JPS63101085A - Diffused joining method - Google Patents

Diffused joining method

Info

Publication number
JPS63101085A
JPS63101085A JP24598186A JP24598186A JPS63101085A JP S63101085 A JPS63101085 A JP S63101085A JP 24598186 A JP24598186 A JP 24598186A JP 24598186 A JP24598186 A JP 24598186A JP S63101085 A JPS63101085 A JP S63101085A
Authority
JP
Japan
Prior art keywords
materials
bonding
vacuum
plate
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24598186A
Other languages
Japanese (ja)
Inventor
Hirozo Matsumoto
浩造 松本
Kazuhiko Nagayama
永山 一彦
Makoto Nishimura
真 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24598186A priority Critical patent/JPS63101085A/en
Publication of JPS63101085A publication Critical patent/JPS63101085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To facilitate joining of materials and to reduce its cost by cleaning or activating the material surface of one hand by etching, etc., and then, bringing material to be joined of the other hand into close contact with said material to pressurize the materials in a vacuum or a gas atmosphere where the cleaned and activated state can be maintained. CONSTITUTION:A processing chamber 1 and a pressurization treatment chamber 13 to join the materials are provided respectively and a gate valve 20 is arranged between these chambers. After the materials to be joined, namely, a piezoelectric body plate 9 and a glass plate 17 are subjected to the ultrasonic cleaning, the plate 9 and the glass plate 17 are sucked and fixed on a lower electrode 3 of the processing chamber 1 and on the lower part of a hydraulic cylinder 14 of the pressurization treatment chamber 13 respectively. The plasma etching is performed on the plate 9 between an upper electrode 2 and the lower electrode 3 and then, the plate 9 and the glass plate 17 are superposed and brought into close contact with each other to pressurize and join these by the prescribed pressure in the pressurization treatment chamber 13. Since the material can be joined under the relatively low degree of vacuum, pressurizing force and temperature, the joining of the materials is facilitated and its cost is reduced.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、従来の接合温度より格段に低い領域で材料
同士の接合を可能とする拡散接合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a diffusion bonding method that allows materials to be bonded together at a much lower temperature than conventional bonding temperatures.

〔従来技術とその問題点〕[Prior art and its problems]

同種もしくは異種材料の接合法に関する従来の方法を整
理分類すると大略以下のようになる。
Conventional methods for joining similar or dissimilar materials can be roughly classified as follows.

(11材料を高温に加熱し溶融させて接合する浴接法。(Bath welding method in which 11 materials are heated to high temperature and melted to join them.

(2)真空もしくはガス雰囲気で材料をその溶融点以下
の温度に加熱し、これを加圧することにより接合する拡
散接合法。
(2) A diffusion bonding method in which materials are heated in a vacuum or gas atmosphere to a temperature below their melting point and then joined by applying pressure.

(3)ハ/ダ、ろう材を用いて接合する方法。(3) A method of joining using solder metal.

(4)有機系接着剤を用いる方法。(4) Method using organic adhesive.

上記の(11〜(3)の方法は、いずれも接合材料を加
熱する必要があるので、全般的に、 ■熱膨張特性の異なる材料では接合時に発生する熱応力
が大となり、接合しようとする材料に割れとか、その材
料の特性劣化を生じやすい。
All of the methods (11 to (3)) above require heating of the joining materials, so in general, ■Materials with different thermal expansion characteristics will generate greater thermal stress during joining, and will be less likely to join. It is easy to cause cracks in the material or deterioration of its properties.

■熱に対して特性変化が敏感な材料9例えばs性材料、
アセスフマス材料。圧電材料などにおいては接合処理時
の加熱により、それが本来もっている特性を喪失してし
まい、その再現のためには複雑な再処理を必要とする。
■Materials whose properties change are sensitive to heat 9 For example, s-type materials,
Acefumas material. Piezoelectric materials and the like lose their original properties due to heating during the bonding process, and complex reprocessing is required to reproduce them.

