JPH0355232B2 - - Google Patents

Info

Publication number
JPH0355232B2
JPH0355232B2 JP57204679A JP20467982A JPH0355232B2 JP H0355232 B2 JPH0355232 B2 JP H0355232B2 JP 57204679 A JP57204679 A JP 57204679A JP 20467982 A JP20467982 A JP 20467982A JP H0355232 B2 JPH0355232 B2 JP H0355232B2
Authority
JP
Japan
Prior art keywords
filler metal
bonding
joint
layer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57204679A
Other languages
Japanese (ja)
Other versions
JPS5994569A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20467982A priority Critical patent/JPS5994569A/en
Publication of JPS5994569A publication Critical patent/JPS5994569A/en
Publication of JPH0355232B2 publication Critical patent/JPH0355232B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は拡散接合方法の改良に関し、更に詳し
くは、酸素の影響を受け易すいNi基耐熱合金の
接合又は接合部が複雑な形状の部材同志の接合に
適用して有用な拡散接合方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an improvement in a diffusion bonding method, and more particularly, the present invention relates to the improvement of a diffusion bonding method, and more particularly, to the bonding of Ni-based heat-resistant alloys that are susceptible to the influence of oxygen, or the bonding of members with complex shapes. The present invention relates to a diffusion bonding method that is useful when applied to bonding.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

接合すべき金属の母材を互いに接触させ、該母
材を溶融することなく固相状態で加圧、加熱して
接合する拡散接合方法には、一般に、固相拡散接
合方法(Solid Phase Diffusion Bonding)と液
相拡散接合方法(Transient Liquid Phase
Bonding又はActivated Diffution Bonding)が
ある。前者は、被接合部材(以下、母材という)
を相互に密着させて加熱しながら所定の圧力(原
子面間に凝集力が作用するまで密着させるに要す
る圧力)を付加し直接接合する方法である。後者
は、母材の接合面の間に、母材の融点よりもその
融点が低くしたがつて母材とは異なつた組成の金
属、合金の箔又は粉末(以下、フイラーメタルと
いう)を介在させ、接合部を該フイラーメタルの
融点より高く該母材の融点より低い温度に加熱し
て該フイラーメタルを溶融し所定時間、必要なら
ば圧力を付加して保持するという方法である。こ
の液相拡散接合方法は、高温でも大きい継手強度
が得られる方法であつて、とりわけ、溶接が困
難な高強度Ni基耐熱合金(例えば、MARM247)
の母材の接合、変形を避けなければならない部
材の接合に適用して有用である。
Solid phase diffusion bonding is generally used as a diffusion bonding method in which metal base materials to be bonded are brought into contact with each other and bonded by applying pressure and heating in a solid state without melting the base materials. ) and liquid phase diffusion bonding method (Transient Liquid Phase
Bonding or Activated Diffusion Bonding). The former is the member to be joined (hereinafter referred to as base material)
This is a method of direct bonding by bringing them into close contact with each other and applying a predetermined pressure (the pressure required to bring them into close contact until a cohesive force acts between the atomic surfaces) while heating them. The latter involves interposing a metal or alloy foil or powder (hereinafter referred to as filler metal) between the bonding surfaces of the base metal, which has a melting point lower than that of the base metal and therefore has a different composition from that of the base metal. This method involves heating the joint to a temperature higher than the melting point of the filler metal and lower than the melting point of the base material to melt the filler metal and holding it for a predetermined period of time by applying pressure if necessary. This liquid phase diffusion bonding method is a method that can obtain high joint strength even at high temperatures.
It is useful for joining base materials, and for joining parts where deformation must be avoided.

