagnetic contactors 52C and 52F 1 are energized, and the compressor 1 and the outdoor blower 8 operate. Since the other auxiliary relays X 1 and X 3 are deenergized, the normally open contacts X 1 -a and X 3 -a are open,
Since the normally closed contact X3 -b remains closed, the coil SV-4 of the four-way switching valve 2 and the electric valves A, C5, and 13
Coils SV-A and SV-C of motor-driven valve B6 are deenergized, coil SV-B of motor-driven valve B6 is energized, and motor-driven valve circuits A(A) and C
(C) is a closed circuit, and electric valve circuit B (B) is an open circuit. At the same time, the electromagnetic contactor 52F 2 is energized, and the indoor blower 1
1 drives. Regarding refrigerant flow, compressor 1,
It flows through the four-way switching valve 2, condenses in the hot water storage tank 3 with condensing coil, electric valve circuit B (B), and outdoor heat exchanger 7, is depressurized in the second throttling device 9, and is transferred to the indoor heat exchanger. At 10, heat is collected from the indoor air and evaporated,
Four-way switching valve 2, accumulator 12, compressor 1
Return to. In this operation, the room is cooled, and when the indoor air temperature drops to a predetermined value, the room cooling thermostat 23A2 is activated and its contacts are closed. Opening this contact will cause the auxiliary relay to
X 1 , X 2 , and X 3 are all deenergized, and the deenergization and energization states of the electric valve coil and the electromagnetic contactor are the same as during the hot water supply operation described above, and the hot water supply operation continues. On the other hand, during hot water supply and cooling operation, the water temperature of the hot water supply in the hot water storage tank 3 rises, the water temperature thermostat 23W is activated, and even if its contacts are opened, if there is a cooling request, the auxiliary relay
Since the normally open contact X 2 -a of X 2 is closed, operation continues. In addition, in this case, since the hot water temperature in the hot water storage tank 3 with the hot water supply condensing coil 3a is high, the condensing capacity decreases, so the control circuit (Fig. (not shown) to control the air volume of the blower 8.

次に、暖房運転時について説明する。第5図は
暖房運転時の冷媒流れ図であり、冷媒流れ方向を
太実線矢印にて示す。まず、運転スイツチSW−
1を投入し、冷暖房切換スイツチSW−2を
「暖」側にセツトすると、室内暖房用サーモスタ
ツト23A1は、所定設定値以下では、閉路して
おり、補助継電器X1は付勢し、その他の補助継
電器X2,X3は消勢されている為、電磁接触器5
2C,52F1,52F2は付勢し、圧縮機1、室
内側送風機11、室外側送風機8は運転を開始す
る。また、電動弁A5のコイルSV−Aは付勢、
電動弁B,C6,13のコイルSV−B,SV−C
は消勢され、電動弁回路A(A)は開路、電動弁回路
B(B),C(C)は閉路する。四方切換弁2のコイル
SV−4は付勢され、第5図に示す、冷媒流れ方
向位置となる。冷媒流れに関しては、圧縮機1、
四方切換弁2と流れ、室内側熱交換器10にて、
室内空気に放熱し、凝縮し、第2の絞り装置9に
て減圧され、室外側熱交換器7で外気より採熱
し、蒸発し、電動弁回路A(A)を通過し、四方切換
弁2、アキユームレータ12、圧縮機1と戻る。
この場合第1の絞り装置4の圧力抵抗が大きい
為、冷媒は、電動弁回路A(A)を通過し、給湯用凝
縮コイル3a付貯湯槽3に寝込むことはない。室
内の空気温度が、所定値まで上昇すれば、室内暖
房用サーモスタツト23A1が作動し、その接点
が開路する。この接点の開路により、補助継電器
X1,X2,X3はすべて消勢され、上述の給湯運転
時と同様となり、給湯運転を続行する。
Next, the heating operation will be explained. FIG. 5 is a refrigerant flow diagram during heating operation, and the refrigerant flow direction is indicated by thick solid arrows. First, turn on the operation switch SW-
1 and set the air conditioning/heating selector switch SW-2 to the "warm" side, the indoor heating thermostat 23A1 is closed below a predetermined set value, the auxiliary relay X1 is energized, and other Since the auxiliary relays X 2 and X 3 are de-energized, the magnetic contactor 5
2C, 52F 1 and 52F 2 are energized, and the compressor 1, indoor blower 11, and outdoor blower 8 start operating. In addition, the coil SV-A of the electric valve A5 is energized,
Coils SV-B, SV-C of electric valves B, C6, 13
is deenergized, the electric valve circuit A (A) is opened, and the electric valve circuits B (B) and C (C) are closed. Coil of four-way switching valve 2
SV-4 is energized and assumes the refrigerant flow direction position shown in FIG. Regarding refrigerant flow, compressor 1,
Flows through the four-way switching valve 2, and at the indoor heat exchanger 10,
The heat is radiated into the indoor air, condensed, the pressure is reduced by the second throttle device 9, the outdoor heat exchanger 7 collects heat from the outdoor air, evaporates, passes through the electric valve circuit A (A), and the four-way switching valve 2 , accumulator 12, compressor 1 and return.
In this case, since the pressure resistance of the first expansion device 4 is large, the refrigerant passes through the electric valve circuit A(A) and does not stay in the hot water storage tank 3 with the hot water supply condensing coil 3a. When the indoor air temperature rises to a predetermined value, the indoor heating thermostat 23A1 is activated and its contacts are opened. Opening this contact will cause the auxiliary relay to
X 1 , X 2 , and X 3 are all deenergized, and the hot water supply operation continues in the same way as in the hot water supply operation described above.

