JPS59225893A - Joining method of ti or ti alloy to al or al alloy - Google Patents

Joining method of ti or ti alloy to al or al alloy

Info

Publication number
JPS59225893A
JPS59225893A JP10072683A JP10072683A JPS59225893A JP S59225893 A JPS59225893 A JP S59225893A JP 10072683 A JP10072683 A JP 10072683A JP 10072683 A JP10072683 A JP 10072683A JP S59225893 A JPS59225893 A JP S59225893A
Authority
JP
Japan
Prior art keywords
chamber
coating
bonding
alloy
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10072683A
Other languages
Japanese (ja)
Inventor
Takao Funamoto
舟本 孝雄
Hiroshi Wachi
和知 弘
Mitsuo Kato
光雄 加藤
Kazuya Takahashi
和弥 高橋
Satoshi Ogura
小倉 慧
Shigeru Tanaka
茂 田中
Tatsuro Ishizuka
石塚 達郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10072683A priority Critical patent/JPS59225893A/en
Publication of JPS59225893A publication Critical patent/JPS59225893A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • B23K20/2333Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer one layer being aluminium, magnesium or beryllium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To form a joint part having high quality without intervention of a brittle intermetallic compd. by sputtering the surface of the joint part in a non-oxidative atmosphere then coating a material which is more hardly oxidized than Al and Ti and produces eutectic crystal with Al on the surface thereof. CONSTITUTION:Either one of Al or Al alloy material and Ti or Ti alloy material charged into a sample exchange chamber 2 is carried into a cleaning and surface treating chamber 1 where the surface is sputtered by an Ar ion beam and is then coated. The material is then returned to the chamber 2 and the other material is similarly treated in the chamber 1. The material is again returned to the chamber 2 and the joint surfaces of both materials are brought into tight contact with each other. The materials are then carried into a diffusion chamber 3 where the materials are joined. The coating in this case is formed on the surfaces in order to maintain the clean surfaces removed of oxide until joining and to permit easy joining. Ni, Cu, Si, etc. are used for coating. These coating materials melt by generating eutectic crystal with Al and are extruded in the stage of joining.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超高真空チャンバーなどに使用されるTi又は
Ti合金とAt又はAt合金との接合方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for joining Ti or Ti alloy and At or At alloy used in ultra-high vacuum chambers and the like.

〔発明の背景〕[Background of the invention]

従来、異種金属特にTi又はTi合金(以下Tiと略す
)とAt又はAt合金(以下Alと略す)との接合は非
常に困難である。例えば溶接(融接)を行うと接合部に
TiとAtの金属間化合物が形成されるため接合部は脆
弱となる。
Conventionally, it has been extremely difficult to join dissimilar metals, particularly Ti or Ti alloy (hereinafter abbreviated as Ti) and At or At alloy (hereinafter abbreviated as Al). For example, when welding (fusion welding) is performed, an intermetallic compound of Ti and At is formed at the joint, making the joint fragile.

また公知の固体間拡散接合法によシ接合する方法もある
が、AtとTIは、強固な酸化皮膜が表面に付着してい
るために接合が困難である。
There is also a known solid-state diffusion bonding method, but it is difficult to bond At and TI because a strong oxide film is attached to the surface.

したがって従来のごとく、TiとAtの接合間にA、t
とSiの合金からなるシート材を介在させ、このシート
材の溶融温度まで加熱し加圧して拡散接合する方法が知
られている。この場合シート材が溶融されるから、この
溶融金属によってA、tとTi接合面の強固な酸化皮膜
を破壊しあるいは解離させることを目的としている。さ
らにシート材の溶融中に加圧されるから一部をシート材
と破壊された酸化皮膜が接合面部に押し出され接合が可
能となるとされている。しかしこの方法であっても接合
面の酸化皮膜は、接合部にミクロな介在物として残留し
高品質な接合が不可能である。特に10−’ Torr
 〜1゛O−” Torr といつだ超高真空部品の接
合にはリークが発生し不適である。
Therefore, as in the past, A, t between the Ti and At junctions
A method is known in which diffusion bonding is performed by interposing a sheet material made of an alloy of and Si, heating the sheet material to its melting temperature, and applying pressure. In this case, since the sheet material is melted, the purpose is to use this molten metal to destroy or dissociate the strong oxide film on the bonding surfaces of A, t and Ti. Furthermore, since the sheet material is pressurized while it is melted, part of the sheet material and the destroyed oxide film are pushed out to the joint surface, making it possible to join. However, even with this method, the oxide film on the bonding surface remains as microscopic inclusions in the bonded portion, making it impossible to achieve high quality bonding. Especially 10-' Torr
~1゛O-'' Torr is unsuitable for bonding ultra-high vacuum parts because leakage occurs.