すなわち、の問題についていえば、例えばガ
スタービン翼は通常Ni基耐熱合金から構成され
ていてその多くが動作温度を高めるために内部に
複雑な冷却通路を設けた構造になつているが、そ
の場合、このような複雑形状の翼部材を精密鋳造
で一体的に製作することは困難である。そのた
め、これらの翼は、分割した部品を接合して製作
されている。しかしながら、大部分の高強度Ni
基耐熱合金に対しては溶接が困難であり、また、
前述した固相拡散接合方法では接合部の継手手段
が充分大きくならないため、液相拡散接合方法の
適用が必要になつてくる。
In other words, when it comes to problems, for example, gas turbine blades are usually made of Ni-based heat-resistant alloys, and many of them have a structure with complicated internal cooling passages to increase the operating temperature. However, it is difficult to integrally manufacture a wing member having such a complicated shape by precision casting. Therefore, these blades are manufactured by joining separate parts. However, most high-strength Ni
It is difficult to weld to base heat-resistant alloys, and
Since the above-described solid phase diffusion bonding method does not allow the joint means of the joint portion to be sufficiently large, it becomes necessary to apply a liquid phase diffusion bonding method.

一方、の問題に関していえば、接合すべき母
材が溶接若しくは固相拡散接合方法の適用が可能
な材料であつても、外部からの溶接作業が困難で
複雑な内部構造を有する部材若しくは固相拡散接
合方法で適用する圧力では塑性変形してしまうよ
うな部材の接合に対しても、原理的には圧力の付
加を必要としないこの液相拡散接合方法は極めて
有効である。
On the other hand, when it comes to problems, even if the base materials to be joined are materials that can be welded or solid-phase diffusion welded, it is difficult to weld them from the outside, and there are parts with complicated internal structures or solid-phase diffusion welding methods. This liquid phase diffusion bonding method, which does not require the addition of pressure in principle, is extremely effective even for joining members that would be plastically deformed under the pressure applied by the diffusion bonding method.

さて、液相拡散接合方法において、母材の接合
面の間にフイラーメタルを介在させる方法に関し
てはいくつかの方法が知られている。
Now, in the liquid phase diffusion bonding method, several methods are known for interposing filler metal between the bonding surfaces of base materials.

その1つは、接合面にシート状のフイラーメタ
ルを介在させるものである。Ni基耐熱合金の接
合に当つては、Niを主成分とする合金に融点低
下元素であるB、P、Si等を含有させた合金を溶
湯急冷法で非晶質のリボン形状にしたもの、又は
上記合金の粉末をアクリロイドセメントなどの有
機バインダを用いてシート状に形成したものを母
材の接合面の間にセツテイングする方法である。
One of them is to interpose a sheet-like filler metal on the joint surface. When joining Ni-based heat-resistant alloys, alloys containing melting point lowering elements such as B, P, and Si are formed into an amorphous ribbon shape using a molten metal quenching method. Alternatively, there is a method in which a powder of the above-mentioned alloy is formed into a sheet shape using an organic binder such as acryloid cement, and then set between the joint surfaces of base materials.

しかしながら、これらの方法の場合、前者にあ
つては数十μmの厚みのリボンしかできないとい
う問題があり、後者にあつてはシートの取扱いが
不安定でかつ接合時のバインダ残渣による接合面
の汚染又は寸法収縮による接合部の寸法精度の低
下などの問題が避けがたい。
However, in the case of these methods, there are problems in that the former can only produce a ribbon with a thickness of several tens of micrometers, and in the latter, the handling of the sheet is unstable and the bonding surface is contaminated by binder residue during bonding. Alternatively, problems such as a decrease in the dimensional accuracy of the joint due to dimensional shrinkage are unavoidable.

そのうえに、次のような共通した問題がある。
第1の問題は、接合面へのフイラーメタルのセツ
テイングが困難であるということである。すなわ
ち接合面の形状が複雑な場合、シート状のフイラ
ーメタルを均一かつずれのないようにセツテイン
グすることは多大の労力を必要とし、とくに、接
合面の凹凸が激しい場合にはセツテイングが不可
能であるということもあり得る。第2の問題は、
セツテイングは通常大気中で行なわれるが、その
場合、高強度Ni基耐熱合金は酸素のような不純
物元素によつてその高温強度が低下するので、接
合部の継手強度の低下を招くという問題である。
このような問題を解決するために、母材の接合面
に、真空、Ar、N2のような不活性雰囲気中でフ
イラーメタルを蒸着又はスパツタリングして所定
厚みのフイラーメタルの層を形成する方法が提案
されている。
Additionally, there are some common problems:
The first problem is that it is difficult to set the filler metal onto the joint surface. In other words, when the shape of the joint surface is complex, it requires a great deal of effort to set the sheet-shaped filler metal uniformly and without shifting.In particular, when the joint surface is extremely uneven, setting it is impossible. It is possible that there is. The second problem is
Setting is usually carried out in the atmosphere, but in this case, the high-temperature strength of high-strength Ni-based heat-resistant alloys is reduced by impurity elements such as oxygen, resulting in a reduction in the joint strength of the joint. .
In order to solve this problem, there is a method of forming a layer of filler metal with a predetermined thickness on the bonding surface of the base metal by vapor depositing or sputtering filler metal in an inert atmosphere such as vacuum, Ar, or N2 . is proposed.

この方法は、接合面の形状が複雑であつても該
接合面には所定の厚みのフイラーメタルの層を形
成することができ、更には、酸素のない清浄な雰
囲気中で継続して拡散接合できるという長所を有
している。
This method can form a filler metal layer of a predetermined thickness on the bonding surface even if the shape of the bonding surface is complex, and further, diffusion bonding can be performed continuously in an oxygen-free clean atmosphere. It has the advantage of being able to

しかし、この方法は一方では、フイラーメタル
が複数の元素を含む複雑な組成の合金(例えば、
特願昭57−125082号で開示された合金)であつた
場合、各成分が、それぞれ蒸着又はスパツタする
割合いは、合金組成における割合いと異なつてし
まうため、接合面に形成されたフイラーメタルの
組成が最初のフイラーメタルの組成と異なつてし
まう。その結果、フイラーメタルの特性が変つて
しまい、接合において当初予定した効果が発揮さ
れなくなることがある。
However, this method requires that the filler metal has a complex composition containing multiple elements (e.g.
In the case of the alloy disclosed in Japanese Patent Application No. 125082/1982, the rate at which each component is deposited or sputtered is different from the rate in the alloy composition, so the filler metal formed on the joint surface is The composition will be different from that of the initial filler metal. As a result, the properties of the filler metal may change, and the originally intended effect of bonding may no longer be achieved.

更には、フイラーメタルが単一の元素から構成
されていた場合でも蒸着若しくはスパツタリング
の速度は一般に小さいので、大きな厚みのフイラ
ーメタルの層を形成するためには多大の時間を要
し、生産性は必ずしも高くない。
Furthermore, even when filler metal is composed of a single element, deposition or sputtering rates are generally slow, so forming a large layer of filler metal takes a lot of time and reduces productivity. Not necessarily expensive.

このようなことから、液相拡散接合方法にあつ
ては、全ゆる組成のフイラーメタルに適応でき、
形状の自由度が大きく、清浄な状態でかつ効率よ
くフイラーメタルを母材の接合面に介在させる方
法が強く求められている。
For these reasons, the liquid phase diffusion bonding method can be applied to filler metals of all compositions.
There is a strong demand for a method that allows a large degree of freedom in shape and efficiently interposes filler metal on the bonding surface of base metals in a clean state.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した問題点を解決し、母材の接
合面に、全ゆる組成のフイラーメタルであつても
迅速、清浄に効率よく、また効率よくフイラーメ
タルを介在させることを目的とする。
An object of the present invention is to solve the above-mentioned problems and to interpose a filler metal quickly, cleanly, and efficiently on the bonding surface of a base material, even if the filler metal has any composition.