次に、デフロスト運転時について説明する。第
6図はデフロスト運転時の冷媒流れ図であり、冷
媒流れ方向を太実線矢印にて示す。冬期の給湯運
転時、及び暖房運転時において、蒸発器として作
用いている室外側熱交換器7に着霜を生じ、蒸発
温度が所定設定以下に降下した場合、その温度を
検知してデフロストサーモスタツト26Dの接点
が閉接し、補助継電器X3が付勢する。従つて、
給湯運転時、補助継電器X3の常開接点は閉路、
常閉接点は開路し、電磁接触器52F2、電動弁
A5B6のコイルSV−A,SV−Bは消勢され送
風機8は停止、電動弁回路A(A)及びB(B)は閉路し
ている。また、四方切換弁2のコイルSV−4、
電動弁C13のコイルSV−Cは付勢され、電動
弁回路C(C)は開路する。暖房運転時においても同
様の作動となる。冷媒流れに関しては、圧縮機
1、四方切換弁2、電動弁回路C(C)と流れ、室外
側熱交換器7にて着霜した霜を融かし、凝縮す
る。この場合、凝縮潜熱がすべて除霜に利用され
るように、室外側送風機8は停止されている。ま
た、第2の絞り装置9の圧力抵抗及び室内側熱交
換器10の周囲温度条件(室外側熱交換器7より
も高い)から、圧縮機1より吐出された高温、高
圧ガス冷媒は電動弁回路C(C)を通り、室内側熱交
換器10に寝込むことはない。室外側熱交換器7
にて凝縮された液冷媒は第1の絞り装置4にて減
圧され、凝縮コイル付貯湯槽3にて蒸発し、四方
切換弁2、アキユームレータ12を通り、圧縮機
1に戻る。この場合蒸発器として、給湯水(ある
程度の高温水を貯湯している。)を内蔵している
貯湯槽3の給湯用凝縮コイル3aを使用している
為、蒸発温度を高く維持することが出来、デフロ
スト時の能力アツプを計ることが可能であり、デ
フロスト時間を短縮出来る。また、デフロスト時
間も短かい為(2〜3分程)貯湯槽3内給湯水温
度もはとんど低下させることもなく運転可能であ
る。除霜終了して室外側熱交換器7の温度が上昇
すればデフロストサーモスタツト26Dが復帰
し、暖房運転及び給湯運転に戻る。
Next, the defrost operation will be explained. FIG. 6 is a refrigerant flow diagram during defrost operation, and the refrigerant flow direction is indicated by thick solid arrows. During hot water supply operation and heating operation in winter, if frost forms on the outdoor heat exchanger 7, which acts as an evaporator, and the evaporation temperature drops below a predetermined setting, the temperature is detected and the defrost thermostat is activated. Contact 26D is closed and auxiliary relay X3 is energized. Therefore,
During hot water supply operation, the normally open contact of auxiliary relay X 3 is closed,
The normally closed contact is opened, the electromagnetic contactor 52F 2 and the coils SV-A and SV-B of the electric valve A5B6 are deenergized, the blower 8 is stopped, and the electric valve circuits A(A) and B(B) are closed. There is. In addition, the coil SV-4 of the four-way switching valve 2,
The coil SV-C of the motor-operated valve C13 is energized, and the motor-operated valve circuit C(C) is opened. The same operation occurs during heating operation. Regarding the refrigerant flow, it flows through the compressor 1, the four-way switching valve 2, and the electric valve circuit C (C), melts the frost that has formed in the outdoor heat exchanger 7, and condenses it. In this case, the outdoor fan 8 is stopped so that all the latent heat of condensation is used for defrosting. In addition, due to the pressure resistance of the second expansion device 9 and the ambient temperature condition of the indoor heat exchanger 10 (higher than the outdoor heat exchanger 7), the high temperature, high pressure gas refrigerant discharged from the compressor 1 is It does not pass through the circuit C (C) and enter the indoor heat exchanger 10. Outdoor heat exchanger 7
The liquid refrigerant condensed in is reduced in pressure by a first expansion device 4, evaporated in a hot water storage tank 3 with a condensing coil, passed through a four-way switching valve 2, an accumulator 12, and returned to the compressor 1. In this case, since the hot water supply condensing coil 3a of the hot water storage tank 3 containing hot water (a certain amount of high temperature water is stored) is used as the evaporator, the evaporation temperature can be maintained high. , it is possible to measure the capacity increase during defrosting, and the defrosting time can be shortened. In addition, since the defrost time is short (about 2 to 3 minutes), operation is possible without lowering the temperature of the hot water supply in the hot water storage tank 3. When defrosting is completed and the temperature of the outdoor heat exchanger 7 rises, the defrost thermostat 26D is reset and the heating operation and hot water supply operation are resumed.

