JPH0382742A - Permanent magnet alloy excellent in oxidation resistance - Google Patents
Permanent magnet alloy excellent in oxidation resistanceInfo
- Publication number
- JPH0382742A JPH0382742A JP1217500A JP21750089A JPH0382742A JP H0382742 A JPH0382742 A JP H0382742A JP 1217500 A JP1217500 A JP 1217500A JP 21750089 A JP21750089 A JP 21750089A JP H0382742 A JPH0382742 A JP H0382742A
- Authority
- JP
- Japan
- Prior art keywords
- protective film
- oxidation
- magnet
- oxidation resistance
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003647 oxidation Effects 0.000 title claims abstract description 95
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 95
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 33
- 239000000956 alloy Substances 0.000 title claims abstract description 33
- 230000001681 protective effect Effects 0.000 claims abstract description 61
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 9
- 238000005275 alloying Methods 0.000 claims abstract description 7
- 229910001339 C alloy Inorganic materials 0.000 claims abstract description 3
- 239000013078 crystal Substances 0.000 claims description 38
- 229910052796 boron Inorganic materials 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 abstract description 6
- 238000000576 coating method Methods 0.000 abstract description 6
- 241000221535 Pucciniales Species 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000006229 carbon black Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 229910017112 Fe—C Inorganic materials 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000005347 demagnetization Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 229910052779 Neodymium Inorganic materials 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000004575 stone Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/058—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、耐酸化性の優れた希±11(R)−鉄(Fe
)−硼素(B)−炭素(C)からなる永久磁石合金に関
する。Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to dilute ±11(R)-iron (Fe) having excellent oxidation resistance.
)-Boron (B)-Carbon (C) permanent magnet alloy.
(従来の技術〕
近年、5s−Co系磁石の磁力を凌ぐ次世代の永久磁石
としてR−F e−B系磁石が佐用等によって開示され
て以来、多くの報告がなされてきた。しかしながら、該
磁石は5s−Co系磁石に比べて磁力では優れるものの
、その磁気特性の熱安定性及び耐酸化性が著しく劣り1
例えば特開昭59−46008号公報で開示された永久
磁石材料では実用上耐え得ることは困難である。(Prior Art) In recent years, many reports have been made since R-Fe-B magnets were disclosed by Sayo et al. as next-generation permanent magnets that surpass the magnetic force of 5s-Co magnets. Although the magnet has superior magnetic force compared to 5s-Co magnet, its magnetic properties are significantly inferior in thermal stability and oxidation resistance.
For example, it is difficult for the permanent magnet material disclosed in JP-A-59-46008 to be durable in practical use.
事実、上述報告の多くは耐酸化性に対する欠点を指摘し
その改善に関するものを開示している。In fact, many of the above-mentioned reports point out defects in oxidation resistance and disclose improvements thereto.
この耐酸化性の改善法としては9合金組戒による方法と
、磁石の表面を耐酸化性の保護皮膜で覆う方法に大別さ
れる。Methods for improving this oxidation resistance can be roughly divided into a method using nine alloy combinations and a method of covering the surface of the magnet with an oxidation-resistant protective film.
前者の例として1例えば特開昭59−64733号公報
はFeの一部をCoで置き換えることにより磁石に耐食
性を付与できると教示し、また特開昭63−11493
9号公報はマトリックス相へAI、Zn、Sn等の低融
点金属元素若しくはFe、Co、Ni等の高融点金属元
素を含有せしめることにより耐酸化性が改善されると教
示する。更には特開昭62−133040号公報及び特
開昭63−77103号公報では、f61石中のCが酸
化を促進するとし、このCの含有量を所定以下にするこ
とにより耐酸化性が改善されると教示する。As an example of the former, for example, JP-A No. 59-64733 teaches that corrosion resistance can be imparted to a magnet by replacing part of Fe with Co;
Publication No. 9 teaches that oxidation resistance is improved by incorporating a low melting point metal element such as AI, Zn, Sn, etc. or a high melting point metal element such as Fe, Co, Ni, etc. into the matrix phase. Furthermore, in JP-A-62-133040 and JP-A-63-77103, it is stated that C in F61 stone promotes oxidation, and oxidation resistance is improved by reducing the content of C to a certain level. Teach that it will be done.
しかしながら、これらの合金組成による耐酸化性改善法
だけではその効果に限界があり、実用に耐え得ることは
実際には困難である。このようなことから実用に際して
は前出の特開昭63−114939号公報に示されるよ
うな複雑かつ多数の工程を経て磁石の表面(M1石品の
最外露出表面)を耐酸化性の保護皮膜で被覆することが
必要となる。However, there is a limit to the effectiveness of methods for improving oxidation resistance using these alloy compositions alone, and it is actually difficult to put them into practical use. For this reason, in practical use, the surface of the magnet (the outermost exposed surface of the M1 stone product) is protected against oxidation through a complex and numerous process as shown in the above-mentioned Japanese Patent Application Laid-Open No. 63-114939. It is necessary to cover it with a film.
この磁石高表面への耐酸化性保護皮膜の形成に関しては
、メツキ法、スパッタ法、蒸着法、有機物被膜法等によ
って耐酸化性物質を被覆することが提案されている。し
かし、いずれの場合も磁石の外表面に数十μm以上もの
強固且つ均質な保護膜層を形成させることが必要とされ
るので、その操作は複雑且つ多数工程からなることを余
儀なくされ、これにより、剥離性1寸法精度、更にはコ
ストアップの問題を避けることはできなかった。Regarding the formation of this oxidation-resistant protective film on the high surface of the magnet, it has been proposed to coat the magnet with an oxidation-resistant material by plating, sputtering, vapor deposition, organic coating, or the like. However, in either case, it is necessary to form a strong and homogeneous protective film layer of several tens of micrometers or more on the outer surface of the magnet, so the operation is complicated and requires many steps. However, it was not possible to avoid the problems of peelability, dimensional accuracy, and cost increase.
〔発明が解決しようとする問題点] このように、従来のR−F e−B系、R−Fe−C。[Problems that the invention attempts to solve] In this way, the conventional R-F e-B system, R-Fe-C.
−B系およびR−Fe−Co−B−C系磁石では、耐酸
化性において抜本的な改善効果を得るには至っておらず
、5s−Co系に比べて優れた磁気特性を有し且つ豊富
な資源を背景に安定供給という大きなメリットを有する
にも拘らず、実用レベルでは磁石表面を雰囲気から遮断
するための耐酸化性保護皮膜の形成が余儀なくされ、こ
れによるコストアップ及び寸法精度の変動等から上記メ
リットが大きく損なわれるという問題があった。-B and R-Fe-Co-B-C magnets have not achieved a drastic improvement in oxidation resistance, and have superior magnetic properties and abundance compared to 5s-Co magnets. Despite having the great advantage of stable supply due to the availability of natural resources, at a practical level, it is necessary to form an oxidation-resistant protective film to isolate the magnet surface from the atmosphere, which increases costs and changes in dimensional accuracy. Therefore, there was a problem in that the above-mentioned advantages were greatly impaired.
一般にR−F e−B系磁石は、磁性結晶粒子とBリッ
チ相及びNdリッチ相を含む非磁性相とから構成され、
その酸化機構については、先ず磁石表面又は表面に近い
Bリッチ相から酸化が進行し。Generally, R-F e-B magnets are composed of magnetic crystal grains and a non-magnetic phase including a B-rich phase and a Nd-rich phase.
Regarding the oxidation mechanism, oxidation first progresses from the B-rich phase on or near the magnet surface.
次いでNd1Jツチ相へと移行すると言われている。It is said that the phase then shifts to the Nd1J phase.