また、接合前処理として硝弗酸、苛性ソーダなどで洗浄
した後A t 、 S を系ろう材で真空ロウ付する方
法もあるが、大気中での前処理であるため接合面がすぐ
に酸化され問題である。すなわち超高真空チャンバーの
接合としては前記と同じ理由から採用しにくい。
In addition, there is also a method of vacuum brazing A t and S with a brazing filler metal after cleaning with nitric-fluoric acid, caustic soda, etc. as a pre-treatment for bonding, but since the pre-treatment is performed in the atmosphere, the bonding surfaces are quickly oxidized. That's a problem. In other words, it is difficult to employ this method for bonding in an ultra-high vacuum chamber for the same reason as mentioned above.

〔発明の目的〕[Purpose of the invention]

本発明は、上記にかんがみTiとA7との接合部に脆弱
な金属間化合物が介在することなく、高品質な接合部を
得ることを目的とするものである。
In view of the above, an object of the present invention is to obtain a high-quality joint between Ti and A7 without the presence of a fragile intermetallic compound.

2  〔発明の概要〕 本発明は、Ti及びAtの接合面を非酸化性雰囲気中で
スパッタリングし、強固な酸化皮膜を除去した後膣スパ
ッタリングされた表面にAt及びTiより大気中におけ
る反応性が不活性でしかもAtと共晶反応を有する物質
をコーティングした後、共晶温度以上に加熱し加圧接合
させることを特徴とするものである。
2 [Summary of the Invention] The present invention sputters the bonded surface of Ti and At in a non-oxidizing atmosphere, removes the strong oxide film, and then attaches the sputtered surface to the sputtered surface, which has less reactivity in the atmosphere than At and Ti. The method is characterized in that after being coated with a substance that is inert and has a eutectic reaction with At, it is heated to a temperature higher than the eutectic temperature and bonded under pressure.

この方法を実施するには、同一真空槽あるいは開閉自由
なゲートパルプに隔てられた複数の真空槽を用いて大気
と接することなく処理可能な接合装置を用いると良い。
To carry out this method, it is preferable to use a bonding apparatus that can process without contacting the atmosphere using the same vacuum chamber or a plurality of vacuum chambers separated by a gate pulp that can be opened and closed freely.

例えばAtば、通常の前処理後AESによってA−r+
スパッタしながら調査すると約50人の酸化物が付着し
ている。したがってとの酸化物をArイオンビームなど
により除去すると同時に、Atより酸化物形成能力の小
さい元素でかつ共晶を生成する元素をコーティングすれ
ば、接合性は、改善される。コーティングは酸化物が除
去され清浄な面を接合するまで保持するととと、接合を
容易ならしめるために設けるものである。コーテイング
後の酸化を防止するためには、真空度にもよるが、A、
g、Au、Nl、Cu等は10−’ Torr程度でも
拡散炉での加熱により吸着酸素が解離するからよいが、
Siなどは10−8Torr以下が望ましい。Znにつ
いては、蒸気圧が高いのでコーテイング後の接合けAr
々どの不活性ガス雰囲気が良い。コーティングは、At
とTi両面に行うことが前記理由から望ましい。
For example, if At, AES is used after normal pretreatment, A-r+
When inspected while sputtering, about 50 oxides were found attached. Therefore, bonding properties can be improved by removing the oxide with an Ar ion beam or the like and at the same time coating with an element that has a smaller oxide forming ability than At and which forms a eutectic. The coating is provided to remove the oxide and maintain a clean surface until bonding, and to facilitate bonding. In order to prevent oxidation after coating, A.
For G, Au, Nl, Cu, etc., adsorbed oxygen can be dissociated by heating in a diffusion furnace even at a pressure of about 10-' Torr, but
It is desirable that Si or the like be 10 −8 Torr or less. Regarding Zn, since its vapor pressure is high, it is difficult to bond with Ar after coating.
Any inert gas atmosphere is best. The coating is At
For the reasons mentioned above, it is desirable to perform this treatment on both sides of Ti and Ti.