などの問題点を有している。It has problems such as:

さらに上記の方法の問題点を詳細に述べると以下のよう
になる。
Further, the problems of the above method will be described in detail as follows.

(1)の方法では、fj融点の差の大きい材料同士の接
合は困難である。また、セラミ、りなどの非金属材料に
対しては一般的に適用不能である。
With method (1), it is difficult to join materials with large differences in fj melting points. Furthermore, it is generally not applicable to non-metallic materials such as ceramic and phosphor.

12)の方法は、(1)の方法より低い温度で材料を溶
融させずに、かつ異種材料でもその条件を適切に選定す
・ることにより強固な接合を得ることが可能であるとい
う長所をもつ。しかし、一般には真空もしくはガス雪囲
気下で材料を加熱する必要があるので、蒸、気圧の高い
元素を含む材料にあってはその元素の蒸発によって材料
組成の変化とか特性劣化を生じ、さらにその蒸発によっ
て容器内を汚染させやすいという問題がある。なお、(
2)の方法は接合時にかなり大きい負荷荷重を必要とし
、圧電セラミ、りなど機械的に脆弱な材料には適用しが
たいという欠点もある。
Method 12) has the advantage that it is possible to obtain a strong bond even with dissimilar materials by appropriately selecting the conditions without melting the materials at a lower temperature than method (1). Motsu. However, since it is generally necessary to heat the material in a vacuum or under a gas-filled atmosphere, if the material contains elements with high vapor or atmospheric pressure, the evaporation of the elements may cause changes in the material composition or deterioration of the properties. There is a problem that the inside of the container is easily contaminated due to evaporation. In addition,(
Method 2) requires a fairly large load during bonding, and has the disadvantage that it is difficult to apply to mechanically fragile materials such as piezoelectric ceramics and resin.

(3)の方法は、ハンダまたはろう材の種類を選定する
ことにより+11 、 +21の方法よりさらに低温で
接合することができる。しかし、ハンダ、ろう材に対し
て濡れ性の悪い材料、例えばセラミックとか有機系材料
には適用しがたいという制約がある。
Method (3) allows joining at a lower temperature than methods +11 and +21 by selecting the type of solder or brazing material. However, there are restrictions in that it is difficult to apply to materials that have poor wettability with solder and brazing filler metals, such as ceramics and organic materials.

(41の有機系接着剤は100’C前後以下、あるいは
接着剤の種類によっては常温付近でも接着可能であり、
接合しようとする材料の熱膨張4?住の差はほとんど問
題にならないという特徴を有する。一方、その接合部の
機械的強度、とくに高温強度とか耐薬品性などは前記の
(11〜(31の方法によるものより劣ることが欠点で
ある。
(The organic adhesive No. 41 can be bonded at around 100'C or below, or at room temperature depending on the type of adhesive.
Thermal expansion of the materials to be joined 4? It is characterized by the fact that the difference in housing is hardly a problem. On the other hand, the mechanical strength of the joint, especially high temperature strength and chemical resistance, is inferior to those obtained by methods (11 to 31) described above.

最近、新素材として注目されているアモルファス合金や
ファインセラミック(構造用と機能用)の接合、さらに
はマイクロエレクトロニクス分野の進展に伴ない、熱膨
張特性の大幅に異なる異種材料1例えばガラス−機能用
セラミック(例えば圧電セラミ、りなど)、セラミック
(構造用)−金属、金属−機能用セラミ、りなどを接合
することも必要になってきた。しかしながらこれらの接
合は前記で概観した従来の接合方法ではその目標を果た
すことは困難である。このため、材料に変形やひずみを
できるだけ与えずに低温で高精度に接合できる方法とそ
の装置の開発が要請されている。
Recently, joining of amorphous alloys and fine ceramics (for structural and functional use), which have been attracting attention as new materials, and furthermore, with the progress in the field of microelectronics, dissimilar materials with significantly different thermal expansion characteristics 1. For example, glass - for functional use. It has also become necessary to bond ceramics (for example, piezoelectric ceramics, adhesives, etc.), ceramics (for structural use) to metals, metals to functional ceramics, adhesives, and the like. However, it is difficult to achieve these goals using the conventional bonding methods outlined above. For this reason, there is a need for the development of a method and apparatus that can join materials at low temperatures and with high precision while minimizing deformation or strain on the materials.

