JP2739502B2 - Permanent magnet alloy with excellent oxidation resistance - Google Patents

Permanent magnet alloy with excellent oxidation resistance

Info

Publication number
JP2739502B2
JP2739502B2 JP1217500A JP21750089A JP2739502B2 JP 2739502 B2 JP2739502 B2 JP 2739502B2 JP 1217500 A JP1217500 A JP 1217500A JP 21750089 A JP21750089 A JP 21750089A JP 2739502 B2 JP2739502 B2 JP 2739502B2
Authority
JP
Japan
Prior art keywords
protective film
magnet
oxidation resistance
oxidation
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1217500A
Other languages
Japanese (ja)
Other versions
JPH0382742A (en
Inventor
俊雄 上田
祐一 佐藤
誠治 磯山
誠一 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP1217500A priority Critical patent/JP2739502B2/en
Priority to US07/565,452 priority patent/US5147473A/en
Priority to EP90810632A priority patent/EP0414645B2/en
Priority to DE69017309T priority patent/DE69017309T3/en
Priority to DE69029405T priority patent/DE69029405T3/en
Priority to EP93113410A priority patent/EP0571002B2/en
Publication of JPH0382742A publication Critical patent/JPH0382742A/en
Priority to US07/710,800 priority patent/US5183630A/en
Priority to US07/842,949 priority patent/US5269855A/en
Application granted granted Critical
Publication of JP2739502B2 publication Critical patent/JP2739502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,耐酸化性の優れた希土類(R)−鉄(Fe)
−硼素(B)−炭素(C)からなる永久磁石合金に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a rare earth (R) -iron (Fe) having excellent oxidation resistance.
The present invention relates to a permanent magnet alloy comprising boron (B) and carbon (C).

〔従来の技術〕[Conventional technology]

近年,Sm−Co系磁石の磁力を凌ぐ次世代の永久磁石と
してR−Fe−B系磁石が佐川等によって開示されて以
来,多くの報告がなされてきた。しかしながら,該磁石
はSm−Co系磁石に比べて磁力では優れるものの,その磁
気特性の熱安定性及び耐酸化性が著しく劣り,例えば特
開昭59−46008号公報で開示された永久磁石材料では実
用上耐え得ることは困難である。
In recent years, many reports have been made since R-Fe-B-based magnets were disclosed by Sagawa et al. As next-generation permanent magnets exceeding the magnetic force of Sm-Co-based magnets. However, although the magnet is excellent in magnetic force as compared with the Sm-Co magnet, the thermal stability and oxidation resistance of its magnetic properties are remarkably inferior. For example, in the case of the permanent magnet material disclosed in JP-A-59-46008, It is difficult to withstand practical use.

事実,上述報告の多くは耐酸化性に対する欠点を指摘
しその改善に関するものを開示している。この耐酸化性
の改善法としては,合金組成による方法と,磁石の表面
を耐酸化性の保護皮膜で覆う方法に大別される。
In fact, many of the above reports point out disadvantages to oxidation resistance and disclose improvements. The method of improving the oxidation resistance is roughly classified into a method based on the alloy composition and a method in which the surface of the magnet is covered with an oxidation-resistant protective film.

前者の例として,例えば特開昭59−64733号公報はFe
の一部をCoで置き換えることにより磁石に耐食性を付与
できると教示し,また特開昭63−114939号公報はマトリ
ックス相へAl,Zn,Sn等の低融点金属元素若しくはFe,Co,
Ni等の高融点金属元素を含有せしめることにより耐酸化
性が改善されると教示する。更には特開昭62−133040号
公報及び特開昭63−77103号公報では,磁石中のCが酸
化を促進するとし,このCの含有量を所定以下にするこ
とにより耐酸化性が改善されると教示する。
As an example of the former, for example, JP-A-59-64733 discloses Fe
Teaches that corrosion resistance can be imparted to magnets by replacing part of Co with Co. JP-A-63-114939 discloses that a low melting point metal element such as Al, Zn, Sn or Fe, Co,
It teaches that the oxidation resistance is improved by including a high melting point metal element such as Ni. Further, JP-A-62-133040 and JP-A-63-77103 assume that C in a magnet promotes oxidation, and the oxidation resistance is improved by reducing the content of C to a predetermined value or less. Teach.

しかしながら,これらの合金組成による耐酸化性改善
法だけではその効果に限界があり,実用に耐え得ること
は実際には困難である。このようなことから実用に際し
ては前出の特開昭63−114939号公報に示されるような複
雑かつ多数の工程を経て磁石の表面(磁石品の最外露出
表面)を耐酸化性の保護皮膜で被覆することが必要とな
る。
However, the effect of the oxidation resistance improvement method using these alloy compositions alone is limited, and it is actually difficult to withstand practical use. For this reason, in practical use, the surface of the magnet (the outermost exposed surface of the magnet product) is subjected to an oxidation-resistant protective film through a complicated and numerous steps as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 63-114939. It is necessary to cover with.

この磁石品表面への耐酸化性保護皮膜の形成に関して
は,メッキ法,スパッタ法,蒸着法,有機物被膜法等に
よって耐酸化性物質を被覆することが提案されている。
しかし,いずれの場合も磁石の外表面に数十μm以上も
の強固且つ均質な保護膜層を形成させることが必要とさ
れるので,その操作は複雑且つ多数工程からなることを
余儀なくされ,これにより,剥離性,寸法精度,更には
コストアップの問題を避けることはできなかった。
With respect to the formation of the oxidation-resistant protective film on the surface of the magnet product, it has been proposed to coat an oxidation-resistant substance by a plating method, a sputtering method, a vapor deposition method, an organic coating method, or the like.
However, in any case, it is necessary to form a strong and uniform protective film layer of several tens of μm or more on the outer surface of the magnet, so that the operation is inevitably complicated and requires many steps. However, the problems of peelability, dimensional accuracy, and cost increase could not be avoided.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このように,従来のR−Fe−B系,R−Fe−Co−B系お
よびR−Fe−Co−B−C系磁石では,耐酸化性において
抜本的な改善効果を得るには至っておらず,Sm−Co系に
比べて優れた磁気特性を有し且つ豊富な資源を背景に安
定供給という大きなメリットを有するにも拘らず,実用
レベルでは磁石表面を雰囲気から遮断するための耐酸化
性保護皮膜の形成が余儀なくされ,これによるコストア
ップ及び寸法精度の変動等から上記メリットが大きく損
なわれるという問題があった。
Thus, the conventional R-Fe-B-based, R-Fe-Co-B-based, and R-Fe-Co-BC-based magnets have not yet achieved a drastic improvement in oxidation resistance. In spite of its excellent magnetic properties compared to the Sm-Co system and the great advantage of stable supply against abundant resources, at the practical level, it has oxidation resistance to shield the magnet surface from the atmosphere. There is a problem that the formation of a protective film is inevitable, and the above advantages are greatly impaired due to an increase in cost and a change in dimensional accuracy.