コーテイング後は、AtとTiを重ね合せ加熱加圧して
接合を行う。この加熱によりコーティング層表面に吸着
した酸素等は、解離するので接合面は、接合時、清浄か
状態で行うことができる。
After coating, At and Ti are superimposed and bonded by heating and pressing. Oxygen and the like adsorbed on the surface of the coating layer are dissociated by this heating, so that the bonding surfaces can be kept clean during bonding.

以上の方法をよυ効果的に行うためには、Ar”イオン
スパッタ、コーティング、接合を同一真空槽内で処理す
ることである。処理装置の概略図を第1図に示す。A 
r 4−イオンスパッタ、コーティング処理を行う清浄
面処理室1と試料交換室2並びに拡散炉3から成る。清
浄面処理室には、清浄度を評価するだめの質量分析器を
備えている。さらに各室間には、開閉自由なゲートパル
プを有する連絡路を介して連通しかつAt、Tiを各室
間移動させるための搬送機からなっている。また清浄面
処理室1、試料交換室2にはA I−、T tを移動、
昇降、回転させるためのマニュブレータを備えている。
In order to perform the above method more effectively, Ar'' ion sputtering, coating, and bonding must be performed in the same vacuum chamber.A schematic diagram of the processing equipment is shown in Figure 1.A
r 4- Consists of a clean surface processing chamber 1 for performing ion sputtering and coating processing, a sample exchange chamber 2, and a diffusion furnace 3. The clean surface treatment room is equipped with a mass spectrometer to evaluate cleanliness. Further, each chamber is connected to the chamber via a communication path having a gate pulp that can be freely opened and closed, and is provided with a conveyor for moving At and Ti between the chambers. In addition, A I- and T t were moved to the clean surface processing room 1 and the sample exchange room 2.
Equipped with a manubrator for lifting, lowering, and rotating.

試料交換室2に装入されたAtとTiは、どちらか一方
がまず清浄面処理室1に搬入されAr”イオンビームに
よシスバッタされた後コーティングされ、試料交換室2
にもどり相対する一方が次に清浄面処理室1に搬入され
上記処理をへて試料交換室2にもどシ接合面同志が密着
されると共に拡散炉3に搬入され、接合が行われる。A
r9イオンビームにより酸化物除去が女され清浄化され
るが、清浄化の判定は、清浄面処理室1内の質量分析器
7により行われる。
One of the At and Ti charged into the sample exchange chamber 2 is first transported to the clean surface treatment chamber 1, where it is cis-battered by an Ar'' ion beam, coated, and transferred to the sample exchange chamber 2.
The opposing surfaces are then carried into the clean surface processing chamber 1, subjected to the above-mentioned processing, and returned to the sample exchange chamber 2, where the joining surfaces are brought into close contact with each other and carried into the diffusion furnace 3, where bonding is performed. A
The surface is cleaned by removing oxides by the r9 ion beam, and the mass spectrometer 7 in the clean surface processing chamber 1 determines whether the surface has been cleaned.

以上の方法、装置を用いることによって、超高真空チャ
ンバー等の接合に適用できる高品質の接合部が得られる
By using the above method and apparatus, a high-quality joint part that can be applied to joining ultra-high vacuum chambers and the like can be obtained.

またAr+イオンビームスパッタに変り電子ビーム、レ
ーザビーム等のエネルギビームを用いても清浄化が可能
である。
Cleaning is also possible by using energy beams such as electron beams and laser beams instead of Ar+ ion beam sputtering.

〔発明の実施例〕 以下に本発明を実施例によって説明する。[Embodiments of the invention] The present invention will be explained below by way of examples.