上記の観点から、材料同士の低温接合を可能とするもの
として提案されているのが超高真空下での接合である0
通常、固体材料の表面にある原子は原子間結合に不要な
結合手をもつが、大気中では錆のように酸素と結びつい
たり、いろいろな汚染物質と結合して活性度を失ってい
る。超高真空下での接合原理は材料表面に余分に結合し
ている酸素などの汚染物質を超高真空のり11−ユング
作用でとり除き、活性状態にすることにより、材料同士
の結合手を結びつけて接合する仕組みである・この方式
であるならば、熱や応力に弱い材料や熱膨張特性の大幅
に異なる異種材料でも、その接合を簡単に行うことがで
きるという利点がある。しかしながら、この接合方式に
おいては材料表面を清浄に保つため10 〜10  t
orr以下の真空雰囲気が必要なこと、さらに無加圧で
接合させるために材料表面の平坦性、平滑性が極めて高
く、接合材料の表面全域にわたって密着していることな
どが要求される。10 〜10  torr  の真空
度は実験室の小型装置では到達可能であるが、工業的な
規模の装置においては現在の技術水撫でも到達困難なレ
ベルである口したがって、この超高真空接合方式の利点
を活かしながら、それよりも簡便な方式で接合を可能と
する方法と装置の出現が望まれるO 〔発明の目的〕 この発明は、実用的な真空度もしくはガス雰囲気で、か
つ低温下において、熱膨張特性の異なる材料同士の精密
接合を可能とする拡散接合方法を提供することにある。
From the above point of view, bonding under ultra-high vacuum has been proposed as a method that enables low-temperature bonding of materials.
Normally, atoms on the surface of solid materials have bonds that are unnecessary for interatomic bonds, but in the atmosphere, they combine with oxygen like rust or with various pollutants and lose their activity. The principle of bonding under ultra-high vacuum is to remove excess contaminants such as oxygen bonded to the surface of the materials using ultra-high vacuum glue 11-Jung action, and to activate the bond, which connects the bonds between the materials. This method has the advantage of being able to easily join materials that are susceptible to heat and stress, or dissimilar materials with significantly different thermal expansion characteristics. However, in this joining method, 10 to 10 t is required to keep the material surface clean.
A vacuum atmosphere of less than orr is required, and in order to bond without pressure, the surface of the material is required to have extremely high flatness and smoothness, and to be in close contact over the entire surface of the bonding material. Although a vacuum level of 10 to 10 torr is achievable with small laboratory equipment, it is difficult to achieve even with current technology in industrial scale equipment.Therefore, this ultra-high vacuum bonding method is It is hoped that a method and apparatus will be developed that will enable bonding in a simpler manner while taking advantage of these advantages. An object of the present invention is to provide a diffusion bonding method that enables precision bonding of materials having different thermal expansion characteristics.

〔発明の要点〕[Key points of the invention]

前記の目的はこの発明によれば、接合しようとする一方
の材料表面をエツチング、イオン照射。
According to the present invention, the above purpose is to perform etching and ion irradiation on the surface of one of the materials to be joined.

スパッタ、蒸着などのいずれか一つの方法で清浄化もし
くは活性化させたのち、その状態を維持したまま、X空
もしくはガス雰囲気下で清浄化もしくは活性化した表面
にもう一方の接合材を重ね合せ、それを加圧負荷するこ
とにより達成することができる。
After cleaning or activating it using one of the methods such as sputtering or vapor deposition, the other bonding material is superimposed on the cleaned or activated surface in an X-empty or gas atmosphere while maintaining that state. , it can be achieved by applying pressure load.