一般にR−Fe−B系磁石は,磁性結晶粒子とBリッチ
相及びNdリッチ相を含む非磁性相とから構成され,その
酸化機構については,先ず磁石表面又は表面に近いBリ
ッチ相から酸化が進行し,次いでNdリッチ相へと移行す
ると言われている。このことから,耐酸化性を改善する
にはBを可能な限り低減すること,およびNdリッチ相へ
の耐酸化性付与が必要となるが,従来技術では実用レベ
ルの高い磁性特性を得るためにBの含有量を高くせざる
を得ないのが実情であり,またNdリッチ相への耐酸化性
付与も著しい成果を上げていない。
Generally, an R-Fe-B-based magnet is composed of magnetic crystal grains and a non-magnetic phase including a B-rich phase and a Nd-rich phase. It is said to progress and then shift to the Nd-rich phase. For this reason, in order to improve the oxidation resistance, it is necessary to reduce B as much as possible and to provide oxidation resistance to the Nd-rich phase. In fact, the content of B must be increased, and imparting oxidation resistance to the Nd-rich phase has not achieved remarkable results.

例えば前摘の特開昭59−64733号公報ではFeの一部をC
oで置き換えることにより耐食性を付与することを提案
しているが,耐酸化性に対するBの含有量については一
切言及しておらず,1KOe以上の保磁力(iHc)を確保する
ためにB含有量を2〜28原子%としており,iHcを3KOeに
するためにはB含有量は少なくとも4原子%必要である
とし,さらに実用レベルの高iHcを得るためにはBの含
有量を更に高くすることを教示している。このように,B
を多く含有させて高い磁気特性を確保する場合には,Co
添加で耐食性を付与しても耐酸化性が十分に発揮させる
ことは実際には困難であり,したがって,かようなBを
多く含有する磁石を実用化するには,該公報の発明者等
が述べているように磁石表面(磁石品の最外露出表面)
に強固な耐酸化性保護皮膜の形成が必須となる。
For example, in Japanese Unexamined Patent Publication No.
Although it is proposed to provide corrosion resistance by replacing with o, no mention is made of the B content with respect to oxidation resistance, and the B content is required to ensure coercive force (iHc) of 1 KOe or more. Is assumed to be 2 to 28 atomic%, and the B content must be at least 4 atomic% in order to make iHc 3KOe, and the B content should be further increased in order to obtain practically high iHc. Is taught. Thus, B
In order to ensure high magnetic properties by containing a large amount of
It is actually difficult to sufficiently exhibit oxidation resistance even if corrosion resistance is imparted by addition, and therefore, in order to put such a magnet containing a large amount of B into practical use, the inventors of the gazette must disclose it. Magnet surface as described (the outermost exposed surface of the magnet product)
The formation of a strong oxidation-resistant protective film is essential.

また,前出の特開昭63−114939号公報ではマトリック
ス相へAl,Zn,Sn等の低融点金属元素またはFe,Co,Ni等の
高融点金属を含有せしめることにより活性なNdリッチ相
の耐酸化性を改善することを教示し,例えば該公報に記
載された実施例によれば,焼結体の耐候性試験(60℃×
90%RH)の結果では,磁石表面に赤錆が認められる放置
時間は,比較例の25時間に対して100時間まで改善され
たと記されている。しかしながら,このような状態では
実用レベルでの使用は困難であり,実際には磁石表面へ
の強固な耐酸化性保護膜の形成が必要となる。したがっ
て,この場合にも磁石自身の抜本的な耐酸化性の改善は
困難である。なお,この公報も耐酸化性に対するBの含
有量については一切言及しておらず,実施例で示された
Bの含有量は3.5〜6.7原子%であることから前出の特開
昭59−46008号公報で開示する2〜28原子%の範囲内の
Bの含有を意図しているものと考えてよい。
In the above-mentioned Japanese Patent Application Laid-Open No. 63-114939, an active Nd-rich phase is formed by adding a low-melting-point metal element such as Al, Zn, Sn or a high-melting-point metal such as Fe, Co, or Ni to the matrix phase. It teaches that the oxidation resistance is improved. For example, according to the embodiment described in the publication, a weather resistance test (60 ° C. ×
The results (90% RH) indicate that the standing time in which red rust was observed on the magnet surface was improved to 100 hours compared to 25 hours in the comparative example. However, in such a state, it is difficult to use at a practical level, and in practice, it is necessary to form a strong oxidation-resistant protective film on the magnet surface. Therefore, also in this case, it is difficult to drastically improve the oxidation resistance of the magnet itself. This gazette does not mention the content of B with respect to the oxidation resistance at all, and the content of B shown in Examples is 3.5 to 6.7 atomic%. It may be considered that the content of B in the range of 2 to 28 atomic% disclosed in Japanese Patent No. 46008 is intended.