このことから、耐酸化性を改善するにはBを可能な限り
低減すること、およびNdリッチ相への耐酸化性付与が
必要となるが、従来技術では実用レベルの高い磁性特性
を得るためにBの含有量を高くせざるを得ないのが実情
であり、またNdリッチ相への耐酸化性付与も著しい成
果を上げていない。Therefore, in order to improve oxidation resistance, it is necessary to reduce B as much as possible and to impart oxidation resistance to the Nd-rich phase, but with conventional technology, it is difficult to obtain high magnetic properties at a practical level. The reality is that the B content has to be increased, and no significant results have been achieved in imparting oxidation resistance to the Nd-rich phase.
例えば前摘の特開昭59−64733号公報ではFeの
一部をCOで置き換えることにより耐食性を付与するこ
とを提案しているが、耐酸化性に対するBの含有量につ
いては一切言及しておらず、1KOe以上の保磁力(i
Hc)を確保するためにB含有量を2〜28原子%とし
ており、 iHcを3 KOeにするためにはB含有量
は少なくとも4原子%必要であるとし、さらに実用レベ
ルの高iHcを得るためにはBの含有量を更に高くする
ことを教示している。このように、Bを多く含有させて
高い磁気特性を確保する場合には、Co添加で耐食性を
付与しても耐酸化性が十分に発揮させることは実際には
困難であり、したがって、かようなりを多く含有する磁
石を実用化するには、該公報の発明者等が述べているよ
うに磁石表面(1石品の最外露出表面)に強固な耐酸化
性保護皮膜の形成が必須となる。For example, JP-A No. 59-64733 by Maezumi proposes imparting corrosion resistance by replacing part of Fe with CO, but does not mention anything about the content of B with respect to oxidation resistance. Coercive force (i
The B content is set at 2 to 28 at% to ensure a high iHc), and in order to achieve an iHc of 3 KOe, the B content is required to be at least 4 at%. teaches that the content of B should be further increased. In this way, when ensuring high magnetic properties by containing a large amount of B, it is actually difficult to fully demonstrate oxidation resistance even if corrosion resistance is imparted by adding Co. As stated by the inventors of the publication, in order to put a magnet containing a large amount of carbon into practical use, it is essential to form a strong oxidation-resistant protective film on the magnet surface (the outermost exposed surface of a single-stone product). Become.
また、前出の特開昭63−114939号公報ではマト
リックス相へA I + Z n、 S n等の低融点
金属元素またはFe、Co、Ni等の高融点金属を含有
せしめることにより活性なNdリッチ相の耐酸化性を改
善することを教示し1例えば該公報に記載された実施例
によれば、焼結体の耐候性試験(60°C×90%RH
)の結果では、磁石表面に赤錆が認められる放置時間は
、比較例の25時間に対して100時間まで改善された
と記されている。しかしながら、このような状態では実
用レベルでの使用は困難であり。Furthermore, in the above-mentioned Japanese Patent Application Laid-Open No. 63-114939, active Nd For example, according to the examples described in the publication, a weather resistance test (60°C x 90% RH) of a sintered body was conducted.
) states that the standing time during which red rust was observed on the magnet surface was improved to 100 hours, compared to 25 hours in the comparative example. However, in such a state, it is difficult to use it at a practical level.
実際には磁石表面への強固な耐酸化性保護皮膜の形成が
必要となる。したがって、この場合にも磁石自身の抜本
的な耐酸化性の改善は困難である。なお、この公報も耐
酸化性に対するBの含有量については一切言及しておら
ず、実施例で示されたBの含有量は3.5〜6.7原子
%であることから前出の特開昭59−46008号公報
で開示する2〜28原子%の範囲内のBの含有を意図し
ているものと考えてよい。In reality, it is necessary to form a strong oxidation-resistant protective film on the magnet surface. Therefore, in this case as well, it is difficult to drastically improve the oxidation resistance of the magnet itself. Note that this publication also makes no mention of the content of B with respect to oxidation resistance, and since the content of B shown in the examples is 3.5 to 6.7 at%, the above-mentioned characteristics do not apply. It may be considered that B is intended to be contained within the range of 2 to 28 at % disclosed in JP-A-59-46008.
本発明の目的は、このようなR−Fe−B−系永久磁石
の問題、とりわけ耐酸化性の問題を解決することにあり
、従来材のように磁石面の最外露出表面に耐酸化性保護
皮膜を形威しなくても、高い磁気特性を保持しながら該
磁石自身に優れた耐酸化性を付与することにある。The purpose of the present invention is to solve the problems of such R-Fe-B-based permanent magnets, especially the problem of oxidation resistance. The object of the present invention is to provide the magnet itself with excellent oxidation resistance while maintaining high magnetic properties without the need for a protective film.
本発明者等は、これらの問題点を解決するための手段と
して、磁石表面を耐酸化性保護膜で被覆するという従来
の巨視的な観念ではなく、微視的な観念による抜本的な
耐酸化性の改善を鋭意検討した結果、磁石中の磁性結晶
粒の各々を耐酸化性保護膜で被覆するという従来技術で
は予想すら困難であったtfr規技術を見出すに至り、
耐酸化性が画期的に高められた新規な永久磁石合金の提
供を可能とした。更には、従来技術ではもはや高い磁気
特性が得られず実用範囲外とされていたB含有量2原子
%未満領域でも実用に耐え得る良好な磁気特性を付与し
得ることを新たに見出した。As a means to solve these problems, the present inventors have developed drastic oxidation resistance based on a microscopic concept, rather than the conventional macroscopic concept of coating the magnet surface with an oxidation-resistant protective film. As a result of intensive research into improving properties, we discovered a TFR standard technology that was difficult to predict using conventional technology, in which each magnetic crystal grain in the magnet is coated with an oxidation-resistant protective film.
This made it possible to provide a new permanent magnet alloy with dramatically improved oxidation resistance. Furthermore, we have newly discovered that it is possible to provide good magnetic properties that can withstand practical use even in the B content range of less than 2 at %, which was considered to be out of the practical range because high magnetic properties could no longer be obtained using conventional techniques.
すなわち本発明は、R−Fe−B−C系合金磁石(但し
、RはYを含む希土類元素の少なくとも1種)において
、該合金の磁性結晶粒の各々が耐酸化性保g111!で
覆われており、この耐酸化性保護皮膜は該磁性結晶粒を
構成している合金元素の実質上全てを含み且つその0.
1〜16重量%がCであることを特徴とする耐酸化性の
優れたR−Fe−B−C系永久磁石合金を提供するもの
である。ここで、該磁性結晶粒は粒径が好ましくは0.
5〜50μ−の範囲にあり、この粒径の各結晶粒を覆っ
ている耐酸化性保護膜の厚みは0.001〜15μ−の
範囲である。That is, the present invention provides an R-Fe-B-C alloy magnet (where R is at least one rare earth element including Y) in which each of the magnetic crystal grains of the alloy has an oxidation resistance of g111! This oxidation-resistant protective film contains substantially all of the alloying elements constituting the magnetic crystal grains, and contains 0.
The present invention provides an R-Fe-B-C permanent magnet alloy with excellent oxidation resistance, characterized by containing 1 to 16% by weight of C. Here, the magnetic crystal grains preferably have a grain size of 0.
The thickness of the oxidation-resistant protective film covering each crystal grain of this grain size is in the range of 0.001 to 15 μ-.