本発明者らは、材料表面に付着している汚染物質をなん
らかの方法により除去し、その状態を維持したまま、こ
の材料表面にもう一方の材料を重ね合せそれを加圧負荷
すれば、超高真空下の接合方法のような極めて高い真空
度は必要でなく、さらに従来方法のような高い加熱温度
も不要になるのではないかと発想した。さらに、この方
法であるならば接合装置の製作も簡便で、経済的になる
であろうと推定した0以上の観点から種々の検討を行っ
たところ、接合しようとする一方の材料表面の汚染物質
を除去し、清浄化もしくは活性化する方法としてはプラ
ズマエツチング、イオン注入。
The present inventors believe that if contaminants attached to the surface of a material are removed by some method, and while maintaining that state, another material is superimposed on the surface of this material and a pressurized load is applied to it, an extremely high The idea was that the extremely high degree of vacuum required by vacuum bonding methods would not be necessary, and the high heating temperatures required by conventional methods would also be unnecessary. Furthermore, we conducted various studies from the viewpoint of 0 or more, estimating that this method would make it easier and more economical to manufacture the welding equipment. Plasma etching and ion implantation are methods for removing, cleaning, or activating.

スバ、りもしくは蒸着による活性化金属の被覆などが最
適であり、さらにこの処理後、この状態を維持したまま
(汚染物質の付着防止)速かに接合しようとするもう一
方の材料を重ね合せ、それを加圧すれば10 〜10 
 torrの真空度あるいはH2eArなとの還元もし
くは不活性ガス雰囲気でも接合可能であることを見出し
た◎ 本発明の場合、真空度はより低圧であればあるほど好ま
しいものであるか、10 〜10  torrの範囲で
あれば良好な接合を得ることができた0これはプラズマ
エ、チング、イオン注入、スバ、り。
Coating with an activated metal by sprue, glue, or vapor deposition is optimal, and after this treatment, the other material that is to be bonded quickly is superimposed while maintaining this state (preventing contaminants from adhering). If you pressurize it, it will be 10 to 10
It has been found that bonding can be carried out at a vacuum level of 10 to 10 torr, or in a reduction or inert gas atmosphere such as H2eAr. In the case of the present invention, the lower the degree of vacuum, the more preferable it is. A good bond could be obtained within the range of 0. This includes plasma etching, etching, ion implantation, submersion, and rinsing.

蒸着などによって材料表面が十分に清浄化あるいは活性
化されたためと考えられる0接合時の憤荷応力も犬であ
れば、接合面の密着性が向上し、その接合力の増加に効
果を発揮するが、本発明の場合には0.1〜IQQ%の
範囲の加圧力であれば良好な結果を得た・そして本発明
の方法によれば、常温でも接合は可能であった。なお、
接合の際に加熱すれば、接合面における原子の拡散が活
発になって、接合性を高めるが、接合装置に加熱手段を
配設する必要があり、装置が大型化、複雑化してしまう
という欠点もあるので、加熱するかいなかは接合材料お
よびその接合目的によって選択すれば良い。
If the stress during bonding is reduced to 0, which is thought to be due to the material surface being sufficiently cleaned or activated by vapor deposition, etc., the adhesion of the bonding surfaces will improve, and this will be effective in increasing the bonding force. However, in the case of the present invention, good results were obtained with a pressing force in the range of 0.1 to IQQ%; and according to the method of the present invention, bonding was possible even at room temperature. In addition,
Heating during bonding activates the diffusion of atoms at the bonding surface and improves the bonding performance, but it requires a heating means to be installed in the bonding device, making the device larger and more complex. There are several types of bonding methods, so the temperature or temperature to be heated can be selected depending on the bonding material and the purpose of bonding.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を、材料として圧電体プレートと硼
硅酸ガラスを使用し、材料表面の清浄化方法としてプラ
ズマエツチングを用いた場合につき詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail, using a piezoelectric plate and borosilicate glass as materials, and plasma etching as a method for cleaning the material surface.