本発明の目的は,このようなR−Fe−B−系永久磁石
の問題,とりわけ耐酸化性の問題を解決することにあ
り,従来材のように磁石品の最外露出表面に耐酸化性保
護皮膜を形成しなくても,高い磁気特性を保持しながら
該磁石自身に優れた耐酸化性を付与することにある。
An object of the present invention is to solve the problems of such R-Fe-B-based permanent magnets, especially the problem of oxidation resistance. An object of the present invention is to provide the magnet itself with excellent oxidation resistance while maintaining high magnetic properties without forming a protective film.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明者等は,これらの問題点を解決するための手段
として,磁石表面を耐酸化性保護膜で被覆するという従
来の巨視的な観念ではなく,微視的な観念による抜本的
な耐酸化性の改善を鋭意検討した結果,磁石中の磁性結
晶粒の各々を耐酸化性保護膜で被覆するという従来技術
では予想すら困難であった新規技術を見出すに至り,耐
酸化性が画期的に高められた新規な永久磁石合金の提供
を可能とした。更には,従来技術ではもはや高い磁気特
性が得られず実用範囲外とされていたB含有量2原子%
未満領域でも実用に耐え得る良好な磁気特性を付与し得
ることを新たに見出した。
As a means for solving these problems, the present inventors have proposed a drastic oxidation resistance based on a microscopic idea instead of the conventional macroscopic idea of coating the magnet surface with an oxidation-resistant protective film. As a result of intensive studies on the improvement of the oxidizing properties, a new technology, which was difficult to predict even with the conventional technology of coating each of the magnetic crystal grains in the magnet with an oxidation-resistant protective film, was found. It has made it possible to provide a new permanent magnet alloy that has been further improved. Furthermore, the B content of 2 atomic%, which was no longer high in the prior art and was considered out of the practical range, could not be obtained.
It has been newly found that good magnetic properties that can withstand practical use can be imparted even in a region less than the above.

すなわち本発明は,R−Fe−B系合金磁石(但し,RはY
を含む希土類元素の少なくとも1種)において,該合金
の磁性結晶粒の各々が耐酸化性保護膜で覆われており,
この耐酸化性保護膜は該磁性結晶粒を構成している合金
元素の実質上全てを含み且つその0.1〜16重量%がCで
あることを特徴とする耐酸化性の優れたR−Fe−B−C
系永久磁石合金を提供するものである。ここで,該磁性
結晶粒は粒径が好ましくは0.5〜50μmの範囲にあり,
この粒径の各結晶粒を覆っている耐酸化性保護膜の厚み
が0.001〜15μmの範囲である。
That is, the present invention provides an R—Fe—B alloy magnet (where R is Y
, At least one of the rare earth elements), each of the magnetic crystal grains of the alloy is covered with an oxidation-resistant protective film,
This oxidation-resistant protective film contains substantially all of the alloying elements constituting the magnetic crystal grains, and 0.1 to 16% by weight of the alloy is C. BC
The present invention provides a permanent magnet alloy. Here, the magnetic crystal grains preferably have a particle size in the range of 0.5 to 50 μm.
The thickness of the oxidation-resistant protective film covering each crystal grain having this particle size is in the range of 0.001 to 15 μm.

本発明磁石の好ましい組成(磁性結晶粒と耐酸化性保
護膜の全体の組成)は,原子百分比で,R(Yを含む希土
類元素の少なくとも1種):10〜30%,B:2%未満(0%
を含まず),C:0.5〜20%,残部がFeおよび製造上不可避
な不純物からなり,Bは2%以上でも耐酸化性の効果は充
分に発揮されるものではあるが,特にBが2%未満と少
ない場合に磁気特性も充分に示しながら耐酸化性も顕著
に良好となるものである。
The preferred composition of the magnet of the present invention (the entire composition of the magnetic crystal grains and the oxidation-resistant protective film) is as follows: R (at least one of rare earth elements including Y): 10 to 30%, B: less than 2% (0%
), C: 0.5 to 20%, the balance being Fe and unavoidable impurities in production. Even if B is 2% or more, the effect of oxidation resistance can be sufficiently exerted. %, The oxidation resistance is remarkably improved while the magnetic properties are sufficiently exhibited.

本発明による永久磁石は,従来のように磁石の最外表
面を耐酸化性の保護皮膜で被覆しなくても,磁石自身が
極めて優れた耐酸化性を有するので,例えば前出の60℃
×90%RHの恒温恒湿下で5040時間,磁石表面を露出した
まま放置してもBrおよびiHcの減磁は各々0.3〜10%,0〜
10%と極めて少ない。したがって,このような環境下で
も表面を被覆する保護膜の形成は不要となる。かような
本発明磁石の耐酸化特性ひいては耐減磁性は従来のもの
では達成し得なかったものであり,この点で全く新規な
永久磁石であると言える。
Since the permanent magnet according to the present invention has extremely excellent oxidation resistance without having to coat the outermost surface of the magnet with an oxidation-resistant protective film as in the past, for example, the above-mentioned 60 ° C.
Demagnetization of Br and iHc is 0.3 ~ 10% and 0 ~, respectively, even if the magnet surface is left exposed for 5040 hours at constant temperature and humidity of 90% RH.
Very low at 10%. Therefore, it is not necessary to form a protective film covering the surface even in such an environment. Such oxidation resistance and demagnetization resistance of the magnet of the present invention could not be achieved by the conventional magnet, and in this respect it can be said that the magnet is a completely new permanent magnet.

一方,本発明磁石の磁気特性については,等方性焼結
磁石ではBr≧4000(G),iHc≧4000(Oe),(BH)max
≧4M・G・Oe,異方性焼結磁石ではBr≧7000(G),iHc
≧4000(Oe),(BH)max≧10M・G・Oeであり,従来の
Nd−Fe−B系永久磁石と同等以上の値を有する。
On the other hand, regarding the magnetic characteristics of the magnet of the present invention, Br ≧ 4000 (G), iHc ≧ 4000 (Oe), (BH) max
≧ 4M ・ G ・ Oe, Br ≧ 7000 (G) for anisotropic sintered magnet, iHc
≧ 4000 (Oe), (BH) max ≧ 10M ・ G ・ Oe
It has a value equal to or higher than that of the Nd-Fe-B permanent magnet.