本発明磁石の好ましい組成(磁性結晶粒と耐酸化性保護
膜の全体の組成)は、原子百分比で、R(Yを含む希土
類元素の少なくとも1種):10〜30%、B:2%未
満(0%を含まず)、c:o、s〜20%、残部がFe
および製造上不可避な不純物からなり、Bは2%以上で
も耐酸化性の効果は充分に発揮されるものではあるが、
特にBが2%未満と少ない場合に磁気特性も充分に示し
ながら耐酸化性も顕著に良好となるものである。The preferred composition of the magnet of the present invention (total composition of magnetic crystal grains and oxidation-resistant protective film) is, in atomic percentage, R (at least one rare earth element containing Y): 10 to 30%, B: less than 2%. (excluding 0%), c:o, s~20%, balance is Fe
and impurities that are unavoidable during manufacturing, and although the oxidation resistance effect is fully exhibited even with B content of 2% or more,
In particular, when the B content is as low as less than 2%, the oxidation resistance is significantly improved while exhibiting sufficient magnetic properties.
本発明による永久磁石は、従来のように磁石の最外表面
を耐酸化性の保護皮膜で被覆しなくても。The permanent magnet according to the present invention does not require coating the outermost surface of the magnet with an oxidation-resistant protective film as in the conventional case.
磁石自身が極めて優れた耐酸化性を有するので。The magnet itself has extremely high oxidation resistance.
例えば前出の60℃×90%RHの恒温恒温下で504
0時間、磁石表面を露出したまま放置してもBrおよび
IHc(Dfliltnは各々0.3〜10%、0〜1
0%と極めて少ない、したがって、このような環境下で
も表面を被覆する保護膜の形成は不要となる。かような
本発明磁石の耐酸化特性ひいては耐減磁性は従来のもの
では達成し得なかったものであり5この点で全く新規な
永久磁石であると言える。For example, under the constant temperature of 60℃ x 90%RH mentioned above, 504
Even if the magnet surface is left exposed for 0 hours, Br and IHc (Dfliltn are 0.3 to 10% and 0 to 1%, respectively).
Therefore, even under such an environment, it is not necessary to form a protective film to cover the surface. The oxidation resistance and demagnetization resistance of the magnet of the present invention have not been achieved with conventional magnets, and in this respect it can be said to be a completely new permanent magnet.
一方1本発明磁石の磁気特性については1等方性焼結磁
石ではBr上4000(G)、 1llc≧4000
(Oe) 。On the other hand, regarding the magnetic properties of the magnet of the present invention, the isotropic sintered magnet has 4000 (G) on Br, and 1llc≧4000.
(Oe).
(BH)wax≧4 M −G ・Oe、異方性焼結磁
石ではBr上7000(G)、 iHc≧4000(O
e)、 (B H)mar≧10M−G・Oeであり
、従来のNd−Fe−B系永久磁石と同等以上の値を有
する。(BH) wax≧4 M −G ・Oe, anisotropic sintered magnet has 7000 (G) on Br, iHc≧4000 (O
e), (BH)mar≧10M-G·Oe, and has a value equal to or higher than that of conventional Nd-Fe-B permanent magnets.
二のような特性は1本発明磁石を構成している各磁性結
晶粒の周囲を適切なC含有量をもつ非磁性膜で覆ったこ
とによって得られたものである。The second characteristic is obtained by covering each magnetic crystal grain constituting the magnet of the present invention with a nonmagnetic film having an appropriate C content.
すなわち1本発明者等は非磁性相である粒界相に上記C
(炭素)の所定量を含有せしめることにより、この非磁
性相に著しい耐酸化性機能を付与することができること
を見い出した。この耐酸化機能をもつ非磁性膜で各磁性
結晶粒を被覆することにより、従来と同等のB含有量で
も充分な耐酸化性機能を示すことができること、更に該
C含有保!1膜の形成はB量の低減を可能とし、これに
より2原子%未満でも磁気特性は従来と同等レベル以上
でありながら耐酸化性がN期的に改善さることを見出し
た。In other words, the present inventors added the above C to the grain boundary phase, which is a non-magnetic phase.
It has been found that by containing a predetermined amount of (carbon), this nonmagnetic phase can be given a remarkable oxidation-resistant function. By coating each magnetic crystal grain with this non-magnetic film having an oxidation-resistant function, it is possible to exhibit sufficient oxidation-resistant function even with the same B content as before, and furthermore, it is possible to exhibit sufficient oxidation-resistant function even with the same B content as before. It has been found that the formation of one film makes it possible to reduce the amount of B, and as a result, even if it is less than 2 atomic %, the magnetic properties are at the same level or higher than conventional ones, and the oxidation resistance is improved over the N period.
〔発明の詳細な
説明磁石はC(炭素)の利用の仕方に大きな特徴がある
。従来より、この種の磁石において一般にCは不可避的
に混入する不純物元素とされており、特別のことがない
限り積極的に添加する合金元素とは扱われていなかった
0例えば前出特開昭59−46008号公報では、磁石
中のBの含有量を2〜28原子%と規定しており2原子
%未溝のB量では保磁力iHeがI KOe未満になる
ことを指摘したうえ、コストダウンのメリットからBの
一部をCで置換することが可能であると述べられている
に過ぎない、さらに特開昭59−163803号公報に
はR−FeCo−B−C系磁石が開示され、[石中のB
の含有量を2〜28原子%、Cの含有量を4原子%以下
と規定し、BとCの具体的な併用を開示しているが。[Detailed Description of the Invention Magnets have a major feature in the way C (carbon) is used. Conventionally, C has generally been regarded as an impurity element that is unavoidably mixed into this type of magnet, and has not been treated as an alloying element that is actively added unless there is a special case. Publication No. 59-46008 specifies the content of B in the magnet as 2 to 28 at.%, and points out that with an ungrooved B content of 2 at.%, the coercive force iHe becomes less than IKOe. It merely states that it is possible to replace a part of B with C due to the merits of down, and furthermore, JP-A-59-163803 discloses an R-FeCo-B-C magnet. , [Ishinaka no B
The content of B and C is defined as 2 to 28 atomic %, and the content of C is 4 atomic % or less, and specific combinations of B and C are disclosed.
Cの併用にも拘らずBの含有量を2原子%以上を必須と
し、2原子%未満のBilでは上記特開昭59−460
08号公報と同様にiHcがI KOe未満となると説
明されている。すなわち、該公報が指摘するように、C
は磁気特性を低下させる不純物であると把握されており
1例えば粉末の成形時に用いる滑剤等からのCの混入は
不可避であり、又、これを完全に取り除く操作はコスト
アップを招くという理由からハードフェライト磁石相当
のBr4000Gまでなら、Cの含有量として4原子%
以下を許容できると提案するものであり9Cは磁気特性
については消極的な作用をもつものであり、必ずしもC
を必須とはしていない。またC含有の耐酸化性保護II
I(非磁性相)の形成については全く示唆されていない
。Despite the combined use of C, the content of B must be at least 2 at.
Similar to the 08 publication, it is explained that iHc is less than IKOe. That is, as the publication points out, C
It is understood that C is an impurity that deteriorates magnetic properties.1 For example, the contamination of carbon from lubricants used during powder molding is unavoidable, and it is difficult to completely remove it because it increases costs. For up to Br4000G, which is equivalent to a ferrite magnet, the C content is 4 atomic%.
It is proposed that the following can be tolerated, and 9C has a negative effect on magnetic properties, so C
is not required. In addition, C-containing oxidation-resistant protection II
There is no suggestion whatsoever about the formation of I (non-magnetic phase).