本発明で用いた装置の概略を第1図に示す。第1図にお
いて、1は上部電極2.マツチング回路4、高周波電源
5を備えた下部電極3.真空排気弁6.ガス供給弁7.
および側壁8からなる処理室である。接合試料としての
圧電体プレート9は下部電極3の上にセットされている
。さらに処理室1には接合試料を移動するためのプッシ
ャー棒10と移動ステージ1】が設備されている・プッ
シャー棒10と@壁8の間には0リング12が配置され
、摺動の役割を果している。
FIG. 1 shows an outline of the apparatus used in the present invention. In FIG. 1, 1 is an upper electrode 2. A lower electrode 3 equipped with a matching circuit 4 and a high frequency power source 5. Vacuum exhaust valve6. Gas supply valve7.
and a side wall 8. A piezoelectric plate 9 as a bonding sample is set on the lower electrode 3. Furthermore, the processing chamber 1 is equipped with a pusher rod 10 and a moving stage 1 for moving the bonded sample. An O-ring 12 is placed between the pusher rod 10 and the wall 8, and plays a sliding role. I am accomplishing it.

一方、第1図の13は加圧処理室であって、加圧処理室
13には油圧シリンダー14.架台15.真空排気弁1
6が配設され、さらにもう一方の接合試料であるガラス
板17は油圧シリンダー14の下部に真空吸引パルプ1
8によって吸着されている。また、19はOIIングで
あり、油圧シ11ンダー14の昇降の際のしゅ勤と気密
防止の役割をもっている。
On the other hand, 13 in FIG. 1 is a pressure treatment chamber, and the pressure treatment chamber 13 has a hydraulic cylinder 14. Frame 15. Vacuum exhaust valve 1
6 is arranged, and the glass plate 17, which is the other bonded sample, is placed under the vacuum suction pulp 1 at the bottom of the hydraulic cylinder 14.
It is adsorbed by 8. Further, 19 is an OII ring, which has the role of maintaining the hydraulic cylinder 11 and preventing airtightness when the cylinder 14 is raised and lowered.

第1図に示した接合装置において、処理室lと加圧処理
室13の間には仕切り弁部が配設され、必要に応じて開
閉可能な構造となっている。21はO11ングであって
、その役割は前記19と同様である◎かかる接合装置に
おいて、圧電体プレート9゜ガラス板17をアセトン中
で超音波洗浄したのち、圧電体プレート9は処理室1の
下部電極3上にセットシ、ガラス板17は油圧シリンダ
ー14の下部に真空吸引パルプ18によって吸引固定す
る。その後。
In the bonding apparatus shown in FIG. 1, a gate valve section is disposed between the processing chamber 1 and the pressurized processing chamber 13, and has a structure that can be opened and closed as necessary. Reference numeral 21 is an O11 ring, and its role is the same as that of 19 above.◎In this bonding apparatus, after the piezoelectric plate 9 and the glass plate 17 are ultrasonically cleaned in acetone, the piezoelectric plate 9 is placed in the processing chamber 1. Set on the lower electrode 3, the glass plate 17 is suctioned and fixed to the lower part of the hydraulic cylinder 14 by a vacuum suction pulp 18. after that.