このような特性は,本発明磁石を構成している各磁性
結晶粒の周囲を適切なC含有量をもつ非磁性膜で覆った
ことによって得られたものである。すなわち,本発明者
等は非磁性相である粒界相に上記C(炭素)の所定量を
含有せしめることにより,この非磁性相に著しい耐酸化
性機能を付与することができることを見い出した。この
耐酸化機能をもつ非磁性膜で各磁性結晶粒を被覆するこ
とにより,従来と同等のB含有量でも充分な耐酸化性効
果を示すことができること,更に該C含有保護膜の形成
はB量の低減を可能とし,これにより2原子%未満でも
磁気特性は従来と同等レベル以上でありながら耐酸化性
が画期的に改善されることを見出した。
Such characteristics are obtained by covering each magnetic crystal grain constituting the magnet of the present invention with a nonmagnetic film having an appropriate C content. That is, the present inventors have found that by adding a predetermined amount of the C (carbon) to the grain boundary phase, which is a nonmagnetic phase, a remarkable oxidation resistance function can be imparted to this nonmagnetic phase. By coating each magnetic crystal grain with the non-magnetic film having the oxidation resistance function, a sufficient oxidation resistance effect can be exhibited even with the same B content as before, and further, the formation of the C-containing protective film is performed by the B It has been found that the oxidation resistance can be remarkably improved while the magnetic properties are at or above the same level as before even at less than 2 atomic%.

〔発明の詳述〕[Detailed Description of the Invention]

本発明磁石はC(炭素)の利用の仕方に大きな特徴が
ある。従来より,この種の磁石において一般には不可避
的に混入する不純物元素とされており,特別のことがな
い限り積極的に添加する合金元素とは扱われていなかっ
た。例えば前出特開昭59−46008号公報では,磁石中の
Bの含有量を2〜28原子%と規定しており2原子%未満
のB量では保磁力iHcが1KOe未満になることを指摘した
うえ,コストダウンのメリットからBの一部をCで置換
することが可能であると述べられているに過ぎない。さ
らに特開昭59−163803号公報にはR−Fe−Co−B−C系
磁石が開示され,磁石中のBの含有量を2〜28原子%,C
の含有量を4原子%以下と規定し,BとCの具体的な併用
を開示しているが,Cの併用にも拘らずBの含有量を2原
子%以上を必須とし,2原子%未満のB量では上記特開昭
59−46008号公報と同様にiHcが1KOe未満となると説明さ
れている。すなわち,該公報が指摘するように,Cは磁気
特性を低下させる不純物であると把握されており,例え
ば粉末の成形時に用いる滑剤等からのCの混入は不可避
であり,又,これを完全に取り除く操作はコストアップ
を招くという理由からハードフエライト磁石相当のBr40
00Gまでなら,Cの含有量として4原子%以下を許容でき
ると提案されるものであり,Cは磁気特性については消極
的な作用をもつものであり,必ずしもCを必須とはして
いない。またC含有の耐酸化性保護膜(非磁性相)の形
成については全く示唆されていない。
The magnet of the present invention has a significant feature in the use of C (carbon). Heretofore, this type of magnet has generally been regarded as an impurity element that is unavoidably mixed, and has not been treated as an alloying element that is actively added unless otherwise specified. For example, in the above-mentioned Japanese Patent Application Laid-Open No. 59-46008, the content of B in the magnet is specified to be 2 to 28 atomic%, and it is pointed out that the coercive force iHc becomes less than 1 KOe when the B content is less than 2 atomic%. In addition, it merely states that part of B can be replaced with C from the viewpoint of cost reduction. JP-A-59-163803 discloses an R-Fe-Co-BC-based magnet in which the B content in the magnet is 2 to 28 atomic%,
The content of B is specified as 4 atomic% or less, and the specific combination of B and C is disclosed. However, the content of B is required to be 2 atomic% or more regardless of the combination of C and 2 atomic%. If the amount of B is less than
It is described that iHc is less than 1 KOe as in JP 59-46008 A. That is, as pointed out by the gazette, C is understood to be an impurity that lowers the magnetic properties. For example, it is inevitable to mix C from a lubricant or the like used in molding a powder, and it must be completely removed. Because the removal operation increases the cost, Br40 equivalent to hard ferrite magnet
Up to 00G, it is proposed that the C content can be 4 atomic% or less, and C has a negative effect on the magnetic properties, and C is not necessarily required. Further, there is no suggestion about formation of a C-containing oxidation-resistant protective film (non-magnetic phase).

さらに特開昭62−13304号公報ではR−Fe−Co−B−
C系磁石において,耐酸化性を改善するためにはC量が
多いと良くないと教示し,Cの含有量を0.05重量%(原子
百分比で約0.3%)以下に抑制することを提案し,更に
他の出願人による特開昭63−77103号公報でも同じ目的
からCを1000ppm以下にすることを提案している。この
ように従来においてCは磁気特性および耐酸化性につい
て消極的元素とされており,必須の添加元素とはされて
いなかった。
Further, JP-A-62-13304 discloses that R-Fe-Co-B-
In order to improve the oxidation resistance of C-based magnets, he teaches that a large amount of C is not good, and proposes to suppress the C content to 0.05% by weight or less (about 0.3% by atomic percentage). Furthermore, Japanese Patent Application Laid-Open No. 63-77103 by another applicant also proposes to reduce C to 1000 ppm or less for the same purpose. As described above, conventionally, C has been regarded as a passive element in terms of magnetic properties and oxidation resistance, and has not been regarded as an essential additive element.