さらに特開昭62−13304号公報ではR−Fe−C
o−B−C系磁石において、耐酸化性を改善するために
はC量が多いと良くないと教示し、Cの含有量を0.0
5重量%(原子百分比で約0.3%)以下に抑制するこ
とを提案し、更に他の出願人による特開昭63−771
03号公報でも同じ目的からCを1000pp+w以下
にすることを提案している。このように従来においてC
は磁気特性および耐酸化性について消極的元素とされて
おり、必須の添加元素とはされていなかった。Furthermore, in JP-A-62-13304, R-Fe-C
In o-B-C magnets, it is taught that a large amount of C is not good in order to improve oxidation resistance, and the C content is set to 0.0.
5% by weight (approximately 0.3% in terms of atomic percentage)
Publication No. 03 also proposes to reduce C to 1000 pp+w or less for the same purpose. In this way, in the past, C
was considered to be a negative element in terms of magnetic properties and oxidation resistance, and was not considered an essential additive element.
本発明者等は、CをBの単なる置換元素として含有させ
るのではなく1Mi性結高結晶包囲する非磁性相(粒界
〉中にCを積極的に含有させるという添加の仕方をする
ならば、従来の常識に反してCは磁石の耐酸化性に大き
く寄与できることを見い出したものであり、しかも、こ
れによって、m気持性の向上が図れることも明らかとな
った。すなわち、このような非磁性相へのCの含有によ
って、Bの含有量が公知の通常範囲であっても従来に比
べて耐酸化性が改善され、特に2原子%未溝のB量の場
合にはその効果が更に著しいものになることがわかった
0例えば従来ではBの含有量が2原子%未満ではiHc
がI KOe以下になるとされていたのであるが1本発
明では2原子%未溝のB量であってもiHcは4 KO
e以上となる。このような本発明による新規な効果が磁
性結晶粒の各々を包囲するC含有耐酸化性保護膜の形成
によりもたらされ、このことから、これまでの耐酸化性
の劣化及び磁気特性の低下をもたらしていたCを消極元
素とする従来磁石とは全く異なり、Cを必須とする新規
な磁石の発明を完成することができた。The present inventors have proposed an additive method in which C is actively included in the non-magnetic phase (grain boundaries) surrounding the 1Mi crystals, instead of simply containing C as a replacement element for B. It was discovered that, contrary to conventional wisdom, C can greatly contribute to the oxidation resistance of magnets, and it has also become clear that it can improve m-feelability. By including C in the magnetic phase, the oxidation resistance is improved compared to the conventional one even if the B content is in the known normal range, and the effect is even more improved when the B content is 2 atomic % ungrooved. For example, in the past, when the B content was less than 2 at%, iHc
However, in the present invention, even if the amount of ungrooved B is 2 atomic %, iHc is 4 KOe.
It becomes more than e. Such novel effects of the present invention are brought about by the formation of a C-containing oxidation-resistant protective film that surrounds each magnetic crystal grain, and as a result, the deterioration of oxidation resistance and deterioration of magnetic properties, which have been observed up to now, can be avoided. Completely different from conventional magnets that use C as a negative element, we were able to complete the invention of a new magnet that requires C as an essential element.
この場合、磁性結晶粒の各々を包囲するC含有耐酸化性
保護膜は、C以外に磁性結晶粒を構成している合金元素
の実質上全てを含むものである。In this case, the C-containing oxidation-resistant protective film surrounding each of the magnetic crystal grains contains substantially all of the alloying elements constituting the magnetic crystal grains other than C.
このようなC含有耐酸化性保護膜の形成は1M1石中に
おける磁性結晶粒子間に存在する粒界層にCを含有せし
めることにより可能となる。その理由については以下の
ように推察する。つまり、該保護膜は上記磁性結晶粒を
構成している合金元素の実質上全てを含むことから、特
にR−F e−C金属間化合物の生成によるところが大
きいと考える。Formation of such a C-containing oxidation-resistant protective film is possible by incorporating C into the grain boundary layer existing between the magnetic crystal grains in 1M1 stone. The reason for this is inferred as follows. In other words, since the protective film contains substantially all of the alloy elements constituting the magnetic crystal grains, it is believed that this is largely due to the formation of R-Fe-C intermetallic compounds.
一般に希土類元素は錆やすく又希土類元素の炭化物は加
水分解されやすいと言われている。しかしながら1本発
明による保護膜では不定比なR−F e−C系の金属間
化合物が生成していると推察されこれにより上記欠点が
抑制されると考えられる。It is generally said that rare earth elements are easily rusted and carbides of rare earth elements are easily hydrolyzed. However, in the protective film according to the present invention, it is assumed that a non-stoichiometric R-Fe-C type intermetallic compound is generated, and this is thought to suppress the above-mentioned drawbacks.
このように1本発明者等は個々の磁性結晶粒をC含有耐
酸化性保護膜で被覆することにより耐酸化性を著しく高
め、更にはB含有量の低減により一層その効果が著しく
なることを見い出し、公知の技術では困難であった良好
な永久磁石を発明するに至った。In this way, the present inventors have found that oxidation resistance is significantly increased by coating individual magnetic crystal grains with a C-containing oxidation-resistant protective film, and that this effect becomes even more significant by reducing the B content. This discovery led to the invention of a good permanent magnet, which was difficult to achieve using known techniques.
このC含有耐酸化性保護膜は、前記のように磁性結晶粒
を構成している各元素の実質的に全てを含んでおり、且
つそのC含有量は保護膜&l戒において0.1〜16重
量%であることが必要である。すなわち該保1膜中のC
は磁石に耐酸化性を付与するだけでなく、Bの減少に伴
うiHcの低下を抑制する効果をもたらすことから、そ
の含有量は保護膜の組成において好ましくは0.1〜1
も重量%さらに好ましくは0.2〜12重量%を必須と
する。Cの含有量が0.1重量%未満では耐酸化性を付
与することが出来ず、またjHcが4 KOe未満とな
る。一方保護膜中のC量が16重量%を超えると磁石の
Brの低下が著しく、もはや実用が困難となる。尚。This C-containing oxidation-resistant protective film contains substantially all of the elements constituting the magnetic crystal grains as described above, and the C content is in the range of 0.1 to 16 It is necessary that the amount is % by weight. That is, C in the protective film
Since it not only imparts oxidation resistance to the magnet but also has the effect of suppressing the decrease in iHc due to the decrease in B, its content is preferably 0.1 to 1 in the composition of the protective film.
% by weight, more preferably from 0.2 to 12% by weight. If the C content is less than 0.1% by weight, oxidation resistance cannot be imparted, and jHc becomes less than 4 KOe. On the other hand, if the amount of C in the protective film exceeds 16% by weight, the Br content of the magnet will drop significantly, making it difficult to put it into practical use. still.
本発明磁石において、この保護膜の組成成分としては、
C以外にも磁性結晶粒とはその量比が異なるとしても磁
性結晶粒を構成している合金元素の実質上全てを含む、
この保護膜の厚みについては個々の磁性結晶粒を均一に
被覆してさえおれば。In the magnet of the present invention, the composition of the protective film is as follows:
In addition to C, it contains substantially all of the alloying elements that make up the magnetic crystal grains, even if their quantitative ratios differ from those of the magnetic crystal grains.
As for the thickness of this protective film, as long as it covers each magnetic crystal grain uniformly.