供試材として純TI(チタン板2種)と純At(J I
 S 1050 )を用いた。これを第1図に示す接合
装置の試料交換室2に装入後10””’l’orr真空
に排気するとともに10””Torr下の清浄面処理室
1へまずTiを搬入した。搬入後、Ar”イオンビーム
を接合面に対して45°の角度で入射し、200人/w
inのエツチング速度で10分間処理した。エツチング
後雰囲気をA r I F3TorrとしてS+をコー
ティングした。コーティングは、処理室に設置された高
周波スパッタ装置5によった。
Pure TI (two types of titanium plates) and pure At (J I
S 1050 ) was used. After charging this into the sample exchange chamber 2 of the bonding apparatus shown in FIG. 1, it was evacuated to a vacuum of 10'''l'orr and Ti was first carried into the clean surface processing chamber 1 under 10''' Torr. After delivery, the Ar'' ion beam was incident at an angle of 45° to the joint surface, and 200 people/w
The etching speed was 10 minutes. After etching, the atmosphere was set to A r I F 3 Torr and S+ was coated. The coating was performed using a high frequency sputtering device 5 installed in the processing chamber.

コーティング厚さは5μmとした。コーテイング後試料
交換室2にもどし、これと相対するktを清浄面処理室
1へ搬入し前述と同一条件で処理を行った後、試料交換
室2でTiとAtを密着させ拡散炉3へ搬入した。
The coating thickness was 5 μm. After coating, it is returned to the sample exchange chamber 2, and the opposing kt is carried to the clean surface treatment chamber 1, where it is treated under the same conditions as described above, and then Ti and At are brought into close contact with each other in the sample exchange chamber 2, and then carried to the diffusion furnace 3. did.

接合は、接合温度600C1接合圧力0.2 Ky/恒
2および接合時間30分で行った。この時真空度は10
−6Torr である。
The bonding was performed at a bonding temperature of 600C, a bonding pressure of 0.2 Ky/constant 2, and a bonding time of 30 minutes. At this time, the degree of vacuum is 10
-6 Torr.

接合温度600C4で加熱されるとAt、’:Siは共
晶反応によって溶融状態となp、Ti及びAtへ拡散さ
れる。一方、接合材は、加圧されているので溶融部は、
接合界面から一部押し出される。したがって、接合界面
でht−si金合金なった液相は、はとんどなくなると
共に、600trに保持される過程でTr、ht、s+
は相互に拡散し合ってAtとTiは一体化される。保持
時間は、接合温度にもよるが、長時間になると、金属間
化合物の生成と成長を伴うので注意が必要であり好適な
時間は、600Cの場合30分である。
When heated at a bonding temperature of 600 C4, At, ':Si becomes molten due to a eutectic reaction and diffuses into p, Ti, and At. On the other hand, since the bonding material is pressurized, the molten part is
Part of it is pushed out from the bonding interface. Therefore, the liquid phase of the ht-si gold alloy at the bonding interface disappears, and in the process of being maintained at 600 tr, Tr, ht, s+
are mutually diffused, and At and Ti are integrated. The holding time depends on the bonding temperature, but care must be taken since a long holding time will involve the generation and growth of intermetallic compounds, and the preferred holding time is 30 minutes at 600C.

第2図に示す顕微鏡写真に示す通り良好な接合ができる
As shown in the micrograph shown in FIG. 2, good bonding can be achieved.

第1図、第2図において、4はスパッタガン、6は被接
合材(At/’Pi)、8は加圧系、9は加圧治具、1
0はヒータ、11は真空系、12はマイクロコンピュー
タ、13はAr導入口、14は高周波スパッタ電源、1
5はAt、16は接合部、17はTiを示す。
1 and 2, 4 is a sputter gun, 6 is a material to be joined (At/'Pi), 8 is a pressure system, 9 is a pressure jig, 1
0 is a heater, 11 is a vacuum system, 12 is a microcomputer, 13 is an Ar inlet, 14 is a high frequency sputtering power source, 1
5 represents At, 16 represents a joint, and 17 represents Ti.

以上より得られたTlとA、 を接合継手を有する試験
片についてI(e IJ−り試験を行った。その結果1
0” Torr−t/sec以下であり、気密程iu、
十分超高真空チャ/バーの仕様を満足するものであった
Using Tl and A obtained above, an I(e IJ-ri test was conducted on a test piece with a bonded joint.Results 1
0” Torr-t/sec or less, airtightness iu,
It fully satisfied the specifications for ultra-high vacuum chambers/bars.