本発明者等は,CをBの単なる置換元素として含有させ
るのではなく,磁性結晶粒を包囲する非磁性相(粒界)
中にCを積極的に含有させるという添加の仕方をするな
らば,従来の常識に反してCは磁石の耐酸化性に大きく
寄与できることを見い出したものであり,しかも,これ
によって,磁気特性の向上が図れることも明らかとなっ
た。すなわち,このような非磁性相へのCの含有によっ
て,Bの含有量が公知の通常範囲であっても従来に比べて
耐酸化性が改善され,特に2原子%未満のB量の場合に
はその効果が更に著しいものになることがわかった。例
えば従来ではBの含有量が2原子%未満ではiHcが1KOe
以下になるとされていたのであるが,本発明では2原子
%未満のB量であってもiHcは4KOe以上となる。このよ
うな本発明による新規な効果が磁性結晶粒の各々を包囲
するC含有耐酸化性保護膜の形成によりもたらされ,こ
のことから,これまでの耐酸化性の劣化及び磁気特性の
低下をもたらしていたCを消極元素とする従来磁石とは
全く異なり,Cを必須とする新規な磁石の発明を完成する
ことができた。
The present inventors do not include C as a mere substitution element for B, but use a non-magnetic phase (grain boundary) surrounding magnetic crystal grains.
It has been found that C, if added in such a manner that C is positively contained therein, can greatly contribute to the oxidation resistance of the magnet, contrary to conventional wisdom. It also became clear that improvement could be achieved. That is, due to the inclusion of C in such a non-magnetic phase, even if the B content is within a known normal range, the oxidation resistance is improved as compared with the conventional case, and particularly when the B content is less than 2 atomic%. It was found that the effect was even more remarkable. For example, conventionally, when the B content is less than 2 atomic%, iHc is 1 KOe.
According to the present invention, iHc is 4 KOe or more even with a B content of less than 2 atomic% in the present invention. Such a novel effect according to the present invention is brought about by the formation of the C-containing oxidation-resistant protective film surrounding each of the magnetic crystal grains. It is completely different from the conventional magnet which uses C as the depolarizing element, and has completed the invention of a new magnet which requires C as an essential element.

この場合,磁性結晶粒の各々を包囲するC含有耐酸化
性保護膜は,C以外に磁性結晶粒を構成している合金元素
の実質上全てを含むものである。このようなC含有耐酸
化性保護膜の形成は,磁石中における磁性結晶粒子間に
存在する粒界層にCを含有せしめることにより可能とな
る。その理由については以下のように推察する。つま
り,該保護膜は上記磁性結晶粒を構成している合金元素
の実質上全てを含むことから,特にR−Fe−C金属間化
合物の生成によるところが大きいと考える。一般に希土
類元素は錆やすく又希土類元素の炭化物は加水分解され
やすいと言われている。しかしながら,本発明による保
護膜では不定比なR−Fe−C系の金属間化合物が生成し
ていると推察され,これにより上記欠点が抑制されると
考えられる。したがって,この保護膜中には,このよう
な不定比なR−Fe−C系の金属間化合物が形成できるよ
うに,Cの他に少なくともRとFeが存在することが必要で
ある。このことは,後述の実施例(例えば第3図及び第
4図)に見られるように,この保護膜中にリッチなRが
存在し且つFeも存在することから肯定できる。また製造
履歴に応じて,さらにはB添加量に応じて,この保護膜
中には多少なりともBが含有されてくる。このようなこ
とから,本発明に従う耐酸化性保護膜はCを必須成分と
して含むほか,磁性結晶粒を形成しているRおよびFe,
さらにはBを含むものである。
In this case, the C-containing oxidation-resistant protective film surrounding each of the magnetic crystal grains contains substantially all of the alloy elements constituting the magnetic crystal grains in addition to C. Such a C-containing oxidation-resistant protective film can be formed by allowing C to be contained in the grain boundary layer existing between the magnetic crystal grains in the magnet. The reason is presumed as follows. That is, since the protective film contains substantially all of the alloying elements constituting the magnetic crystal grains, it is considered that the protection film is particularly caused by the formation of the R-Fe-C intermetallic compound. It is generally said that rare earth elements are easily rusted and carbides of rare earth elements are easily hydrolyzed. However, it is presumed that the non-stoichiometric R-Fe-C-based intermetallic compound is generated in the protective film according to the present invention, and this is considered to suppress the above-mentioned disadvantage. Therefore, it is necessary that at least R and Fe besides C exist in the protective film so that such a non-stoichiometric R-Fe-C intermetallic compound can be formed. This can be confirmed by the presence of rich R and Fe in the protective film, as shown in the embodiments described later (for example, FIGS. 3 and 4). In addition, B is contained in the protective film to some extent depending on the manufacturing history and the amount of B added. For this reason, the oxidation-resistant protective film according to the present invention contains C as an essential component, and R, Fe,
Further, it contains B.

このように,本発明者等は個々の磁性結晶粒をC含有
酸化性保護膜で被覆することにより耐酸化性を著しく高
め,更にはB含有量の低減により一層その効果が著しく
なることを見い出し,公知の技術では困難であった良好
な永久磁石を発明するに至った。
As described above, the present inventors have found that coating the individual magnetic crystal grains with the C-containing oxidizing protective film significantly increases the oxidation resistance, and furthermore, the effect is further enhanced by reducing the B content. Invented a good permanent magnet, which was difficult with known techniques.

このC含有耐酸化性保護膜は,前記のように磁性結晶
粒を構成している各元素の実質的に全てを含んでおり,
且つそのC含有量は保護膜組成において0.1〜16重量%
であることが必要である。すなわち該保護膜中のCは磁
石に耐酸化性を付与するだけでなく,Bの減少に伴うiHc
の低下を抑制する効果をもたらすことから,その含有量
は保護膜の組成において好ましくは0.1〜16重量%さら
に好ましくは0.2〜12重量%とするが,後記実施例のよ
うに0.7重量%以上で好ましくは1.0重量%以上,13重量
%以下とするのが実際的である。Cの含有量が0.1重量
%未満では耐酸化性を付与することが出来ず,またiHc
が4KOe未満となる。一方保護膜中のC量が16重量%を超
えると磁石のBrの低下が著しく,もはや実用が困難とな
る。尚,本発明磁石において,この保護膜の組成成分と
しては,C以外にも磁性結晶粒とはその量比が異なるとし
ても磁性結晶粒を構成している合金元素の実質上全てを
含む。この保護膜の厚みについては個々の磁性結晶粒を
均一に被覆してさえおれば,その厚みに依存せず耐酸化
性は実質的に保持されるが,膜厚が0.001μm未満ではi
Hcの低下が著しく15μmを超えるとBrがもはや本発明で
意図する値を満足しなくなるので,0.001μm〜15μmの
範囲,好ましくは0.005μm〜12μmの範囲とするのが
よい。なお,上記保護膜の厚みは粒界三重点も含むもの
である。この保護膜の厚みはTEMを用いて測定すること
ができる(後記の実施例でもこの測定によった)。
The C-containing oxidation-resistant protective film contains substantially all of the elements constituting the magnetic crystal grains as described above,
And the C content is 0.1 to 16% by weight in the protective film composition.
It is necessary to be. That is, C in the protective film not only imparts oxidation resistance to the magnet but also reduces iHc
The content is preferably 0.1 to 16% by weight, more preferably 0.2 to 12% by weight in the composition of the protective film, but it is not less than 0.7% by weight as described in Examples below. Preferably, it is practically not less than 1.0% by weight and not more than 13% by weight. If the content of C is less than 0.1% by weight, oxidation resistance cannot be imparted, and iHc
Is less than 4KOe. On the other hand, when the amount of C in the protective film exceeds 16% by weight, the Br of the magnet is remarkably reduced, and practical use is no longer practical. In addition, in the magnet of the present invention, the compositional components of the protective film include, in addition to C, substantially all of the alloying elements constituting the magnetic crystal grains, even if the amount ratio differs from that of the magnetic crystal grains. As long as the thickness of the protective film is uniformly covered with the individual magnetic crystal grains, the oxidation resistance is substantially maintained irrespective of the thickness, but if the film thickness is less than 0.001 μm, i
If the decrease of Hc is remarkably more than 15 μm, Br no longer satisfies the value intended in the present invention, so it is preferable to set the range of 0.001 μm to 15 μm, preferably 0.005 μm to 12 μm. The thickness of the protective film includes the triple point of the grain boundary. The thickness of this protective film can be measured using a TEM (this measurement was also used in Examples described later).