その厚みに依存せず耐酸化性は実質的に保持されるが、
膜厚が0.001 a m未満ではiHcの低下が著し
く15μ−を超えるとB「がもはや本発明で意図するイ
直を満足しなくなるので、 0.001μ−〜15μ−
の範囲、好ましくは0.005μ圃〜12μ−の範囲と
するのがよい、なお、上記保rJHの厚みは粒界三重点
も含むものである。この保護膜の厚みはTlを用いて測
定することができる (後記の実施例でもこの測定によ
った)
一方、この耐酸化性保護膜で囲われる各磁性結晶粒自身
は1周知のR−Fe−B−(C)系永久磁石と同様の&
[l或であってもよい。しかし、Bが低量であっても本
発明磁石の場合には良好な磁気特性を発現できる0本発
明の合金磁石の組成〈磁性結晶粒と耐酸化性保護膜とを
併せた全体の組成)は好ましくは原子百分比で、R:1
0〜30%、B:2%未満(0%を含まず)、C1,5
〜20%1残部:Feおよび製造上不可避な不純物から
なる。Although oxidation resistance is substantially maintained regardless of its thickness,
If the film thickness is less than 0.001 am, the decrease in iHc will be significant, and if it exceeds 15 μ-, B' will no longer satisfy the directivity as intended by the present invention.
It is preferable to set the thickness in the range of 0.005 μm to 12 μm. Note that the thickness of the above-mentioned RJH includes the grain boundary triple point. The thickness of this protective film can be measured using Tl (this measurement was also used in the examples described later).On the other hand, each magnetic crystal grain itself surrounded by this oxidation-resistant protective film is a well-known R-Fe film. -B-Similar to (C) series permanent magnet &
[l or may be. However, even if the amount of B is low, the magnet of the present invention can exhibit good magnetic properties.0 Composition of the alloy magnet of the present invention (total composition including magnetic crystal grains and oxidation-resistant protective film) is preferably in atomic percentage, R:1
0 to 30%, B: less than 2% (not including 0%), C1,5
~20% 1 balance: Consists of Fe and impurities unavoidable in manufacturing.
本発明磁石中の総C含有量は好ましくは0.5〜20原
子%である。磁石中の総C含有量が20原子%を超える
とBrの低下が著しく1本発明で目的とする等方性焼結
磁石としてのBr≧4KG、並びに異方性焼結磁石とし
てのBr≧7KGの値を満足しなくなる。一方、0.5
原子%未満ではもはや耐酸化性を付与することが困難に
なる。このように。The total C content in the magnet of the present invention is preferably 0.5 to 20 at.%. When the total C content in the magnet exceeds 20 at%, the Br decreases significantly.1 Br≧4KG as an isotropic sintered magnet and Br≧7KG as an anisotropic sintered magnet, which is the objective of the present invention. The value of is no longer satisfied. On the other hand, 0.5
If it is less than atomic %, it becomes difficult to impart oxidation resistance. in this way.
磁石中のMC含有量としては好ましくは0.5〜2゜原
子%とするが、前述の耐酸化性保護膜中のCは耐酸化性
を付与するだけでなく、Bの減少に伴う1)1cの低下
を抑制する効果をもたらすことから。The MC content in the magnet is preferably 0.5 to 2 at%, but the C in the oxidation-resistant protective film described above not only provides oxidation resistance, but also reduces the amount of B (1) This is because it has the effect of suppressing the decrease in 1c.
その含有量は保護膜のIjlF′Ii、において0.1
−16重量%、好ましくは0.2〜12重量%を必須と
する。Cの原料としてはカーボンブラック、高純度カー
ボンまたはNd−C,Fe−C等の合金を用いることが
できる。Its content is 0.1 in IjlF'Ii of the protective film.
-16% by weight, preferably 0.2-12% by weight. As the raw material for C, carbon black, high purity carbon, or alloys such as Nd-C and Fe-C can be used.
Rは希土類元素であってY、La、Ce、Nd、Pr。R is a rare earth element such as Y, La, Ce, Nd, or Pr.
T b+ D y、H01E r、 S m、G +j
+ E u、P m、Tm、Y b及びLuのうち一種
又は二種以上が用いられる。尚。T b+ D y, H01E r, S m, G +j
+One or more of Eu, Pm, Tm, Yb, and Lu are used. still.
二種以上の混合物であるミツシュメタル、ジジム等も用
いることができる。ここでRを好ましくは10〜30原
子%とするのは、この範囲内ではBrが実用上非常に優
れているためである。Mixtures of two or more of them, such as mitshu metal and didim, can also be used. The reason why R is preferably set to 10 to 30 atomic % here is because Br is practically excellent within this range.
Bとしては、純ボロン又はフェロボロンを用いることが
でき、その含有量は公知の範囲である2原子%を超えて
も従来技術に比べて耐酸化性は著しく改善され9本発明
の前記目的が達成されるのであるが、好ましくはBは2
原子%未満、更に好ましくは1.8原子%以下において
より一層の効果がある。他方、B無添加では耐酸化性は
良好となるもののiHcが極端に低下し1本発明の目的
を達成できなくなる。フェロボロンとしてはAI、Si
等の不純物を含有するものでも用いることができる。As B, pure boron or ferroboron can be used, and even if its content exceeds the known range of 2 at. However, preferably B is 2
Even greater effects are obtained when the content is less than atomic %, more preferably 1.8 atomic % or less. On the other hand, if no B is added, although the oxidation resistance is good, the iHc is extremely reduced, making it impossible to achieve the object of the present invention. As ferroboron, AI, Si
It is also possible to use materials containing impurities such as.
本発明の永久磁石合金は、前述のように、厚みが好まし
くは0.001〜15μII+ さらに好ましくはo
、oos〜12μmの範囲のC含有耐酸化性保護膜で各
々の磁性結晶粒が覆われているものであるが、その磁性
結晶粒の粒径は好ましくは0.5〜50μm、さらに好
ましくは1〜30μ−の範囲にある。磁性結晶粒の粒径
が0.5μ−未満になると1llcが4 KOe未満と
なり、また50 tt mを超えるとiHcの低下が著
しくなり9本発明磁石の特徴が損なわれる。なおこの結
晶粒の粒径の測定はSEHによって、またMi戒分析は
l!PMAを用いて正確に行うことができる (後記実
施例でもこれらの測定を行った)。As mentioned above, the permanent magnet alloy of the present invention preferably has a thickness of 0.001 to 15 μII + more preferably o
Each magnetic crystal grain is covered with a C-containing oxidation-resistant protective film in the range of . ~30μ-. When the grain size of the magnetic crystal grains is less than 0.5 μ-, 1 llc becomes less than 4 KOe, and when it exceeds 50 tt m, the iHc decreases significantly and the characteristics of the magnet of the present invention are impaired. The grain size of this crystal grain was measured by SEH, and the Mi precept analysis was performed by l! This can be performed accurately using PMA (these measurements were also carried out in Examples described later).
本発明の永久磁石を製造する方法としては、該永久磁石
合金が焼結体の場合には、溶解・鋳造・粉砕・成形・焼
結、若しくは溶解・鋳造・粉砕・成形・焼結・熱処理の
一連の工程からなる従来同様の方法でも作製可能である
が9好ましくは上記製造プロセスにおいて、鋳造後に該
鋳造合金を熱処理する工程を導入するか、または粉砕時
若しくは粉砕後にC原料の一部若しくは全量を二次添加
する工程を導入すること、さらにはこの二つの工程を組
合せて導入することによって1有利に製造することがで
きる。他方、該永久磁石合金が鋳造合金である場合には
、熱間塑性加工法を用いることによって、前述の効果を
発揮する良好な本発明の永久磁石合金を作製することが
できる。When the permanent magnet alloy of the present invention is a sintered body, the method for producing the permanent magnet of the present invention includes melting, casting, crushing, shaping, and sintering, or melting, casting, crushing, shaping, sintering, and heat treatment. Although it can be produced by a conventional method consisting of a series of steps, it is preferable to introduce a step of heat-treating the cast alloy after casting in the above manufacturing process, or to introduce a step of heat-treating the cast alloy after casting, or to reduce part or all of the C raw material during or after pulverization. It can be advantageously produced by introducing a step of secondarily adding , or by introducing a combination of these two steps. On the other hand, when the permanent magnet alloy is a cast alloy, a good permanent magnet alloy of the present invention that exhibits the above-mentioned effects can be produced by using a hot plastic working method.