以上のようにこの発明では、1台のユニツトで
給湯運転、給湯及び冷房運転、暖房運転を効率よ
く行わせることができると共にデフロスト運転時
には、貯湯槽水温を利用して蒸発温度を高く維持
し、能力を大巾に増大する為デフロスト時間が短
かくすることができる。
As described above, in this invention, a single unit can efficiently perform hot water supply operation, hot water supply and cooling operation, and heating operation, and during defrost operation, the evaporation temperature is maintained high using the water temperature of the hot water storage tank. Defrost time can be shortened because the capacity is greatly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

図は何れもこの発明の一実施例を示すもので、
第1図は冷媒回路の構成図、第2図は電気回路
図、第3図、第4図、第5図、及び第6図は
各々、給湯運転時、給湯−冷房運転時、暖房運転
時、及びデフロスト運転時の冷媒流れ図である。 図中1は圧縮機、2は四方切換弁、3は給湯用
凝縮コイル3a付貯湯槽、4は第1の絞り装置、
5は電動弁A、6は電動弁B、7は室外側熱交換
器、9は第2の絞り装置、10は室内側熱交換
器、13は電動弁C、(B)(C)は各々電動弁回路A,
B,Cである。なお、図中同一符号は同一または
相当部分を示す。
Each figure shows an embodiment of this invention.
Figure 1 is a configuration diagram of the refrigerant circuit, Figure 2 is an electrical circuit diagram, Figures 3, 4, 5, and 6 are for hot water supply operation, hot water supply-cooling operation, and heating operation, respectively. , and a refrigerant flow diagram during defrost operation. In the figure, 1 is a compressor, 2 is a four-way switching valve, 3 is a hot water storage tank with a condensing coil 3a for hot water supply, 4 is a first throttle device,
5 is an electric valve A, 6 is an electric valve B, 7 is an outdoor heat exchanger, 9 is a second throttle device, 10 is an indoor heat exchanger, 13 is an electric valve C, (B) and (C) are each Electric valve circuit A,
B and C. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、四方切換弁、給湯用凝縮コイル、第
1の絞り装置、非利用側熱交換器、第2の絞り装
置、及び利用側熱交換器を順次接続すると共に上
記給湯用凝縮コイルと上記第1の絞り装置をバイ
パスする第1のバイパス回路と上記第1の絞り装
置をバイパスする第2のバイパス回路と、上記第
2の絞り装置と上記利用側熱交換器をバイパスす
る第3のバイパス回路とを備え、上記四方切換弁
を一側へ切換えた時、上記第1及び第2のバイパ
ス回路を閉路、上記第3のバイパス回路を開路
し、あるいは上記第1及び第3のバイパス回路を
閉路、上記第2のバイパス回路を開路して給湯運
転あるいは給湯及び冷房運転を行なわせ、また、
上記四方切換弁を他側へ切換えた時、上記第2及
び第3のバイパス回路を閉路、上記第1のバイパ
ス回路を開路して暖房運転を行なわせるようにし
た冷暖房兼用ヒートポンプ式給湯機において、上
記非利用側熱交換器のデフロスト時、上記四方切
換弁を他側へ切換えると共に上記第1及び第2の
バイパス回路を閉路するバイパス回路閉路手段
と、上記第3のバイパス回路を開路するバイパス
回路開路手段とを備えたことを特徴とする冷暖房
兼用ヒートポンプ式給湯機。
1 The compressor, the four-way switching valve, the hot water supply condensing coil, the first throttling device, the non-use side heat exchanger, the second throttling device, and the usage side heat exchanger are connected in sequence, and the above hot water condensing coil and the above a first bypass circuit that bypasses the first expansion device; a second bypass circuit that bypasses the first expansion device; and a third bypass that bypasses the second expansion device and the utilization side heat exchanger. circuit, and when the four-way switching valve is switched to one side, the first and second bypass circuits are closed, the third bypass circuit is opened, or the first and third bypass circuits are closed. The circuit is closed, and the second bypass circuit is opened to perform hot water supply operation or hot water supply and cooling operation, and