本実施例では、TiとAtの場合について説明したがk
AとklまたはAtとステンレス鋼等A、tをペースと
する異材組合せであれば接合することが可能である。
In this example, the case of Ti and At was explained, but k
It is possible to join any combination of dissimilar materials with A and t as the base, such as A and kl or At and stainless steel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の接合法に用いた装置の概略図、第2
図は、接合部の顕微鏡写真である。 1・・・清浄面処理室、2・・・試料交換室、3・・・
拡散炉、4・・・スパッタガン、5・・・高周波スパッ
タ装置、6・・・被接合材(込t/Ti)、7・・・質
量分析器、8・・・加圧系、9・・・加圧治具、10・
・・ヒータ。     −(9) 547− ばい 第1貞の続き (宿発 明 者 石塚達部 日立市幸町3丁目1番1号株式 %式%
Figure 1 is a schematic diagram of the device used in the bonding method of the present invention;
The figure is a micrograph of the joint. 1...Clean surface processing room, 2...Sample exchange room, 3...
Diffusion furnace, 4... Sputter gun, 5... High frequency sputtering device, 6... Material to be joined (including t/Ti), 7... Mass spectrometer, 8... Pressure system, 9...・・Pressure jig, 10・
··heater. -(9) 547- Continuation of Bai Daiichi Sada (Inventor Tatsube Ishizuka 3-1-1 Saiwaimachi, Hitachi City Stock% formula%

Claims (1)

【特許請求の範囲】[Claims] 1、’rt又はTi合金とA、を又はA、を合金の異材
拡散接合法において接合部表面を非酸化性雰囲気中でス
パッタリングし、該スパッタリングされた表面にAt及
びTiより大気中における反応性が不活性でしかもAt
と共晶反応を有する物質をコーティングする工程を包含
することを特徴とするTi又はTi合金とAt又はA−
を合金との接合方法。
1. In the dissimilar material diffusion bonding method of 'rt or Ti alloy and A or A, the joint surface is sputtered in a non-oxidizing atmosphere, and the sputtered surface has a higher reactivity in the atmosphere than At and Ti. is inert and At
Ti or Ti alloy and At or A-
How to join the alloy.
JP10072683A 1983-06-08 1983-06-08 Joining method of ti or ti alloy to al or al alloy Pending JPS59225893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10072683A JPS59225893A (en) 1983-06-08 1983-06-08 Joining method of ti or ti alloy to al or al alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10072683A JPS59225893A (en) 1983-06-08 1983-06-08 Joining method of ti or ti alloy to al or al alloy

Publications (1)

Publication Number Publication Date
JPS59225893A true JPS59225893A (en) 1984-12-18

Family

ID=14281620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10072683A Pending JPS59225893A (en) 1983-06-08 1983-06-08 Joining method of ti or ti alloy to al or al alloy

Country Status (1)

Country Link
JP (1) JPS59225893A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382742A (en) * 1989-08-25 1991-04-08 Dowa Mining Co Ltd Permanent magnet alloy excellent in oxidation resistance
JPH04266491A (en) * 1991-02-19 1992-09-22 Nippon Koshuha Kk Method for joining copper or copper alloy parts
US5973406A (en) * 1996-08-26 1999-10-26 Hitachi, Ltd. Electronic device bonding method and electronic circuit apparatus
US6227436B1 (en) 1990-02-19 2001-05-08 Hitachi, Ltd. Method of fabricating an electronic circuit device and apparatus for performing the method
US6471115B1 (en) 1990-02-19 2002-10-29 Hitachi, Ltd. Process for manufacturing electronic circuit devices
JP2006175502A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Different kinds of metal welding method
WO2007003166A1 (en) * 2005-07-06 2007-01-11 Mtu Aero Engines Gmbh Method for the production of a composite component comprising two component sections with a basic adhesive nickel layer located between the two component sections
US7850059B2 (en) 2004-12-24 2010-12-14 Nissan Motor Co., Ltd. Dissimilar metal joining method
US8492005B2 (en) 2008-01-17 2013-07-23 Nissan Motor Co., Ltd. Joining method and joint structure of dissimilar metal
US9174298B2 (en) 2008-09-08 2015-11-03 Nissan Motor Co., Ltd. Dissimilar metal joining method for magnesium alloy and steel
RU2623543C1 (en) * 2016-02-10 2017-06-27 Публичное акционерное общество криогенного машиностроения (ПАО "Криогенмаш") Method of flux-free soldering of aluminium products
CN111489888A (en) * 2019-01-28 2020-08-04 日立金属株式会社 Method for producing R-T-B sintered magnet

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382742A (en) * 1989-08-25 1991-04-08 Dowa Mining Co Ltd Permanent magnet alloy excellent in oxidation resistance
JP2739502B2 (en) * 1989-08-25 1998-04-15 同和鉱業株式会社 Permanent magnet alloy with excellent oxidation resistance
US6227436B1 (en) 1990-02-19 2001-05-08 Hitachi, Ltd. Method of fabricating an electronic circuit device and apparatus for performing the method
US6471115B1 (en) 1990-02-19 2002-10-29 Hitachi, Ltd. Process for manufacturing electronic circuit devices
JPH04266491A (en) * 1991-02-19 1992-09-22 Nippon Koshuha Kk Method for joining copper or copper alloy parts
US5973406A (en) * 1996-08-26 1999-10-26 Hitachi, Ltd. Electronic device bonding method and electronic circuit apparatus
US7850059B2 (en) 2004-12-24 2010-12-14 Nissan Motor Co., Ltd. Dissimilar metal joining method
JP2006175502A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Different kinds of metal welding method
JP4601052B2 (en) * 2004-12-24 2010-12-22 日産自動車株式会社 Dissimilar metal joining method
US7984840B2 (en) 2004-12-24 2011-07-26 Nissan Motor Co., Ltd. Dissimilar metal joining method
US8020749B2 (en) 2004-12-24 2011-09-20 Nissan Motor Co., Ltd. Dissimilar metal joining method
WO2007003166A1 (en) * 2005-07-06 2007-01-11 Mtu Aero Engines Gmbh Method for the production of a composite component comprising two component sections with a basic adhesive nickel layer located between the two component sections
US8492005B2 (en) 2008-01-17 2013-07-23 Nissan Motor Co., Ltd. Joining method and joint structure of dissimilar metal
US9174298B2 (en) 2008-09-08 2015-11-03 Nissan Motor Co., Ltd. Dissimilar metal joining method for magnesium alloy and steel
RU2623543C1 (en) * 2016-02-10 2017-06-27 Публичное акционерное общество криогенного машиностроения (ПАО "Криогенмаш") Method of flux-free soldering of aluminium products
CN111489888A (en) * 2019-01-28 2020-08-04 日立金属株式会社 Method for producing R-T-B sintered magnet
CN111489888B (en) * 2019-01-28 2024-01-02 株式会社博迈立铖 Method for producing R-T-B sintered magnet

Similar Documents

Publication Publication Date Title
JPS59225893A (en) Joining method of ti or ti alloy to al or al alloy
KR20020084175A (en) Method of bonding two aluminum-comprising masses to one another, method of bonding a physical vapor depsition target material to backing palte material and structures comprising aluminum-comprising physical vapor deposition target and backing plates
KR20020084094A (en) Method of diffusion bonding targets to backing plates
JPS60235773A (en) Ceramic body bonding method
JPH11285859A (en) Manufacture of hip joined body between beryllium and copper alloy and hip joined body
KR100787929B1 (en) Method of low temperature joining between ti-cu dissimilar metals using amorphous filler material
FR2602446A1 (en) PROCESS FOR THE PRODUCTION OF TITANIUM PLATED STEEL SHEET BY HOT ROLLING
JPH07330455A (en) Method for joining ceramic material and metallic material
JPS63101085A (en) Diffused joining method
JPS60191679A (en) Liquid phase diffusion joining method of heat resistant superalloy
JPS6027481A (en) Low-pressure diffusion joining method
JPS62124083A (en) Diffused junction method
JPS58185761A (en) Diffusion bonding method for material comprising aluminum mainly
JP3629578B2 (en) Ti-based material and Cu-based bonding method
US4863090A (en) Room temperature attachment method employing a mercury-gold amalgam
JPH089108B2 (en) Joining method
JPH0699317A (en) Splicing method
JPS61245993A (en) Brazing filler metal for joining of al and al alloy
JPH0450107B2 (en)
JPS5994569A (en) Diffusion joining method
JPH0337165A (en) Adhesion between ceramics and metal
JPS62234655A (en) Repairing method for airtight structure
JPS63260686A (en) Insert material for liquid-phase diffusion joining of ti and ti alloy and its formation
JPS59113170A (en) Diffusion joining method
JPS61283488A (en) Joining method for al and al alloy