一方,この耐酸化性保護膜で囲われる各磁性結晶粒自
身は,周期のR−Fe−B−(C)系永久磁石と同様の組
成であってもよい。しかし,Bが低量であっても本発明磁
石の場合には良好な磁気特性を発現できる。本発明の合
金磁石の組成(磁性結晶粒と耐酸化性保護膜とを併せた
全体の組成)は,好ましくは原子百分比で,R:10〜30,B:
2%未満(0%を含まず),C:0.5〜20%,残部:Feおよび
製造上不可避な不純物からなる。
On the other hand, each magnetic crystal grain itself surrounded by the oxidation-resistant protective film may have the same composition as that of the periodic R-Fe-B- (C) -based permanent magnet. However, even with a small amount of B, the magnet of the present invention can exhibit good magnetic properties. The composition of the alloy magnet of the present invention (the overall composition of the magnetic crystal grains and the oxidation-resistant protective film in combination) is preferably R: 10 to 30, B:
Less than 2% (excluding 0%), C: 0.5 to 20%, balance: Fe and impurities inevitable in production.

本発明磁石中の総C含有量は好ましくは0.5〜20原子
%である。磁石中の総C含有量が20原子%を超えるとBr
の低下が著しく,本発明で目的とする等方性焼結磁石と
してのBr≧4KG,並びに異方性焼結磁石としてのBr≧7KG
の値を満足しなくなる。一方,0.5原子%未満ではもはや
耐酸化性を付与することが困難になる。このように,磁
石中の総C含有量としては好ましくは0.5〜20原子%と
するが,前述の耐酸化性保護膜中のCは耐酸化性を付与
するだけでなく,Bの減少に伴うiHcの低下を抑制する効
果をもたらすことから,その含有量は保護膜の組成にお
いて0.1〜16重量%,好ましくは0.2〜12重量%を必須と
する。Cの原料としてはカーボンブラック,高純度カー
ボンまたはNd−C,Fe−C等の合金を用いることができ
る。
The total C content in the magnet of the present invention is preferably 0.5 to 20 atomic%. If the total C content in the magnet exceeds 20 atomic%, Br
Is significantly reduced, and Br ≧ 4KG as an isotropic sintered magnet and Br ≧ 7KG as an anisotropic sintered magnet in the present invention.
Is not satisfied. On the other hand, if it is less than 0.5 atomic%, it is no longer possible to impart oxidation resistance. As described above, the total C content in the magnet is preferably 0.5 to 20 atomic%. However, the C in the above-described oxidation-resistant protective film not only imparts oxidation resistance but also reduces the B content. Since the effect of suppressing the decrease in iHc is brought about, the content is essential in the composition of the protective film to be 0.1 to 16% by weight, preferably 0.2 to 12% by weight. As a raw material of C, carbon black, high-purity carbon, or an alloy such as Nd-C or Fe-C can be used.

Rは希土類元素であってY,La,Ce,Nd,Pr,Tb,Dy,Ho,Er,
Sm,Gd,Eu,Pm,Tm,Yb及びLuのうち一種又は二種以上が用
いられる。尚,二種以上の混合物であるミッシュメタ
ル,ジジム等も用いることができる。ここでRを好まし
くは10〜30原子%とするのは,この範囲内ではBrが実用
上非常に優れているためである。
R is a rare earth element, Y, La, Ce, Nd, Pr, Tb, Dy, Ho, Er,
One or more of Sm, Gd, Eu, Pm, Tm, Yb and Lu are used. Note that a mixture of two or more kinds, such as misch metal and dymium, can also be used. Here, the reason why R is preferably set to 10 to 30 atomic% is that Br is practically excellent in this range.

Bとしては,純ボロン又はフエロボロンを用いること
ができ,その含有量は公知の範囲である2原子%を超え
ても従来技術に比べて耐酸化性は著しく改善され,本発
明の前記目的が達成されるのであるが,好ましくはBは
2原子%未満,更に好ましくは1.8原子%以下において
より一層の効果がある。他方,B無添加では耐酸化性は良
好となるもののiHcが極端に低下し,本発明の目的を達
成できなくなる。フエロボロンとしてはAl,Si等の不純
物を含有するものでも用いることができる。
As B, pure boron or ferroboron can be used. Even if the content exceeds 2 atomic%, which is a known range, the oxidation resistance is remarkably improved as compared with the prior art, and the object of the present invention can be achieved. Preferably, B is less than 2 atomic%, and more preferably 1.8 atomic% or less, which has a further effect. On the other hand, when B is not added, the oxidation resistance is improved, but iHc is extremely reduced, and the object of the present invention cannot be achieved. As the ferroboron, those containing impurities such as Al and Si can also be used.