〔発明の概要〕[Summary of the invention]

本発明者らは、母材の接合面にフイラーメタル
を介在させる研究の過程で、不活性ガス雰囲気中
で行なうプラズマ溶射法は、出発原料の組成と
変らない組成の層を形成できる、層の形成速度
が大きい、酸素などによる汚染を防止できる、
大気中で行なわれる一般溶射法に比べて、高密
度で空〓のない層を形成できる、などの利点を有
していることに着目して本発明方法を完成するに
到つた。
In the course of research on interposing filler metal on the bonding surface of base materials, the present inventors discovered that plasma spraying, which is carried out in an inert gas atmosphere, can form a layer with the same composition as that of the starting material. High formation rate, can prevent contamination by oxygen, etc.
The method of the present invention was completed based on the fact that it has the advantage of being able to form a layer with high density and no voids, compared to a general thermal spraying method that is carried out in the atmosphere.

すなわち、本発明の拡散接合方法は、不活性ガ
ス雰囲気中でプラズマ溶射法によつて、母材の接
合面にフイラーメタルの層を形成し、その後、母
材の接合面を当接し、ついで前記当接部を、フイ
ラーメタルの融点より高くかつ母材の融点より低
い温度に加熱保持することを特徴とするものであ
る。本発明方法では、まず母材の接合面を常法に
より研磨し、脱脂洗浄したのち、低圧の不活性ガ
ス雰囲気中に置く。通常、不活性ガスはHe、Ar
であり、その真空度は300Torr以下、好ましくは
30〜250Torrである。ついで、接合面に溶射ガン
で所定の組成のフイラーメタルを溶射して溶射層
を形成する。層の厚みは、目的に応じて決定され
るが、通常、数μm〜数百μmである。その後、
接合面を当接し、少なくともこの当接部をフイラ
ーメタルの融点より高く母材の融点より低い温度
に加熱してフイラーメタルを溶融せしめ所定時間
その状態に保持する。雰囲気は真空であることが
好ましい。このとき、必要に応じて、両母材に圧
力を付加してもよい。フイラーメタルが母材に拡
散してここに接合が完了する。
That is, in the diffusion bonding method of the present invention, a layer of filler metal is formed on the bonding surface of the base material by plasma spraying in an inert gas atmosphere, and then the bonding surface of the base material is brought into contact with the bonding surface. The contact portion is heated and maintained at a temperature higher than the melting point of the filler metal and lower than the melting point of the base material. In the method of the present invention, first, the joint surfaces of the base materials are polished by a conventional method, degreased and cleaned, and then placed in a low-pressure inert gas atmosphere. Usually, inert gas is He, Ar
The degree of vacuum is 300 Torr or less, preferably
It is 30 to 250 Torr. Next, a filler metal having a predetermined composition is sprayed onto the joint surface using a spray gun to form a sprayed layer. The thickness of the layer is determined depending on the purpose, but is usually from several μm to several hundred μm. after that,
The joining surfaces are brought into contact, and at least this abutting portion is heated to a temperature higher than the melting point of the filler metal and lower than the melting point of the base material to melt the filler metal and hold in that state for a predetermined period of time. Preferably, the atmosphere is vacuum. At this time, pressure may be applied to both base materials as necessary. The filler metal diffuses into the base metal, completing the bond.

なお本発明に用いるNi基耐熱合金としては酸
素による影響を受け易い高温強度に優れるNi基
合金であれば適宜用いることができるが、特に固
溶強化、析出強化に必要な元素を含有したNi基
耐熱合金を用いることが好ましい。さらに組成的
に述べれば重量%でMo、W、Nb、Ti、Al、B、
Zr、Fe、Hf、Ta、Cの少なくとも1種を0.1〜
10%、ただし合計量で50%以下、3〜25%のCr、
1〜20%のCoを含有したNi合金を用いる事が好
ましく例えば後述の実施例で詳述する
MARM247、IN939等のNi基耐熱合金が挙げら
れる。
As the Ni-based heat-resistant alloy used in the present invention, any Ni-based alloy that is easily affected by oxygen and has excellent high-temperature strength can be used as appropriate. Preferably, a heat-resistant alloy is used. Furthermore, in terms of composition, Mo, W, Nb, Ti, Al, B,
At least one of Zr, Fe, Hf, Ta, and C from 0.1 to
10%, but not more than 50% in total amount, 3-25% Cr,
It is preferable to use a Ni alloy containing 1 to 20% Co, for example as detailed in the Examples below.
Examples include Ni-based heat-resistant alloys such as MARM247 and IN939.