In a heat pump water heater for heating and cooling, the second and third bypass circuits are closed and the first bypass circuit is opened to perform heating operation when the four-way switching valve is switched to the other side, a bypass circuit closing means that switches the four-way switching valve to the other side and closes the first and second bypass circuits when the non-use side heat exchanger is defrosted; and a bypass circuit that opens the third bypass circuit. A heat pump water heater for both air conditioning and heating, characterized in that it is equipped with a circuit opening means.
JP7882481A 1981-05-22 1981-05-22 Heat pump type hot-water supply machine combining air-conditioning Granted JPS57192771A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7882481A JPS57192771A (en) 1981-05-22 1981-05-22 Heat pump type hot-water supply machine combining air-conditioning
DE3219277A DE3219277C2 (en) 1981-05-22 1982-05-21 Air conditioning with combined hot water supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7882481A JPS57192771A (en) 1981-05-22 1981-05-22 Heat pump type hot-water supply machine combining air-conditioning

Publications (2)

Publication Number Publication Date
JPS57192771A JPS57192771A (en) 1982-11-26
JPS6310352B2 true JPS6310352B2 (en) 1988-03-05

Family

ID=13672576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7882481A Granted JPS57192771A (en) 1981-05-22 1981-05-22 Heat pump type hot-water supply machine combining air-conditioning

Country Status (1)

Country Link
JP (1) JPS57192771A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294236A (en) * 1989-05-08 1990-12-05 Sekisui Chem Co Ltd Microcomputer electric water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294236A (en) * 1989-05-08 1990-12-05 Sekisui Chem Co Ltd Microcomputer electric water heater

Also Published As

Publication number Publication date
JPS57192771A (en) 1982-11-26

Similar Documents

Publication Publication Date Title
US4799363A (en) Room air conditioner
JPH0769087B2 (en) Operation control device for air conditioner
JPS6310352B2 (en)
JPS5885043A (en) Operation control apparatus for cold insulation type air conditioner
JPS6325266B2 (en)
JPH048704B2 (en)
JPH03211380A (en) Air conditioner
JPH0353553B2 (en)
JP2859981B2 (en) Air conditioner
JPS5926202Y2 (en) air conditioner
JPS6237302B2 (en)
JPH0214626B2 (en)
JPS5849006Y2 (en) Hot water supply and cooling equipment
JPS6036844Y2 (en) Heat pump refrigeration equipment
JPS6029562A (en) Defroster for air conditioner
JPH048703B2 (en)
JPS6224197Y2 (en)
JPH0233108Y2 (en)
JPS5856528Y2 (en) Refrigeration equipment
JPH0451744B2 (en)
JPS6029561A (en) Defroster for air conditioner
JPH0755283A (en) Air conditioner
JPS6251370B2 (en)
JPS6116896B2 (en)
JPS5848988Y2 (en) Defrosting device for heat pump air conditioner