仕切り弁2)によって処理室1と加圧処理室13をそれ
ぞれ独vした処理室となし、真空排気弁6,16を開放
して室内を10torrの真空まで排気する◎10  
torrの真空に到達したら処理室1を排気している真
空排気弁6のみを閉じ、ガス供給弁7を開いて外部より
アルゴンガスを導入し、ガスが室内に充満するまで供給
する。その後上下電極2,3に電圧を印加して圧電体プ
レート9の表面上を頷〜ω分間プラズマエツチングを行
う・所定時間のプラズマエツチング処理が終了したなら
ば、電圧印加を除荷し、真空排気弁6を再度間いて処理
室1を排気しIQ  torrまで真空引きを行う。処
理室1が10”” torrの真空に到達後、仕切り弁
19を上げ。
The processing chamber 1 and the pressurized processing chamber 13 are each made into independent processing chambers using the gate valve 2), and the vacuum exhaust valves 6 and 16 are opened to evacuate the chamber to a vacuum of 10 torr.◎10
When a vacuum of torr is reached, only the vacuum exhaust valve 6 that evacuates the processing chamber 1 is closed, and the gas supply valve 7 is opened to introduce argon gas from the outside until the gas is filled into the chamber. Thereafter, a voltage is applied to the upper and lower electrodes 2 and 3, and plasma etching is performed on the surface of the piezoelectric plate 9 for ~ω minutes. When the plasma etching process for a predetermined time is completed, the voltage application is removed and vacuum evacuation is performed. The valve 6 is closed again to evacuate the processing chamber 1 and evacuate it to IQ torr. After the processing chamber 1 reaches a vacuum of 10'' torr, the gate valve 19 is raised.

プッシャー棒10で圧電体プレート9を押すことにより
移動ステージ11に沿って加圧処理913の架台14の
上まで移動させ、油圧シリンダー14の真下に位IHさ
せる。その後、油圧シ11ンダー14ヲ下降せしめ圧電
体プレート9の表面にガラス板17を重ね合せ、さらに
所定の圧力まで加圧することにより、室温下で両者を接
合した@ この接合処理後、両者の厚さ方向をダイシングソーで切
断して研摩を行ったのち、その接合断面を100倍の光
学顕微鏡で観察した。その接合部に空孔などの欠陥はみ
られずその性状は良好であることが確認された@従来技
術では、圧電体プレートとガラス板を室温において接合
することは側底不可能であったが、本発明の方法によれ
ばそれが可能であることが!証された。
By pushing the piezoelectric plate 9 with the pusher rod 10, it is moved along the moving stage 11 to the top of the pedestal 14 of the pressure treatment 913, and placed directly below the hydraulic cylinder 14. Thereafter, the hydraulic cylinder 11 was lowered, the glass plate 17 was superimposed on the surface of the piezoelectric plate 9, and the two were joined at room temperature by further pressurizing to a predetermined pressure. After cutting in the width direction with a dicing saw and polishing, the bonded cross section was observed with a 100x optical microscope. It was confirmed that there were no defects such as holes in the bonded part, and the properties were good.@With conventional technology, it was impossible to bond the piezoelectric plate and the glass plate at room temperature. , it is possible according to the method of the present invention! It was proven.

なお、前記の本発明の方法に2いて、圧電体プレートと
ガラス板の位置を逆にしガラス板の表面をプラズマエツ
チング後接合処理しても、前記と同様の良好な接合を得
ることができた。
In addition, even if the positions of the piezoelectric plate and the glass plate were reversed in the method 2 of the present invention described above, and the surface of the glass plate was plasma etched and then bonded, the same good bonding as described above could be obtained. .