以下に実施例を挙げて本発明磁石の特性を明らかにする
。Examples are given below to clarify the characteristics of the magnet of the present invention.
〔実施例1〕
原料として純度99.9%の電解鉄、ボロン含有量19
.32%のフェロポロン合金、純度99.5%のカーボ
ンブラックおよび純度98.5%(不純物として他の希
土類金属を含有する)ネオジウム金属を使用し9組成比
(原子比)として18Nd 71Fe IB 3Cとな
るように計量・配合し、真空中、高周波誘導炉で熔解し
た後、水冷銅鋳型中に鋳込み9合金塊を得た。このよう
にして得られた合金塊をショークラッシャーで10〜1
5mmに破砕し1次いで700’Cで5時間保持した後
50”C/分の速度で冷却した。[Example 1] Electrolytic iron with a purity of 99.9% as a raw material, boron content of 19
.. Using 32% ferroporon alloy, 99.5% pure carbon black and 98.5% pure neodymium metal (contains other rare earth metals as impurities), the composition ratio (atomic ratio) of 9 is 18Nd 71Fe IB 3C. After weighing and blending in the following manner and melting in a high frequency induction furnace in a vacuum, alloy 9 ingots were cast into a water-cooled copper mold. The alloy ingot obtained in this way was crushed by a show crusher for 10 to 1
It was crushed into pieces of 5 mm, held at 700'C for 5 hours, and then cooled at a rate of 50'C/min.
更に、該合金塊をアルゴンガス中でスタンプミルを用い
て一100meshまで粗砕した後、U*比(原子比)
が18Nd 71Fe IB IOCとなるように、
更に純度99.5%のカーボンブラックを該粗砕物に添
加し1次いで、振動ミルを用いて平均粒子径5μmまで
粉砕した。このようにして得られた合金粉末を20KO
eの磁界中1 ton/c−の圧力で形成した後1アル
ゴンガス中で1100°Cで1時間保持した後1急冷し
、焼結体を得た。Furthermore, after crushing the alloy ingot to 1100 mesh using a stamp mill in argon gas, the U* ratio (atomic ratio)
So that it becomes 18Nd 71Fe IB IOC,
Furthermore, carbon black with a purity of 99.5% was added to the crushed material, and then it was pulverized to an average particle size of 5 μm using a vibration mill. 20KO of the alloy powder thus obtained
A sintered body was obtained by forming the sintered body at a pressure of 1 ton/c- in a magnetic field of 300° C., then holding it at 1100° C. for 1 hour in argon gas, and then rapidly cooling it.
なお、比較例1として、カーボンブラックを使用しなか
った以外は、上記実施例と同一とし1組成比(原子比)
が18Nd 76Fe 6Bとなるように計量・配合し
、実施例工と同様に(但しカーボンブランクは無添加)
溶解後、II砕、@粉砕、磁場成形し2次いで焼結、急
冷して焼結体を得た。Comparative Example 1 was the same as the above example except that carbon black was not used. 1 composition ratio (atomic ratio)
Weigh and mix so that 18Nd 76Fe 6B becomes 18Nd 76Fe 6B, and do the same as in the example process (however, no carbon blank is added).
After melting, the mixture was crushed by II, crushed @, and formed in a magnetic field, followed by sintering and quenching to obtain a sintered body.
このようにして得られた焼結体の耐酸化性の評価(耐候
性状M)として温度60℃、湿度90%の恒温・恒温下
6ケ月間(5040時間〉放置した時のBr1Hc減磁
率を表1および第1図に示した。As an evaluation of the oxidation resistance (weather resistance property M) of the sintered body thus obtained, the Br1Hc demagnetization rate when left at a constant temperature of 60°C and 90% humidity for 6 months (5040 hours) is shown. 1 and FIG.
第1図から明らかのように、実施例1の焼結体(C含有
保護膜で各磁性結晶粒を被覆してなる焼結体)では6ケ
月後のfIjim率がBr(実線) : −0,36%
、 Hfc(破線)ニー0.1%と極めて小さく、耐酸
化性が著しく良好であることが認められる。これに対し
て、該C含有保護膜をもたない比較例1の焼結体ではわ
ずか1ケ月(720時間)後のKm率がBrニー9.8
%、 1)lc: 3.0%となり、これ以上の放置
時間では錆が激しく測定不能となった。As is clear from FIG. 1, in the sintered body of Example 1 (the sintered body in which each magnetic crystal grain is coated with a C-containing protective film), the fIjim ratio after 6 months is Br (solid line): -0 ,36%
, Hfc (broken line) was extremely small at 0.1%, and it was recognized that the oxidation resistance was extremely good. On the other hand, in the sintered body of Comparative Example 1 which does not have the C-containing protective film, the Km ratio after only one month (720 hours) was 9.8%.
%, 1) lc: 3.0%, and if left for any longer than this, rust would be severe and measurement would be impossible.
また、実施例1の焼結体の組織をSEMで観察した結果
を第2図の写真に、さらにEPHAを用いたCおよびN
d元素のライン分析結果を第3図の写真に示した。なお
第4図は、第3図の写真中のライン分析線を写し取った
各元素のライン線を示したものである。これらの写真か
ら磁性結晶粒はCを含有する耐酸化性保護膜で被覆され
ており、且つ大部分のCはN d Uツチの該保護膜に
存在していることがわかる。なお、保護膜におけるC含
有量は6.1重量%であった。また磁性結晶粒の粒径を
焼結組織の58M写真から100個を測定したところそ
の範囲は0.7〜25μmであった。一方、 TEMで
測定した保W1膜の厚みは0.01〜5.6μmであっ
た。これらの値を後記の表1に示した。また磁気特性と
してVSMを用いて測定したBr、+Na及び(B H
) maxの値を表1に示した。In addition, the results of observing the structure of the sintered body of Example 1 with an SEM are shown in the photograph in Figure 2, and furthermore, C and N using EPHA are shown.
The line analysis results for element d are shown in the photograph in FIG. Note that FIG. 4 shows the lines of each element obtained by copying the line analysis lines in the photograph of FIG. 3. These photographs show that the magnetic crystal grains are covered with an oxidation-resistant protective film containing C, and that most of the C is present in the N d U protective film. Note that the C content in the protective film was 6.1% by weight. Furthermore, when the grain size of 100 magnetic crystal grains was measured from a 58M photograph of the sintered structure, the range was 0.7 to 25 μm. On the other hand, the thickness of the W1 film measured by TEM was 0.01 to 5.6 μm. These values are shown in Table 1 below. In addition, the magnetic properties of Br, +Na and (B H
) The values of max are shown in Table 1.
このように本発明による永久磁石合金は比較例1の公知
のものに比べて耐酸化性が著しく優れ。As described above, the permanent magnet alloy according to the present invention has significantly better oxidation resistance than the known one of Comparative Example 1.
また磁石特性も同等以上であることがわかる。It can also be seen that the magnetic properties are the same or better.
〔実施例2〜6)
原料の溶解時に表1に示すボロン(B)itになるよう
に計量・配合する以外は全て実施例1と同様の操作を行
い焼結体を得た。[Examples 2 to 6] A sintered body was obtained by carrying out the same operations as in Example 1 except that the raw materials were measured and blended so that the boron (B) it as shown in Table 1 was obtained when melting the raw materials.