〔発明の実施例〕[Embodiments of the invention]

実施例 1 MARM247(C0.15%、Cr8.5%、Co10%、
Mo0.65%、W10%、Nb0.01%以下、Ti1%、
Al5.5%、B0.015%、Ta3%、Zr0.065%、Hf1.4
%、残部Ni)の母材を2枚用意した。直径28mm
厚み3mm。
Example 1 MARM247 (C0.15%, Cr8.5%, Co10%,
Mo0.65%, W10%, Nb0.01% or less, Ti1%,
Al5.5%, B0.015%, Ta3%, Zr0.065%, Hf1.4
%, balance Ni) were prepared. Diameter 28mm
Thickness: 3mm.

母材の接合面を600番エメリー紙で研磨した後、
トリクレン及びアセトンで洗浄して脱脂処理を旋
した。これらを60TorrのArガス雰囲気中にセツ
トし、その接合面に、C0.08%、Cr8.3%、Co9.6
%、W8.4%、Al2.0%、B3.7%、残部はNiから成
るフイラーメタルの合金粉末をプラズマ溶射し
た。溶射条件は、プラズマガン出力50KW、ガス
速度マツハ2。1秒間の溶射で厚み30μmのフイ
ラーメタル層が形成された。
After polishing the joint surface of the base metal with No. 600 emery paper,
Degreasing was carried out by washing with trichlene and acetone. These were set in an Ar gas atmosphere of 60 Torr, and the bonding surfaces were coated with C0.08%, Cr8.3%, Co9.6
%, W 8.4%, Al 2.0%, B 3.7%, and the balance was Ni. Filler metal alloy powder was plasma sprayed. The spraying conditions were a plasma gun output of 50 KW and a gas velocity of Matsuha 2. A filler metal layer with a thickness of 30 μm was formed by spraying for 1 second.

この層の組成を分析したところ、その組成は用
いた合金粉末の組成と比較して誤差率1%以下の
変動でしかなかつた。
When the composition of this layer was analyzed, it was found that the composition varied with an error rate of less than 1% compared to the composition of the alloy powder used.

ついで、母材の接合面を当接し、これを予め2
×10-5Torrの真空度にした真空槽に移してホツ
トプレス位置にセツトした。
Next, the joint surfaces of the base metals are brought into contact with each other, and this is
It was transferred to a vacuum chamber with a vacuum level of ×10 -5 Torr and set at a hot press position.

2Kg/cm2の圧力を付加しながら1200℃で10分間
加熱保持した後常温にまで冷却した。
The mixture was heated and held at 1200° C. for 10 minutes while applying a pressure of 2 kg/cm 2 and then cooled to room temperature.

接合部の断面を顕微鏡観察したところ、クラツ
ク、ホイドは全く認められず極めて良好な接合状
態であつた。
When the cross section of the joint was observed under a microscope, no cracks or voids were observed, and the joint was in an extremely good state.

実施例 2 材料としてIN939(C0.15%、Cr22.4%、Co19%
W2%、Nb1%、Ti3.7%、Al1.9%、B0.009%、
Ta1.4%、Zr0.1%、残部NI)を準備した。
Example 2 IN939 (C0.15%, Cr22.4%, Co19%) as material
W2%, Nb1%, Ti3.7%, Al1.9%, B0.009%,
Ta 1.4%, Zr 0.1%, balance NI) were prepared.

この材料から図に示したような雄部材と雌部材
を加工し、この雄部材の斜線部分を1000番エメリ
ー紙で研磨した後、トリクレン及びアセトンで洗
浄した。ついでこの雄部材を60TorrのHeとAr混
合ガス雰囲気中(vol比40:60)に入れ、C0.04
%、Cr20%、Co15%、W2%、Al1.0%、B3.6%
残部がNiから成るフイラーメタルの合金粉末
(粒径20〜30μm)を実施例1と同じ条件で溶射
した。雄部材の平坦部には1秒で約30μm、凸部
には2秒で約25μmの層が形成された。
A male member and a female member as shown in the figure were fabricated from this material, and the shaded areas of the male member were polished with No. 1000 emery paper, and then washed with trichlene and acetone. Next, this male member was placed in a He and Ar mixed gas atmosphere of 60 Torr (vol ratio 40:60), and the temperature was increased to C0.04.
%, Cr20%, Co15%, W2%, Al1.0%, B3.6%
Filler metal alloy powder (particle size 20 to 30 μm), the balance of which was Ni, was thermally sprayed under the same conditions as in Example 1. A layer of approximately 30 μm was formed on the flat portion of the male member in 1 second, and a layer of approximately 25 μm was formed on the convex portion in 2 seconds.

これを雌部材と噛み合せ、2×10-5Torrの真
空槽にセツトし、1200℃で24時間加熱保持した。
継手強度の大きい良好な接合部が得られた。
This was engaged with a female member, set in a vacuum chamber of 2×10 -5 Torr, and heated and held at 1200° C. for 24 hours.
A good joint with high joint strength was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明方法は、フイラーメタルの層は不活性
ガス雰囲気中で形成され、また、その後、継続し
て不活性雰囲気中で拡散接合することも可能なの
で、酸素などの影響を受け易すい高強度Ni基耐
熱合金から成る母材の接合に有効であり、接合
面の形状が複雑であつてもプラズマ溶射角度を適
宜に選択することによつて該接合面にフイラーメ
タルの層を容易に形成することができ、しかも、
当然にも接合面とフイラーメタルとのずれは皆無
であり、更には、形成されたフイラーメタル層
の組成は出発原料の組成とほとんど変らず、しか
もその層形成速度は従来の蒸着法、スパツタリン
グ法の場合より数十倍以上と大きいので、厚いフ
イラーメタルの層が要求される場合であつても、
それは短時間で可能である、という効果を奏しそ
の工業的価値は大である。
In the method of the present invention, the filler metal layer is formed in an inert gas atmosphere, and it is also possible to continue diffusion bonding in an inert atmosphere after that. It is effective for joining base materials made of base heat-resistant alloys, and even if the shape of the joint surface is complex, a layer of filler metal can be easily formed on the joint surface by appropriately selecting the plasma spray angle. can be done, and
Naturally, there is no deviation between the bonding surface and the filler metal, and furthermore, the composition of the formed filler metal layer is almost the same as that of the starting material, and the layer formation rate is faster than that of the conventional vapor deposition method or sputtering method. This is several tens of times larger than in the case of
This is effective in that it can be done in a short period of time, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

図は実施例2で用いた母材を示す図である。 1……雌型部材、1′……雄型部材、2……接
合面。
The figure shows the base material used in Example 2. 1... Female member, 1'... Male member, 2... Joint surface.

Claims (1)

【特許請求の範囲】[Claims] 1 真空度が300Torr以下の不活性ガス雰囲気
中、プラズマ溶射法によつて、Ni基耐熱合金か
らなる母材の接合面にフイラーメタルの層を形成
し、その後、母材の接合面を当接し、ついで前記
当接部をフイラーメタルの融点より高くかつ母材
の融点より低い温度に加熱保持することを特徴と
する拡散接合方法。
1. In an inert gas atmosphere with a degree of vacuum of 300 Torr or less, a layer of filler metal is formed on the bonding surface of a base material made of a Ni-based heat-resistant alloy by plasma spraying, and then the bonding surface of the base material is brought into contact. and then heating and maintaining the abutting portion at a temperature higher than the melting point of the filler metal and lower than the melting point of the base material.
JP20467982A 1982-11-24 1982-11-24 Diffusion joining method Granted JPS5994569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20467982A JPS5994569A (en) 1982-11-24 1982-11-24 Diffusion joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20467982A JPS5994569A (en) 1982-11-24 1982-11-24 Diffusion joining method