以上は、圧電体プレートとガラス板を使用し、清浄化と
活性化の手段としてプラズマエツチングを用いた場合に
つき説明したが、他の材料組合せおよびイオン注入、ス
バ、り、蒸着などの方法によっても、さらに加圧処理案
の4II囲気が還元才たは不活性ガスでも良好な接合の
得られることを実験的に確認した。
The above explanation uses a piezoelectric plate and a glass plate, and uses plasma etching as a means of cleaning and activation. However, other material combinations and methods such as ion implantation, sputtering, and vapor deposition may also be used. Furthermore, it was experimentally confirmed that good bonding could be obtained even with reducing gas or inert gas in the pressurized treatment plan 4II.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は接合しようとする一方の
材料表面をエツチング、イオン照射、スバ、り、蒸着な
どのいずれか一つの方法で清p化もしくは活性化し、そ
の状態を維持したままこの材料表面に別の接合試料を皿
ね合せ、それを加圧することによって接置する方法であ
り、従来の接合方法と比べると格段に低い温度1例えば
常温近傍そして極めて低い加圧力で接合させることがで
きるので、熱膨張特性が大幅に異なる異種材料さらには
機械的強度の極めて小さい脆弱な材料であっても精密接
合ができ、また熱に対して特性変化が敏感な材料でも、
その特性を劣化させることなく接合が可能であるという
効果を有する。
As explained above, the present invention cleans or activates the surface of one of the materials to be joined by any one of etching, ion irradiation, sputtering, vapor deposition, etc., and then cleans or activates the surface of one of the materials to be joined while maintaining that state. This is a method in which another bonding sample is placed on the surface of the material and placed in contact with it by applying pressure.Compared to conventional bonding methods, bonding can be performed at a much lower temperature (1, for example, around room temperature) and at an extremely low pressure. As a result, it is possible to precisely join dissimilar materials with significantly different thermal expansion properties, even brittle materials with extremely low mechanical strength, and even materials whose properties are sensitive to heat.
It has the effect that bonding is possible without deteriorating its characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の接合方法を行なうための接合装置の概
略断面図である。
FIG. 1 is a schematic sectional view of a bonding apparatus for carrying out the bonding method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1)被接合材の一方の材料表面をエッチング、イオン照
射、スパッタ、蒸着などのうちいずれか一つの方法で清
浄化もしくは活性化したのち、その状態を維持できる真
空もしくはガス雰囲気で、前記接合材表面にもう一方の
接合材を密着させ加圧することによって接合することを
特徴とする拡散接合方法。
1) After cleaning or activating the surface of one of the materials to be joined by one of etching, ion irradiation, sputtering, vapor deposition, etc., the joining material is cleaned or activated in a vacuum or gas atmosphere that can maintain that state. A diffusion bonding method characterized by bonding by bringing another bonding material into close contact with the surface and applying pressure.
JP24598186A 1986-10-16 1986-10-16 Diffused joining method Pending JPS63101085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24598186A JPS63101085A (en) 1986-10-16 1986-10-16 Diffused joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24598186A JPS63101085A (en) 1986-10-16 1986-10-16 Diffused joining method

Publications (1)

Publication Number Publication Date
JPS63101085A true JPS63101085A (en) 1988-05-06

Family

ID=17141702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24598186A Pending JPS63101085A (en) 1986-10-16 1986-10-16 Diffused joining method

Country Status (1)