なお、比較例2はポロン量をO原子%とした例であり、
ボロンを配合しなかった以外は上記と同様な操作で焼結
体を得たものである。In addition, Comparative Example 2 is an example in which the amount of poron is O atomic %,
A sintered body was obtained in the same manner as above except that boron was not blended.
得られた各焼結体の耐酸化性、保護膜におけるCI、(
i性結晶粒径、保護膜の厚み2Mi気特性を実施例1と
同一の方法で評価し、その結果を表1に記載示した。ま
た、実施例5および6の耐酸化性評価結果を第1図に併
記した。Oxidation resistance of each obtained sintered body, CI in the protective film, (
The i-type crystal grain size and the thickness of the protective film were evaluated in the same manner as in Example 1, and the results are shown in Table 1. Further, the oxidation resistance evaluation results of Examples 5 and 6 are also shown in FIG.
これらの結果から1本発明のC含有保護膜をもつ焼結体
は、長期にわたって減磁率が極めて小さく耐酸化性に優
れていることがわかる。この効果ばB=3原子%の実施
例6でも充分なものであるが、特にBが2原子%未溝の
例(例えば第1図の実施例1や5)において顕著である
。From these results, it can be seen that the sintered body having the C-containing protective film of the present invention has an extremely low demagnetization rate over a long period of time and has excellent oxidation resistance. Although this effect is sufficient in Example 6 where B is 3 atomic %, it is particularly noticeable in examples where B is 2 atomic % (for example, Examples 1 and 5 in FIG. 1).
〔実施例7〜lO〕
カーボン量が表2に示すMi威比になるようにカーボン
ブラックを微粉砕時に追撚した以外は、実施例1と同様
の操作を行い焼結体を得た。なお。[Example 7 to IO] A sintered body was obtained by carrying out the same operation as in Example 1, except that carbon black was additionally twisted during pulverization so that the amount of carbon became the Mi ratio shown in Table 2. In addition.
実施例7は溶解時にカーボンブラックを添加せず微粉砕
時の添加のみである。In Example 7, carbon black was not added during melting, but only during pulverization.
更に比較例3として18 N d−81F e−I B
となるように計量・配合した後、比較例1と同様の操作
を行い焼結体を得た。また比較例4として組成比を18
N d−56F e−I B −25Cとした以外は
上記実施例と同一の方法で焼結体を得た。Furthermore, as Comparative Example 3, 18 N d-81F e-I B
After weighing and blending so that the following results were obtained, the same operations as in Comparative Example 1 were performed to obtain a sintered body. In addition, as Comparative Example 4, the composition ratio was 18
A sintered body was obtained in the same manner as in the above example except that N d-56F e-I B-25C was used.
このようにして得られた焼結体の耐酸化性、保護膜にお
ける計量、磁性結晶粒径、保護膜の厚み磁気特性を実施
例1と同一の方法で評価した。その結果を表2に示した
。The oxidation resistance, measurement in the protective film, magnetic crystal grain size, thickness of the protective film, and magnetic properties of the sintered body thus obtained were evaluated in the same manner as in Example 1. The results are shown in Table 2.
表2の結果に示されるように3本発明に従う合金組成(
原子百分率)並びに保護膜の要件を備えた焼結体は、い
ずれも減磁率が低く優れた耐酸化性を示す、なお比較例
3では保護膜中にCが含有されていないので耐酸化性は
測定不能なまでに錆びが発生した。As shown in the results of Table 2, the three alloy compositions according to the present invention (
All sintered bodies that meet the requirements for a protective film (atomic percentage) and a protective film have a low demagnetization rate and exhibit excellent oxidation resistance.In Comparative Example 3, the protective film does not contain C, so the oxidation resistance is low. Rust developed to an extent that was impossible to measure.
比較例4では保fI膜のC含有量が 過大なためにBr値が低くなっている。In Comparative Example 4, the C content of the fI-retaining film was The Br value is low because it is too large.
〔実施例11〜13〕
ネオジウム量が表3に示す組成比になるように計量・配
合した以外は全て実施例1と同一の操作を行い焼結体を
得た。[Examples 11 to 13] A sintered body was obtained by carrying out all the same operations as in Example 1, except that the amount of neodymium was measured and blended so as to have the composition ratio shown in Table 3.
このようにして得られた焼結体の耐酸化性、保護膜にお
けるcl、磁性結晶粒径、保護膜の厚みおよび磁気特性
を実施例1と同一の方法で評価しその結果を表3に示し
た。The oxidation resistance, Cl in the protective film, magnetic crystal grain size, thickness of the protective film, and magnetic properties of the sintered body thus obtained were evaluated in the same manner as in Example 1, and the results are shown in Table 3. Ta.
表3の結果に見られるように1本発明焼結体は優れた磁
気特性を有しその耐酸化性も極めて良好であることがわ
かる。As seen from the results in Table 3, it can be seen that the sintered body of the present invention has excellent magnetic properties and extremely good oxidation resistance.
〔実施例14〜22〕
原料の熔解時にネオジウムに換えて表4に示す希土類元
素を添加した以外は、全て実施例1と同一の操作を行い
焼結体を得た。[Examples 14 to 22] Sintered bodies were obtained by carrying out all the same operations as in Example 1, except that rare earth elements shown in Table 4 were added in place of neodymium during melting of the raw materials.
このようにして得られた焼結体の耐酸化性、保護膜にお
けるC量、磁性結晶粒径、保護膜の厚みおよび磁気特性
を実施例1と同一の方法で評価しその結果を表4に示し
た。The oxidation resistance, C content in the protective film, magnetic crystal grain size, thickness of the protective film, and magnetic properties of the sintered body thus obtained were evaluated in the same manner as in Example 1, and the results are shown in Table 4. Indicated.
表4の結果から1本発明に従う焼結体磁石はいずれも優
れた磁気特性を有し、且つその耐酸化性も極めて良好で
あることが明らかである。From the results in Table 4, it is clear that all the sintered magnets according to the present invention have excellent magnetic properties and also have extremely good oxidation resistance.
〔実施例23]
合金微粉末を無磁場中で底形した以外は、全て実施例1
と同一の操作を行い焼結体を得た。[Example 23] Everything was the same as Example 1 except that the alloy fine powder was shaped in the absence of a magnetic field.
A sintered body was obtained by performing the same operation as above.
このようにして得られた焼結体の耐酸化性、保護膜にお
けるC量、磁性結晶粒径、保護膜の厚みおよび磁気特性
も実施例1と同一の方法で評価しその結果を表5に示し
た。The oxidation resistance, C content in the protective film, magnetic crystal grain size, thickness of the protective film, and magnetic properties of the sintered body thus obtained were evaluated in the same manner as in Example 1, and the results are shown in Table 5. Indicated.
第1図は、C含有耐酸化性保護膜で各磁性結晶粒を被覆
してなる本発明の焼結体磁石(実施例1゜5.6)を、
その磁石表面を露出したまま60 ’CX RH90%
の雰囲気中で放置したさいの放置時間とB r、 1)
Icの減磁率との関係を、咳C含有耐酸化性保護膜をも
たない比較例のものと対比して示した図。
第2図は、実施例1の本発明磁石の金属組織を示す写真
。
第3図は、第2図の金属m織におけるNd、FeC元素
のライン分析結果を示した写真。
第4図は、第3図のライン分析線を写しとった図であり
、各ライン線の元素芯を表示するためのものである。FIG. 1 shows a sintered body magnet (Example 1°5.6) of the present invention in which each magnetic crystal grain is coated with a C-containing oxidation-resistant protective film.