本発明の永久磁石合金は,前述のように,厚みが好ま
しくは0.001〜15μm,さらに好ましくは0.005〜12μmの
範囲のC含有耐酸化性保護膜で各々の磁性結晶粒が覆わ
れているものであるが,その磁性結晶粒の粒径は好まし
くは0.5〜50μm,さらに好ましくは1〜30μmの範囲に
ある。磁性結晶粒の粒径が0.5μm未満になるとiHcが4K
Oe未満となり,また50μmを超えるとiHcの低下が著し
くなり,本発明磁石の特徴が損なわれる。なおこの結晶
粒の粒径の測定はSEMによって,また組成分析はEPMAを
用いて正確に行うことができる(後記実施例でもこれら
の測定を行った)。
As described above, the permanent magnet alloy of the present invention has a thickness of preferably 0.001 to 15 μm, more preferably 0.005 to 12 μm, and each magnetic crystal grain is covered with a C-containing oxidation-resistant protective film. However, the particle size of the magnetic crystal grains is preferably in the range of 0.5 to 50 μm, more preferably 1 to 30 μm. IHc becomes 4K when the particle size of magnetic crystal grains is less than 0.5 μm
If it is less than Oe, and if it exceeds 50 μm, the decrease of iHc becomes remarkable, and the characteristics of the magnet of the present invention are impaired. The measurement of the grain size of the crystal grains can be accurately performed by SEM, and the composition analysis can be accurately performed by using EPMA (these measurements were also performed in Examples described later).

本発明の永久磁石を製造する方法としては,該永久磁
石合金が焼結体の場合には,溶解・鋳造・粉砕・成形・
焼結,若しくは溶解・鋳造・粉砕・成形・焼結・熱処理
の一連の工程からなる従来同様の方法でも作製可能であ
るが,好ましくは上記製造プロセスにおいて,鋳造後に
該鋳造合金を熱処理する工程を導入するか,または粉砕
時若しくは粉砕後にC原料の一部若しくは全量を二次添
加する工程を導入すること,さらにはこの二つの工程を
組合せて導入することによって,有利に製造することが
できる。他方、該永久磁石合金が鋳造合金である場合に
は,熱間塑性加工法を用いることによって,前述の効果
を発揮する良好な本発明の永久磁石合金を作製すること
ができる。
As a method for producing the permanent magnet of the present invention, when the permanent magnet alloy is a sintered body, melting, casting, crushing, molding,
Although it can be produced by a conventional method comprising a series of steps of sintering or melting, casting, crushing, molding, sintering, and heat treatment, preferably, in the above production process, the step of heat treating the cast alloy after casting is performed. It can be advantageously produced by introducing a step of secondary addition of part or all of the C raw material during or after the pulverization, or by combining these two steps. On the other hand, when the permanent magnet alloy is a cast alloy, a good permanent magnet alloy of the present invention exhibiting the above-mentioned effects can be produced by using the hot plastic working method.

このように本発明による永久磁石合金は従来のものに
比べて耐酸化性が著しく優れ錆にくく,また良好な磁気
特性を有することから,種々の磁石応用製品に好適に用
いられる。磁石応用製品としては,例えば,次の製品が
挙げられる。
As described above, the permanent magnet alloy according to the present invention is remarkably excellent in oxidation resistance as compared with conventional ones, is resistant to rust, and has good magnetic properties, so that it is suitably used for various magnet-applied products. Examples of the magnet application products include the following products.

DCブラシレスモーター,サーボモーター等の各種モー
ター類;駆動用アクチュエーター,光学ピックアップ用
F/T アクチュエーター等の各種アクチュエーター類;ス
ピーカー,ヘッドホン,イヤホン等の各種音響機器;回
転センサー,磁気サンサー等の各種センサー類;MRI等の
電磁石代替製品,リードリレー,有極リレー等の各種リ
レー類;ブレーキ,クラッチ等の各種磁気カップリン
グ;ブザー,チャイム等の各種振動発振機:マグネット
セパレーター,マグネットチャック等の各種吸着用機
器;電磁開閉器,マイクロスイッチ,ロッドレスエアー
シリンダー等の各種開閉制御機器;光アイソレーター,
クライストロン,マグネトロン等の各種マイクロ波機
器;マグネット発電機;健康器具,玩具等。
Various motors such as DC brushless motors and servo motors; drive actuators and optical pickups
Various actuators such as F / T actuators; Various audio equipment such as speakers, headphones, and earphones; Various sensors such as rotation sensors and magnetic sensors; Electromagnetic replacement products such as MRI; various relays such as reed relays and polarized relays Various types of magnetic couplings such as brakes and clutches; various types of vibration oscillators such as buzzers and chimes: various types of suction devices such as magnet separators and magnet chucks; various types of opening and closing control devices such as electromagnetic switches, micro switches, and rodless air cylinders An optical isolator,
Various microwave devices such as klystrons and magnetrons; magnet generators; health appliances, toys, etc.

なお,上記磁石応用製品は一例であり,これらに限定
されるものではない。また,本発明による永久磁石合金
の特徴は錆にくいことであり,従来材のように磁石品の
最外露出表面に耐酸化性保護被膜を形成しなくても高い
磁気特性を保持しながら該磁石自身に優れた耐酸化性が
付与されていることから保護被膜が不要となることはも
とより,特殊な環境用として保護被膜の必要が生じた場
合でも,磁石内部からの錆の発生がないので保護被膜を
形成するさいの接着性が良好であると共に,被膜の剥離
や被膜厚みの変動による寸法精度の問題等が解消され,
耐酸化性を必要とする用途には最適な永久磁石を提供で
きる。
In addition, the above-mentioned magnet application product is an example, and is not limited to these. Further, the feature of the permanent magnet alloy according to the present invention is that it is resistant to rust, and it is possible to maintain high magnetic properties without forming an oxidation-resistant protective coating on the outermost exposed surface of a magnet product unlike conventional materials. The protective coating is not necessary because of its excellent oxidation resistance, and even if a protective coating is required for special environments, there is no rust generated inside the magnet. It has good adhesiveness when forming a film, and eliminates problems such as dimensional accuracy due to film peeling and fluctuations in film thickness.
An optimal permanent magnet can be provided for applications requiring oxidation resistance.