Country Link
JP (1) JPS63101085A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171643A (en) * 1989-11-29 1991-07-25 Hitachi Ltd Jointing of metal member, method and device for manufacture of semiconductor integrated circuit device using same
WO1997003460A1 (en) * 1995-07-12 1997-01-30 Hoya Corporation Bare chip mounted board, method of manufacturing the board, and method of forming electrode of bare chip
JP2002064266A (en) * 2000-08-18 2002-02-28 Toray Eng Co Ltd Mounting apparatus
WO2004049428A1 (en) * 2002-11-28 2004-06-10 Toray Engineering Co., Ltd. Method and device for joining
WO2005071735A1 (en) * 2004-01-22 2005-08-04 Bondtech Inc. Joining method and device produced by this method and joining unit
WO2008029885A1 (en) * 2006-09-06 2008-03-13 Mitsubishi Heavy Industries, Ltd. Normal temperature joining method and normal temperature joining device
JP2008155245A (en) * 2006-12-22 2008-07-10 Matsushita Electric Works Ltd Joining method
WO2009060693A1 (en) * 2007-11-08 2009-05-14 Mitsubishi Heavy Industries, Ltd. Device and device manufacturing method
US10112376B2 (en) 2006-05-30 2018-10-30 Mitsubishi Heavy Industries Machine Tool, Co., Ltd. Device manufactured by room-temperature bonding, device manufacturing method, and room-temperature bonding apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171643A (en) * 1989-11-29 1991-07-25 Hitachi Ltd Jointing of metal member, method and device for manufacture of semiconductor integrated circuit device using same
WO1997003460A1 (en) * 1995-07-12 1997-01-30 Hoya Corporation Bare chip mounted board, method of manufacturing the board, and method of forming electrode of bare chip
JP2002064266A (en) * 2000-08-18 2002-02-28 Toray Eng Co Ltd Mounting apparatus
JP4669600B2 (en) * 2000-08-18 2011-04-13 東レエンジニアリング株式会社 Mounting device
WO2004049428A1 (en) * 2002-11-28 2004-06-10 Toray Engineering Co., Ltd. Method and device for joining
US7784670B2 (en) 2004-01-22 2010-08-31 Bondtech Inc. Joining method and device produced by this method and joining unit
WO2005071735A1 (en) * 2004-01-22 2005-08-04 Bondtech Inc. Joining method and device produced by this method and joining unit
US8091764B2 (en) 2004-01-22 2012-01-10 Bondtech, Inc. Joining method and device produced by this method and joining unit
US8651363B2 (en) 2004-01-22 2014-02-18 Bondtech, Inc. Joining method and device produced by this method and joining unit
US10112376B2 (en) 2006-05-30 2018-10-30 Mitsubishi Heavy Industries Machine Tool, Co., Ltd. Device manufactured by room-temperature bonding, device manufacturing method, and room-temperature bonding apparatus
WO2008029885A1 (en) * 2006-09-06 2008-03-13 Mitsubishi Heavy Industries, Ltd. Normal temperature joining method and normal temperature joining device
US8602289B2 (en) 2006-09-06 2013-12-10 Mitsubishi Heavy Industries, Ltd. Room temperature bonding using sputtering
US8608048B2 (en) 2006-09-06 2013-12-17 Mitsubishi Heavy Industries, Ltd. Room-temperature bonding method and room-temperature bonding apparatus including sputtering
JP2008155245A (en) * 2006-12-22 2008-07-10 Matsushita Electric Works Ltd Joining method
WO2009060693A1 (en) * 2007-11-08 2009-05-14 Mitsubishi Heavy Industries, Ltd. Device and device manufacturing method
TWI391316B (en) * 2007-11-08 2013-04-01 Mitsubishi Heavy Ind Ltd A device and a method of manufacturing the device
US8936998B2 (en) 2007-11-08 2015-01-20 Mitsubishi Heavy Industries, Ltd. Manufcaturing method for room-temperature substrate bonding

Similar Documents

Publication Publication Date Title
JP5256407B2 (en) Bonding method, device made by this method, bonding apparatus, and substrate bonded by this method
JP5571988B2 (en) Joining method
JP2791429B2 (en) Room-temperature bonding of silicon wafers
KR102474915B1 (en) Dynamically confined nano-scale diffusion junction structures and methods
US7470971B2 (en) Anodically bonded ultra-high-vacuum cell
KR100433613B1 (en) Sputter targer/ backing plate assembly and method of making same
JP4831844B1 (en) Room temperature bonding apparatus and room temperature bonding method
JP2006248895A (en) Bonding method, device produced by this method, and bonding device
JPS63101085A (en) Diffused joining method
JP2019182717A (en) Joining method of optical component
JPH0529183A (en) Connecting method
JP3820409B2 (en) JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, AND JOINING DEVICE
JPS59225893A (en) Joining method of ti or ti alloy to al or al alloy
JP2519578B2 (en) Method of joining metal member and ceramics or cermet member
JPS6222712B2 (en)
US11400541B2 (en) Method for production of a component by atomic diffusion bonding
TWI608573B (en) Composite substrate bonding method
JPH0699317A (en) Splicing method
JP2006073780A (en) Normal-temperature joint method, equipment, and device
KR960033630A (en) Brazing joining method of dissimilar metals and dissimilar materials
JPS63183787A (en) Solid phase joining device
JP2004054170A (en) Method for joining laser optical crystal using ion beam etching
JPH07214344A (en) Laminating and joining device
EP4282572A1 (en) Joining method, joining device, and joining system
JP2707988B2 (en) Film forming equipment