60'CX RH90% with the magnet surface exposed
The leaving time and B r when left in an atmosphere of 1)
FIG. 3 is a diagram showing the relationship between Ic and demagnetization rate in comparison with that of a comparative example that does not have a C-containing oxidation-resistant protective film. FIG. 2 is a photograph showing the metal structure of the magnet of the present invention of Example 1. FIG. 3 is a photograph showing the line analysis results of Nd and FeC elements in the metal m weave of FIG. 2. FIG. 4 is a diagram showing the line analysis lines of FIG. 3, and is used to display the elemental core of each line.
Claims (3)
む希土類元素の少なくとも1種)において,該合金の磁
性結晶粒の各々が耐酸化性保護膜で覆われており,この
耐酸化性保護膜は該磁性結晶粒を構成している合金元素
の実質上全てを含み且つその0.1〜16重量%がCで
あることを特徴とする耐酸化性の優れたR−Fe−B−
C系永久磁石合金。(1) In an R-Fe-B-C alloy magnet (where R is at least one rare earth element including Y), each of the magnetic crystal grains of the alloy is covered with an oxidation-resistant protective film, This oxidation-resistant protective film contains substantially all of the alloying elements constituting the magnetic crystal grains, and has 0.1 to 16% by weight of C. Fe-B-
C-based permanent magnet alloy.
あり,耐酸化性保護膜の厚みが0.001〜15μmの
範囲にある請求項1に記載の永久磁石合金。(2) The permanent magnet alloy according to claim 1, wherein the magnetic crystal grains have a particle size in the range of 0.5 to 50 μm, and the oxidation-resistant protective film has a thickness in the range of 0.001 to 15 μm.
とを併せた全体の組成)が,原子百分比で,R:10〜
30%,B:2%未満(0原子%を含まず),C:0.
5〜20%,残部がFeおよび製造上不可避な不純物か
らなる請求項1または2に記載の永久磁石合金。(3) The composition of the magnet alloy (total composition including magnetic crystal grains and oxidation-resistant protective film) is R: 10 to 10 in atomic percentage.
30%, B: less than 2% (not including 0 atomic %), C: 0.
3. The permanent magnet alloy according to claim 1, wherein the permanent magnet alloy comprises 5 to 20%, and the remainder is Fe and impurities unavoidable in manufacturing.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1217500A JP2739502B2 (en) | 1989-08-25 | 1989-08-25 | Permanent magnet alloy with excellent oxidation resistance |
US07/565,452 US5147473A (en) | 1989-08-25 | 1990-08-09 | Permanent magnet alloy having improved resistance to oxidation and process for production thereof |
EP90810632A EP0414645B2 (en) | 1989-08-25 | 1990-08-22 | Permanent magnet alloy having improved resistance to oxidation and process for production thereof |
DE69017309T DE69017309T3 (en) | 1989-08-25 | 1990-08-22 | Permanent magnet alloy with improved resistance to oxidation and method of manufacture. |
EP93113410A EP0571002B2 (en) | 1989-08-25 | 1990-08-22 | Permanent magnet alloy having improved resistance to oxidation and process for production thereof |
DE69029405T DE69029405T3 (en) | 1989-08-25 | 1990-08-22 | Permanent magnet alloy with better oxidation resistance and manufacturing process |
US07/710,800 US5183630A (en) | 1989-08-25 | 1991-06-04 | Process for production of permanent magnet alloy having improved resistence to oxidation |
US07/842,949 US5269855A (en) | 1989-08-25 | 1992-02-27 | Permanent magnet alloy having improved resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1217500A JP2739502B2 (en) | 1989-08-25 | 1989-08-25 | Permanent magnet alloy with excellent oxidation resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0382742A true JPH0382742A (en) | 1991-04-08 |
JP2739502B2 JP2739502B2 (en) | 1998-04-15 |
Family
ID=16705211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1217500A Expired - Fee Related JP2739502B2 (en) | 1989-08-25 | 1989-08-25 | Permanent magnet alloy with excellent oxidation resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2739502B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6319336B1 (en) | 1998-07-29 | 2001-11-20 | Dowa Mining Co., Ltd. | Permanent magnet alloy having improved heat resistance and process for production thereof |
JP2007207936A (en) * | 2006-01-31 | 2007-08-16 | Tdk Corp | Rare earth permanent magnet |
JP2016178213A (en) * | 2015-03-20 | 2016-10-06 | Tdk株式会社 | Permanent magnet |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59225893A (en) * | 1983-06-08 | 1984-12-18 | Hitachi Ltd | Joining method of ti or ti alloy to al or al alloy |
JPH01178382A (en) * | 1988-01-08 | 1989-07-14 | Hitachi Ltd | Solid phase joining method |
-
1989
- 1989-08-25 JP JP1217500A patent/JP2739502B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59225893A (en) * | 1983-06-08 | 1984-12-18 | Hitachi Ltd | Joining method of ti or ti alloy to al or al alloy |
JPH01178382A (en) * | 1988-01-08 | 1989-07-14 | Hitachi Ltd | Solid phase joining method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6319336B1 (en) | 1998-07-29 | 2001-11-20 | Dowa Mining Co., Ltd. | Permanent magnet alloy having improved heat resistance and process for production thereof |
JP2007207936A (en) * | 2006-01-31 | 2007-08-16 | Tdk Corp | Rare earth permanent magnet |
JP2016178213A (en) * | 2015-03-20 | 2016-10-06 | Tdk株式会社 | Permanent magnet |
Also Published As
Publication number | Publication date |
---|---|
JP2739502B2 (en) | 1998-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6555170B2 (en) | R-Fe-B sintered magnet and method for producing the same | |
US5908513A (en) | Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet | |
US20110171056A1 (en) | Powders for Rare Earth Magnets, Rare Earth Magnets and Methods for Manufacturing the Same | |
JP2023509225A (en) | Heavy rare earth alloy, neodymium iron boron permanent magnet material, raw material and manufacturing method | |
US8182618B2 (en) | Rare earth sintered magnet and method for producing same | |
JP2782024B2 (en) | Method for producing raw material powder for R-Fe-B-based permanent magnet | |
JP2015057820A (en) | R-t-b-based sintered magnet | |
WO2005015580A1 (en) | R-t-b sintered magnet and rare earth alloy | |
US20060016515A1 (en) | Sinter magnet made from rare earth-iron-boron alloy powder for magnet | |
US20070240790A1 (en) | Rare-earth sintered magnet and method for producing the same | |
JP2794496B2 (en) | R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability | |
JP2740981B2 (en) | R-Fe-Co-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization | |
JPH0382742A (en) | Permanent magnet alloy excellent in oxidation resistance | |
JP2739525B2 (en) | R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability | |
JP2789364B2 (en) | Manufacturing method of permanent magnet alloy with excellent oxidation resistance | |
JP4303937B2 (en) | Permanent magnet alloy | |
JP4650218B2 (en) | Method for producing rare earth magnet powder | |
JPS59219453A (en) | Permanent magnet material and its production | |
JP2779654B2 (en) | Sintered permanent magnet alloy with excellent oxidation resistance | |
US11398327B2 (en) | Alloy for R-T-B based permanent magnet and method of producing R-T-B based permanent magnet | |
JPS6373502A (en) | Manufacture of rare earth magnet | |
JP2961360B2 (en) | Manufacturing method of permanent magnet alloy with excellent oxidation resistance | |
JPH0467324B2 (en) | ||
JPH0467322B2 (en) | ||
JP4547840B2 (en) | Permanent magnet and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080123 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080123 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090123 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |