JPS63260686A - Insert material for liquid-phase diffusion joining of ti and ti alloy and its formation - Google Patents
Insert material for liquid-phase diffusion joining of ti and ti alloy and its formationInfo
- Publication number
- JPS63260686A JPS63260686A JP9541987A JP9541987A JPS63260686A JP S63260686 A JPS63260686 A JP S63260686A JP 9541987 A JP9541987 A JP 9541987A JP 9541987 A JP9541987 A JP 9541987A JP S63260686 A JPS63260686 A JP S63260686A
- Authority
- JP
- Japan
- Prior art keywords
- joining
- alloy
- bonding
- insert metal
- joint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009792 diffusion process Methods 0.000 title claims abstract description 31
- 239000000463 material Substances 0.000 title claims abstract description 31
- 239000007791 liquid phase Substances 0.000 title claims abstract description 24
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 18
- 238000005304 joining Methods 0.000 title abstract description 20
- 230000015572 biosynthetic process Effects 0.000 title 1
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 24
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 7
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 abstract description 6
- 238000001312 dry etching Methods 0.000 abstract description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract 2
- 238000000151 deposition Methods 0.000 abstract 1
- 230000008021 deposition Effects 0.000 abstract 1
- 229910001092 metal group alloy Inorganic materials 0.000 abstract 1
- 239000007769 metal material Substances 0.000 description 43
- 239000010936 titanium Substances 0.000 description 39
- 238000000034 method Methods 0.000 description 16
- 230000008018 melting Effects 0.000 description 13
- 238000002844 melting Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 239000010953 base metal Substances 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 229910000679 solder Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000010884 ion-beam technique Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 238000005219 brazing Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910017985 Cu—Zr Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910010977 Ti—Pd Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はTi及びTi合金の液相拡散接合に好適なイン
サート金属材に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an insert metal material suitable for liquid phase diffusion bonding of Ti and Ti alloys.
Ti及びTi合金の接合には、ろう付及び拡散接合法を
適用されている。ろう付法では、ろう材として銀系ろう
、アルミニウム系ろう及びチタン系ろうが用いられてい
る。Brazing and diffusion bonding methods are used to join Ti and Ti alloys. In the brazing method, silver-based solder, aluminum-based solder, and titanium-based solder are used as brazing materials.
一方、拡散接合法には、固相接合と液相拡散接合とがあ
り、固相接合は、被接合材同士に加圧して直接接合する
方法である。On the other hand, diffusion bonding methods include solid phase bonding and liquid phase diffusion bonding, and solid phase bonding is a method in which materials to be bonded are directly bonded by applying pressure to each other.
液相拡散接合は、米国特許第3678570号に示され
ているように、被接合材である母材の接合面に特定の成
分組成をもったインサート金属材を介在させ、接合温度
まで加熱するとインサート金属材が溶融し、液相となっ
て接合面のすき間を満たすが、この状態で液相と母材の
間で元素の相互の高速拡散が行われるようになり、これ
によって液相の成分組成は変化し、母材の成分組成に近
づくことにより等温凝固が起こり、接合部の液相が固相
となり、さらに拡散が進むことにより、接合部は母材と
同等となる接合法である。As shown in U.S. Patent No. 3,678,570, liquid phase diffusion bonding involves interposing an insert metal material with a specific composition on the bonding surface of the base metal to be bonded, and when heated to the bonding temperature, the insert The metal material melts and becomes a liquid phase that fills the gap between the bonding surfaces. In this state, mutual high-speed diffusion of elements occurs between the liquid phase and the base metal, and this changes the composition of the liquid phase. This is a joining method in which the liquid phase changes and the composition approaches that of the base material, causing isothermal solidification, and the liquid phase at the joint becomes a solid phase.Diffusion progresses further, so that the joint becomes equivalent to the base material.
この液相拡散接合では、使用するインサート金属材が接
合部の特性を決定する重要な因子である。In this liquid phase diffusion bonding, the insert metal material used is an important factor that determines the characteristics of the bonded part.
また、接合面間にインサート金属材を挿入する方法は、
粉末や箔として行うことが多い。In addition, the method of inserting the insert metal material between the joint surfaces is
It is often made as a powder or foil.
Ti及びTi合金の拡散接合法では、インサー。In the diffusion bonding method of Ti and Ti alloys, inserter is used.
ト金属材として純銅、一般のTi系ろう、及び、特公昭
61−34915号公報に示すようにCu−Zr合金が
用いられる。As the metal material, pure copper, a general Ti-based solder, and a Cu-Zr alloy as shown in Japanese Patent Publication No. 61-34915 are used.
液相拡散接合をT1及びTi合金に適用する場合には、
Ti系ろうやCu−Zr合金などのインサート金属材は
箔で使用したり、脆弱な合金の場合、粉末として接合面
に塗布したりして使用する。When applying liquid phase diffusion bonding to T1 and Ti alloys,
Insert metal materials such as Ti-based solder and Cu-Zr alloy are used in the form of foil, or in the case of brittle alloys, they are applied as powder on the joint surfaces.
しかし、インサート金属材は、酸化されやすいTi、Z
r等を含有するため酸化物(TiOz。However, the insert metal materials are Ti and Z, which are easily oxidized.
Because it contains r, etc., it is an oxide (TiOz.
Zr0z)を生成しやすい。また、箔及び粉末によるイ
ンサート金属材の接合面への挿入方法でも接合作業の際
の酸化が著しくなる。さらにTi及びTi合金の接合面
には、強固な酸化皮膜(TiOz)が形成されている。Zr0z) is easily generated. Further, even with methods of inserting metal inserts into the joint surface using foil or powder, oxidation during the joining operation becomes significant. Furthermore, a strong oxide film (TiOz) is formed on the joint surface of Ti and Ti alloy.
このようにTi及びTi合金の接合では接合部に酸化物
が残存しやすく、接合不良や接合強度劣化の原因となる
。In this way, when joining Ti and Ti alloys, oxides tend to remain in the joint, causing joint failure and deterioration of joint strength.
また、Ti及びTi合金の接合面には、酸化物(TiO
z)が形成されているため、インサート金属と母材との
相互拡散を抑制しているため、接合部が母材の組成1組
織と同等となるのに時間を要し、接合時間が長くなる。In addition, oxide (TiO
z) is formed, which suppresses mutual diffusion between the insert metal and the base metal, so it takes time for the bonded part to become equivalent to the composition 1 structure of the base metal, resulting in a longer bonding time. .
さらに、接合部が母材と異なる合金となるため接合部の
強度劣化及び耐食性に問題がある。Furthermore, since the bonded portion is made of a different alloy from the base metal, there are problems with strength deterioration and corrosion resistance of the bonded portion.
本発明の目的は、酸化物を除去し、高品質、短時間接合
を可能にし、すぐれた継手強度及び耐食性を得ることの
できるTi及びTi合金の液相拡散接合用インサート金
属材及びインサート方法を提供することにある。The purpose of the present invention is to provide an insert metal material and an insert method for liquid phase diffusion bonding of Ti and Ti alloys, which can remove oxides, enable high-quality, short-time bonding, and obtain excellent joint strength and corrosion resistance. It is about providing.
上記目的は、あらかじめドライエツチング処理によって
酸化皮膜(TiOzなど)や不純物が除去されたT i
及びT1合金の清浄な接合面上に蒸着、又は、スパッタ
リングによって非晶質構造の10〜40%Zr、0〜3
0%Ti、0.1 〜2%Pdを含有するCu合金膜を
形成し、液相拡散接合に供することにより達成される。The above purpose is to use Ti, from which oxide films (TiOz, etc.) and impurities have been removed by dry etching treatment.
and 10 to 40% Zr in an amorphous structure by vapor deposition or sputtering on the clean joint surface of T1 alloy, 0 to 3
This is achieved by forming a Cu alloy film containing 0% Ti and 0.1 to 2% Pd and subjecting it to liquid phase diffusion bonding.
第1図は本発明のインサート金属材の形成方法を示す。 FIG. 1 shows a method of forming the insert metal material of the present invention.
本発明のインサート金属材の形成は、Ti及びTi合金
の接合面をドライエツチング処理(Arイオンビームエ
ツチングなど)することによって酸化皮膜(TiOzな
ど)や不純物を除去し、清浄な界面とする(第1図〔B
〕)。次に、大気中に触れることなく清浄な界面をもつ
Ti及びTi合金の接合面上に蒸着又はスパッタリング
によって本発明のインサート金属材であるCu−Zr−
Ti−Pd合金、又は、Cu−Zr−Ti−Ni−Pd
合金を形成する。(第1図〔C〕)。The insert metal material of the present invention is formed by dry etching the joint surface of Ti and Ti alloy (Ar ion beam etching, etc.) to remove oxide films (TiOz, etc.) and impurities, and to create a clean interface ( Figure 1 [B
]). Next, the insert metal material of the present invention, Cu-Zr-
Ti-Pd alloy or Cu-Zr-Ti-Ni-Pd
Forms an alloy. (Figure 1 [C]).
次に、Ti及びTi合金の接合面上に形成された本発明
のインサート金属材同士を対面させ、液相拡散接合を行
う。Next, the insert metal materials of the present invention formed on the bonding surfaces of Ti and Ti alloy are made to face each other, and liquid phase diffusion bonding is performed.
本発明のインサート金属材の形成方法では、Ti及びT
i合金の接合面をドライエツチング処理し、接合面に形
成されている酸化皮膜(TiOzなど)や不純物が除去
されるために、液相拡散接合の際にインサート金属材と
母材との相互拡散が速く、かつ、ぬれ性が良好となる。In the method for forming an insert metal material of the present invention, Ti and T
The bonding surface of the i-alloy is dry-etched to remove the oxide film (TiOz, etc.) and impurities formed on the bonding surface, which prevents mutual diffusion between the insert metal material and the base material during liquid phase diffusion bonding. is fast and has good wettability.
また、接合部には、酸化物の残存がなく、接合不良欠陥
の発生もなく、接合温度が低くとも短時間接合が可能に
なり、均’ff(母材組成、組織)で高品質な接合部が
得られる。In addition, there is no residual oxide in the joint, there are no joint defects, and it is possible to join in a short time even at low joining temperatures, resulting in high-quality joints with uniform base material composition and structure. part is obtained.
インサート金属材を蒸着又はスパッタリングによってT
i及びTi合金の接合面上に形成することは、インサー
ト金属材がZr及びTiを含有しているため酸化されや
すく、接合部に酸化物や酸素が残存し、接合不良欠陥の
発生することを防止し、脆弱な合金であるためインサー
ト方法として粉末状となり、接合作業が複雑になる欠点
を補うためであり、作業性が向上する。T by vapor deposition or sputtering of insert metal material
Forming it on the joint surface of i and Ti alloys prevents the insert metal material from being easily oxidized because it contains Zr and Ti, and oxides and oxygen remaining in the joint, resulting in poor joint defects. This is to compensate for the disadvantage that the insert method requires complicated joining work due to the fragile alloy being in powder form, and improves workability.
また、大気に触れることなくドライエツチング処理と蒸
着又はスパッタリングを同−容器内又は同−雰囲気中で
一貫処理することが不可欠である。Furthermore, it is essential to perform dry etching and vapor deposition or sputtering in the same container or atmosphere in an integrated manner without exposure to the atmosphere.
このようにして形成された合金膜上にさらに酸化を防止
するためにインサート金属材のZr、Ti以外の酸化さ
れにくいNi、Cuをコーチインするともつと良くなる
。In order to further prevent oxidation on the alloy film formed in this way, it is better to coat in Ni and Cu, which are difficult to oxidize, other than the insert metal materials Zr and Ti.
本発明のインサート金属材の形成方法は、従来より使用
されているTi系ろう、銅、などのインサート金属材の
形成方法にも有効である。The method for forming an insert metal material of the present invention is also effective for forming conventionally used insert metal materials such as Ti-based solder and copper.
本発明のインサート金属材は、10〜40%Zr、0〜
30%Ti、5〜20%N l 、 0.1−〜5%P
dを含有するCu−Zr−Ti−Ni −Pd合金であ
る液相拡散接合用インサート金属材である。The insert metal material of the present invention contains 10 to 40% Zr and 0 to 40% Zr.
30% Ti, 5-20% Nl, 0.1--5% P
This is an insert metal material for liquid phase diffusion bonding which is a Cu-Zr-Ti-Ni-Pd alloy containing d.
インサート金属材は蒸着又はスパッタリングによって形
成されるため、非晶質構造のCu合金であり、母材であ
るTiと反応して融点が低下するために反応による溶融
温度は、約815℃〜875℃である。非晶質合金とす
る利点は、インサート金属材の組成が均質に分散してい
るため、インサート金属材の溶融を均一にし、かつ、母
材とインサート金属反応(共晶)を強力にし、ぬれ性を
向上させ、低温接合が可能となる。接合温度がβ変態点
温度以下(Tiの場合約900℃)の場合には1機械的
性質及び耐食性を損うことがなく、高品質の接合部が得
られる。接合温度がβ変態点以上の場合でも、機械的性
質及び耐食性の低下が認められず、接合温度が高いこと
から、母材とインサート金属材との相互拡散が促進され
、短時間で高品質の接合部が得られる。Since the insert metal material is formed by vapor deposition or sputtering, it is a Cu alloy with an amorphous structure and reacts with the base material Ti to lower its melting point, so the melting temperature due to the reaction is approximately 815°C to 875°C. It is. The advantage of using an amorphous alloy is that the composition of the insert metal material is homogeneously dispersed, which allows for uniform melting of the insert metal material, strengthens the reaction (eutectic) between the base metal and the insert metal, and improves wettability. This makes low-temperature bonding possible. When the joining temperature is below the β-transform temperature (approximately 900° C. in the case of Ti), a high-quality joint can be obtained without deteriorating mechanical properties and corrosion resistance. Even when the welding temperature is above the β-transformation point, no deterioration in mechanical properties or corrosion resistance is observed, and the high welding temperature promotes mutual diffusion between the base material and the insert metal, resulting in high-quality products in a short time. A joint is obtained.
次に液相拡散接合用インサート金属材の各成分の機能に
ついて述べる。Next, the functions of each component of the insert metal material for liquid phase diffusion bonding will be described.
(1)Cu
Cuは母材の主成分であるTiと共晶反応を起こし、融
点が900℃以下の合金を形成する。(1) Cu Cu causes a eutectic reaction with Ti, which is the main component of the base material, and forms an alloy with a melting point of 900° C. or lower.
しかもTi中への拡散が他の元素に比べて比較的大きい
ことから、接合後の接合部の均質化が短時間で可能とな
る。Moreover, since the diffusion into Ti is relatively large compared to other elements, it is possible to homogenize the bonded portion after bonding in a short time.
(2)Zr
Zrは母材の主成分であるTiとは全率固溶し、Ti及
びCuの融点降下作用があり、Ti及びTi合金とのぬ
れ性が向上する。また、接合時にインサート金属材の主
成分であるCuが拡散されやすいことから、接合部のZ
ra度が増加するが、Zr量が5%未満では、融点降下
の効果がない、また、Zr量が40%以上でも融点が上
昇する。(2) Zr Zr completely forms a solid solution with Ti, which is the main component of the base material, and has the effect of lowering the melting point of Ti and Cu, improving wettability with Ti and Ti alloys. In addition, since Cu, which is the main component of the insert metal material, is easily diffused during bonding, the Z
Although the degree of ra increases, if the amount of Zr is less than 5%, there is no effect of lowering the melting point, and even if the amount of Zr is 40% or more, the melting point increases.
(3)Ti
Tiはインサート金属材の主成分であ゛るCuと共晶反
応により融点降下作用があり、かつ。(3) Ti Ti has a melting point lowering effect through a eutectic reaction with Cu, which is the main component of the insert metal material.
被接合材であるため、接合後の均質化が容易となる。T
iは接合時にインサート金属材中に拡散してくるため含
有する必要がないが、短時間接合を可能にするにはTi
量30%以内とするのがよい。Ti量が30%以上では
、融点が上昇し、接合部に金属間化合物が生成し、継手
強度の低下をまねく。Since it is a material to be joined, it is easy to homogenize it after joining. T
It is not necessary to contain Ti because it diffuses into the insert metal material during bonding, but Ti is necessary to enable short-time bonding.
The amount is preferably within 30%. When the amount of Ti is 30% or more, the melting point increases and intermetallic compounds are generated at the joint, leading to a decrease in joint strength.
(4)Ni
NiはTiと反応し、融点降下作用があり、インサート
金属材と母材とのぬれ性が向上する。(4) Ni Ni reacts with Ti, has a melting point lowering effect, and improves the wettability between the insert metal material and the base material.
Ni量が5%未満では、その効果がない。また、N1j
lが15%以上では、融点が上昇するばかりではなく、
接合部に金属間化合物が生成し、継手強度が低下する。If the Ni amount is less than 5%, there is no effect. Also, N1j
When l is 15% or more, not only the melting point increases, but also
Intermetallic compounds are formed at the joint, reducing joint strength.
(5)Pd
PdはTiと反応し、融点降下作用があり、接合部及び
その近傍の耐食性を向上させる。PdMが0.5 %
以下の場合では、耐食性向上の効果が少ない。またPd
は非常に高価であるため5%以上含有させる必要がない
。(5) Pd Pd reacts with Ti, has a melting point lowering effect, and improves the corrosion resistance of the joint and its vicinity. 0.5% PdM
In the following cases, the effect of improving corrosion resistance is small. Also Pd
is very expensive, so it is not necessary to contain it in an amount of 5% or more.
本発明のインサート金属材は、Ti及びTi合金と異種
材料の接合、Cu及びCu合金同士の接合に利用しても
同様の効果がある。The insert metal material of the present invention has similar effects when used for joining Ti and Ti alloys with dissimilar materials, and when joining Cu and Cu alloys together.
本発明のインサート金属材の形成方法は、被接合材とし
てAQ及びAQ合金などの活性で酸化されやすい金属材
料、酸化されやすい元素を含有するインサート金属材、
脆弱なインサート金属材に利用でき、その効果も大きい
。The method for forming an insert metal material of the present invention includes an active and easily oxidized metal material such as AQ and AQ alloy as a joining material, an insert metal material containing an easily oxidized element,
It can be used for fragile insert metal materials and has great effects.
以下、本発明の実施例について説明する。 Examples of the present invention will be described below.
被接合材として、30mm口で高さ201TI11のサ
イズの純Tiを用いた。As the material to be joined, pure Ti with a diameter of 30 mm and a height of 201 TI11 was used.
同一真空容器内にドライエツチング処理の一種であるA
rイオンビームエツチング装置を具備したマグネトロン
スパッタリング装置によって。A, a type of dry etching process, is carried out in the same vacuum container.
r by a magnetron sputtering device equipped with an ion beam etching device.
第1図に示すように、純Tiの接合面上インサート金属
材を形成した。As shown in FIG. 1, an insert metal material of pure Ti was formed on the bonding surface.
まず、第1図CB)に示すように、同一真空容器内でA
rイオンビームエツチング装置より純Tiの接合面にA
rイオンビームを照射し、酸化皮膜(TiOz)や不純
物を除去し、清浄な接合面を形成した。エツチング条件
は3×
10−”TorrA r下で3KV、200mAの出力
で10分間行い、Ti表面を約460人エツチングした
。First, as shown in Figure 1 CB), A
A is etched on the bonding surface of pure Ti using r-ion beam etching equipment.
The oxide film (TiOz) and impurities were removed by irradiation with an r-ion beam to form a clean bonding surface. The etching conditions were 3 x 10-'' TorrAr and an output of 3 KV and 200 mA for 10 minutes, and the Ti surface was etched by about 460 times.
次に、第1図(C)に示すように、同一真空容器内で大
気に触れることなく、マグネトロンスパッタ装置によっ
て、3.2 XiO’″3TorrA r下で、36
0〜400V、3.6 A(7)出力で約15分間行
い、インサート金属材Nα1〜3比較材としてNα4.
5を清浄なTiの接合面に約5μm形成し、接合に供し
た。Next, as shown in FIG. 1(C), in the same vacuum chamber without exposure to the atmosphere, a magnetron sputtering device was used to remove 3.2
It was carried out for about 15 minutes at 0 to 400 V and 3.6 A (7) output, and insert metal materials Nα1 to 3 were used as comparison materials, and Nα4.
5 was formed to a thickness of about 5 μm on a clean Ti bonding surface and used for bonding.
清浄なTiの接合面上に形成されたインサート金属材同
士を重ね合せ、液相拡散接合を行った。The insert metal materials formed on the clean Ti bonding surfaces were overlapped and liquid phase diffusion bonding was performed.
接合条件は2 X 10−’Torrの真空下で、圧力
10gf/mm2を付加し、1000℃で30分行った
。The bonding conditions were a vacuum of 2 x 10-'Torr, a pressure of 10 gf/mm2, and a temperature of 1000°C for 30 minutes.
表1は接合特性を示す。Table 1 shows the bonding properties.
表1に示すように、インサート金属材1,2゜3を使用
して液相拡散接合を行った。その結果。As shown in Table 1, liquid phase diffusion bonding was performed using insert metal materials 1 and 2°3. the result.
母材の強度とほぼ同程度で高強度の接合部が得られた。A high-strength joint with approximately the same strength as the base metal was obtained.
また、その接合部には、酸化物や化合物が見られず、高
品質の接合部であった。これに対して、比較材としてN
α4を使用した場合には、接合部に化合物が生成し、接
合強度が低下した。また、比較材としてNa5を使用し
た場合には、Tiとの反応による溶融温度が高いため、
十分な拡散が行なわれず、拡散層が残存した。さらに、
粉末によるインサート材の接合では、接合部に酸化物の
残存、ボイドが発生し、継手強度が低下している。Furthermore, no oxides or compounds were found in the joint, indicating that the joint was of high quality. On the other hand, as a comparative material, N
When α4 was used, a compound was generated at the joint, resulting in a decrease in joint strength. In addition, when Na5 is used as a comparison material, the melting temperature due to the reaction with Ti is high, so
Sufficient diffusion was not performed and a diffusion layer remained. moreover,
When joining insert materials using powder, residual oxides and voids occur in the joint, reducing joint strength.
本発明によれば、接合界面の酸化皮膜の除去及びインサ
ート金属材の酸化や酸素の混入がさけられるので、接合
不良(ボイド、酸化物の残存)欠陥の発生を防止し、イ
ンサート金属材と母材との相互拡散が促進されるので、
高品質、高強度の接合部が低温、かつ、短時間接合が可
能となる。According to the present invention, since the removal of the oxide film on the bonding interface and the oxidation of the insert metal material and the mixing of oxygen are avoided, it is possible to prevent the occurrence of defective bonding (voids, residual oxides), and to bond the insert metal material and the matrix. Since mutual diffusion with materials is promoted,
High-quality, high-strength joints can be joined at low temperatures and in a short time.
′41図は本発明の一実施例のインサート金属材の形成
方法の説明図である。
1・・・被接合材、2・・・清浄な接合面、3・・・イ
ンサート金属材、4・・・Arイオンビーム装置、5・
・・スパッタリング装置。Figure '41 is an explanatory diagram of a method of forming an insert metal material according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Material to be joined, 2... Clean joining surface, 3... Insert metal material, 4... Ar ion beam device, 5...
...Sputtering equipment.
Claims (1)
インサート材として、5〜40%Zr,0〜30%Ti
,0.1〜2%Pdを含有し、残りCuと不可避不純物
からなる組成(以上重量%)を含むことを特徴とするT
i及びTi合金の液相拡散接合用インサート材。 2、Ti及びTi合金の液相拡散接合において、接合用
インサート材として、5〜40%Zr,0〜30%Ti
,5〜15%Ni,0.1〜2%Pdを含有し、残りC
uと不可避不純物を含むことを特徴とするTi及びTi
合金の液相拡散接合インサート材。 3、特許請求の範囲第1項、または第2項に示す前記イ
ンサート材が非晶質合金であることを特徴とするインサ
ート材。[Claims] 1. In liquid phase diffusion bonding of Ti and Ti alloy, 5 to 40% Zr, 0 to 30% Ti as a bonding insert material.
, 0.1 to 2% Pd, and a composition consisting of the remainder Cu and unavoidable impurities (weight %).
Insert material for liquid phase diffusion bonding of i and Ti alloys. 2. In liquid phase diffusion bonding of Ti and Ti alloys, 5 to 40% Zr and 0 to 30% Ti are used as bonding insert materials.
, 5-15% Ni, 0.1-2% Pd, and the remainder C
Ti and Ti characterized by containing u and inevitable impurities
Insert material for liquid phase diffusion bonding of alloys. 3. An insert material according to claim 1 or 2, wherein the insert material is an amorphous alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9541987A JPS63260686A (en) | 1987-04-20 | 1987-04-20 | Insert material for liquid-phase diffusion joining of ti and ti alloy and its formation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9541987A JPS63260686A (en) | 1987-04-20 | 1987-04-20 | Insert material for liquid-phase diffusion joining of ti and ti alloy and its formation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63260686A true JPS63260686A (en) | 1988-10-27 |
Family
ID=14137169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9541987A Pending JPS63260686A (en) | 1987-04-20 | 1987-04-20 | Insert material for liquid-phase diffusion joining of ti and ti alloy and its formation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63260686A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6475637B1 (en) * | 2000-12-14 | 2002-11-05 | Rohr, Inc. | Liquid interface diffusion bonded composition and method |
JP2009507647A (en) * | 2005-09-08 | 2009-02-26 | メディカル・リサーチ・プロダクツ−ビィ・インコーポレイテッド | Method for bonding a titanium-based mesh to a titanium-based substrate |
-
1987
- 1987-04-20 JP JP9541987A patent/JPS63260686A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6475637B1 (en) * | 2000-12-14 | 2002-11-05 | Rohr, Inc. | Liquid interface diffusion bonded composition and method |
JP2009507647A (en) * | 2005-09-08 | 2009-02-26 | メディカル・リサーチ・プロダクツ−ビィ・インコーポレイテッド | Method for bonding a titanium-based mesh to a titanium-based substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0418955B2 (en) | ||
JPS60131875A (en) | Method of bonding ceramic and metal | |
JPS59225893A (en) | Joining method of ti or ti alloy to al or al alloy | |
US5664723A (en) | Brazing technology | |
JPS63260686A (en) | Insert material for liquid-phase diffusion joining of ti and ti alloy and its formation | |
US3791820A (en) | Fluxless aluminum brazing | |
JPS59232692A (en) | Brazing filler metal for joining ceramics and metal or the like and composite body composed of ceramics and metal or the like using said brazing filler metal | |
JPS62124083A (en) | Diffused junction method | |
JPS60191679A (en) | Liquid phase diffusion joining method of heat resistant superalloy | |
US4724120A (en) | Method for the assembly of and the interconnection by diffusion of bodies of metal alloys | |
US3782929A (en) | Fluxless aluminum brazing | |
US6789723B2 (en) | Welding process for Ti material and Cu material, and a backing plate for a sputtering target | |
JPH0450107B2 (en) | ||
JPS60157B2 (en) | Manufacturing method of carbide tools | |
JP4331370B2 (en) | Method for manufacturing HIP joined body of beryllium and copper alloy and HIP joined body | |
JPS61161682A (en) | Joint of superconductor | |
JPH0355232B2 (en) | ||
JPS63169348A (en) | Amorphous alloy foil for jointing ceramics | |
JP3316578B2 (en) | Method for producing joined body of ceramic member and aluminum member | |
JPS61111789A (en) | Joining method of metallic member | |
JPS61103685A (en) | Method for diffused junction | |
JPS61283488A (en) | Joining method for al and al alloy | |
JPH04294884A (en) | Method of liquid phase diffusion joining of stainless steel | |
JPS6182996A (en) | Production of composite brazing filler metal | |
RU2214896C1 (en) | Diffusion welding method |