Publications (2)

Publication Number Publication Date
JPS5994569A JPS5994569A (en) 1984-05-31
JPH0355232B2 true JPH0355232B2 (en) 1991-08-22

Family

ID=16494501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20467982A Granted JPS5994569A (en) 1982-11-24 1982-11-24 Diffusion joining method

Country Status (1)

Country Link
JP (1) JPS5994569A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719534B2 (en) * 1984-11-21 1995-03-06 株式会社日立製作所 Magnetron manufacturing method
JPS62118988A (en) * 1985-11-18 1987-05-30 Hokkaido Joining method for metal using thermally sprayed film of self-fluxing alloy
JPH0671651B2 (en) * 1987-07-10 1994-09-14 北海道 Method of joining metals via thermal spray coating
NL8800902A (en) * 1988-04-08 1989-11-01 Philips Nv METHOD FOR APPLYING A SEMICONDUCTOR BODY TO A CARRIER.
JPH01289583A (en) * 1988-05-16 1989-11-21 Shuichi Kamoda Manufacture of impeller for pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343143A (en) * 1976-09-30 1978-04-19 Tokai Trw & Co Ignition plug
JPS567795A (en) * 1979-06-28 1981-01-27 Dainippon Pharmaceut Co Ltd N-acylcephalosporin derivative and its salt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343143A (en) * 1976-09-30 1978-04-19 Tokai Trw & Co Ignition plug
JPS567795A (en) * 1979-06-28 1981-01-27 Dainippon Pharmaceut Co Ltd N-acylcephalosporin derivative and its salt

Also Published As

Publication number Publication date
JPS5994569A (en) 1984-05-31

Similar Documents

Publication Publication Date Title
US5890274A (en) Method of producing a coating layer on a localized area of a superalloy component
US4691856A (en) Diffusion bonding method using a high energy beam
US3957194A (en) Liquid interface diffusion method of bonding titanium and/or titanium alloy structure
US6223976B1 (en) Process for the assembly or refacing of titanium aluminide articles by diffusion brazing
US5273204A (en) Method for joining materials by metal spraying
GB2134832A (en) Method of etablishing a bond between titanium and an iron-nickel alloy
JPH0355232B2 (en)
US6720086B1 (en) Liquid interface diffusion bonding of nickel-based superalloys
US3106773A (en) Process for bonding zirconium and alloys thereof
EP0922682A1 (en) Method of forming a joint between a ceramic substrate and a metal component
JPH02277760A (en) Constitution member with protecting layer based on nickel or cobalt and preparation thereof
JP2004529269A (en) Assembly comprising molybdenum and aluminum; Method of using an intermediate layer when making a target / backing plate assembly
JPS60191679A (en) Liquid phase diffusion joining method of heat resistant superalloy
EP0066895B1 (en) Method of joining ni-base heat-resisting alloys
JPH0230382B2 (en) REIKYAKUITATSUKITAAGETSUTONOSEIZOHOHO
JPS62158597A (en) Manufacture of multicomponent system congruent melting solder material
JPS60157B2 (en) Manufacturing method of carbide tools
JPH06172993A (en) Diffusion bonded sputtering target assembled body and its production
JPH0147277B2 (en)
JPH01224280A (en) Ceramic-metal conjugate form
JPH04294884A (en) Method of liquid phase diffusion joining of stainless steel
JPH0450107B2 (en)
US20240075546A1 (en) Method for joining, by direct brazing, a first part and a second part, including steps of preparing the surface of at least one of the parts
JPH01179768A (en) Method for bonding ceramic material and metallic material
JPH0569158A (en) Manufacture of complex material composed of intermetallic compound in at least a part