以下に実施例を挙げて本発明磁石の特性を明らかにす
る。
Hereinafter, the characteristics of the magnet of the present invention will be clarified with reference to examples.

〔実施例1〕 原料として純度99.9%の電解鉄,ボロン含有量19.32
%のフエロボロン合金,純度99.5%のカーボンブラック
および純度98.5%(不純物として他の希土類金属を含有
する)ネオジウム金属を使用し,組成比(原子比)とし
て18Nd 71Fe 1B 3Cとなるように計量・配合し,真空
中,高周波誘導炉で溶解した後,水冷銅鋳型中に鋳込
み,合金塊を得た。このようにして得られた合金塊をジ
ョークラッシャーで10〜15mmに破砕し,次いで700℃で
5時間保持した後50℃/分の速度で冷却した。更に,該
合金塊をアルゴンガス中でスタンプミルを用いて−100m
eshまで粗砕した後,組成比(原子比)が18Nd 71Fe 1B
10Cとなるように,更に純度99.5%のカーボンブラック
を該粗砕粉に添加し,次いで,振動ミルを用いて平均粒
子径5μmまで粉砕した。このようにして得られた合金
粉末を10KOeの磁界中1ton/cm2の圧力で形成した後,ア
ルゴンガス中で1100℃で1時間保持した後,急冷し,焼
結体を得た。
[Example 1] Electrolytic iron having a purity of 99.9% and a boron content of 19.32 as raw materials
% Of ferroboron alloy, purity of 99.5% carbon black and purity of 98.5% neodymium metal (containing other rare earth metals as impurities), measured and blended so that the composition ratio (atomic ratio) becomes 18Nd 71Fe 1B 3C Then, after melting in a high frequency induction furnace in a vacuum, it was cast into a water-cooled copper mold to obtain an alloy lump. The alloy ingot thus obtained was crushed to 10 to 15 mm by a jaw crusher, then kept at 700 ° C. for 5 hours, and then cooled at a rate of 50 ° C./min. Further, the alloy ingot is -100 m
After crushing to esh, the composition ratio (atomic ratio) is 18Nd 71Fe 1B
Carbon black having a purity of 99.5% was further added to the coarsely ground powder so as to obtain 10C, and then ground to an average particle diameter of 5 µm using a vibration mill. The alloy powder thus obtained was formed at a pressure of 1 ton / cm 2 in a magnetic field of 10 KOe, kept at 1100 ° C. for 1 hour in an argon gas, and quenched to obtain a sintered body.

なお、比較例1として,カーボンブラックを使用しな
かった以外は,上記実施例と同一とし,組成比(原子
比)が18Nd 76Fe 6Bとなるように計量・配合し,実施例
1と同様に(但しカーボンブラックは無添加)溶解後,
粗砕,微粉砕,磁場成形し,次いで焼結,急冷して焼結
体を得た。
As Comparative Example 1, except that carbon black was not used, the composition was the same as in the above Example, and the composition ratio (atomic ratio) was measured and blended so as to be 18Nd76Fe6B. (But no carbon black added)
It was roughly crushed, finely crushed, formed by a magnetic field, then sintered and rapidly cooled to obtain a sintered body.

このようにして得られた焼結体の耐酸化性の評価(耐
候性試験)として温度60℃,湿度90%の恒温・恒湿下6
ケ月間(5040時間)放置した時のBr iHc減磁率を表1お
よび第1図に示した。
Evaluation of the oxidation resistance (weather resistance test) of the sintered body thus obtained was conducted at a constant temperature and humidity of 60 ° C. and 90% humidity.
Table 1 and FIG. 1 show the BriHc demagnetization rate when left for a period of 50 months (5040 hours).

第1図から明らかのように,実施例1の焼結体(C含
有保護膜で各磁性結晶粒を被覆してなる焼結体)では6
ケ月後の減磁率がBr(実線):−0.36%、iHc(破
線):−0.1%と極めて小さく,耐酸化性が著しく良好
であることが認められる。これに対して,該C含有保護
膜をもたない比較例1の焼結体ではわずか1ケ月(720
時間)後の減磁率がBr:−9.8%,iHc:−3.0%となり,こ
れ以上の放置時間では錆が激しく測定不能となった。
As is clear from FIG. 1, the sintered body of Example 1 (sintered body in which each magnetic crystal grain is covered with a C-containing protective film) has a thickness of 6 mm.
The demagnetization ratios after a month are extremely small, such as Br (solid line): -0.36% and iHc (dashed line): -0.1%, indicating that the oxidation resistance is extremely good. On the other hand, in the sintered body of Comparative Example 1 having no C-containing protective film, only one month (720
After the time, the demagnetization ratios were Br: -9.8% and iHc: -3.0%, and if left for a longer time, rust was so severe that measurement became impossible.

また,実施例1の焼結体の組織をSEMで観察した結果
を第2図の写真に,さらにEPMAを用いたCおよびNd元素
のライン分析結果を第3図の写真に示した。なお第4図
は,第3図の写真中のライン分析線を写し取った各元素
のライン線を示したものである。これらの写真から磁性
結晶粒はCを含有する耐酸化性保護膜で被覆されてお
り,且つ大部分のCはNdリッチの該保護膜に存在してい
ることがわかる。なお,保護膜におけるC含有量は6.1
重量%であった。また磁性結晶粒の粒径を焼結組織のSE
M写真から100個を測定したところその範囲は0.7〜25μ
mであった。一方,TEMで測定した保護膜の厚みは0.01〜
5.6μmであった。これらの値を後記の表1に示した。
また磁気特性としてVSMを用いて測定したBr,iHc及び(B
H)maxの値を表1に示した。
FIG. 2 shows the result of SEM observation of the structure of the sintered body of Example 1, and FIG. 3 shows the result of line analysis of C and Nd elements using EPMA. FIG. 4 shows the line of each element obtained by copying the line analysis line in the photograph of FIG. From these photographs, it can be seen that the magnetic crystal grains are covered with the oxidation-resistant protective film containing C, and most of the C is present in the Nd-rich protective film. The C content in the protective film was 6.1
% By weight. In addition, the SE of the sintered structure
When measuring 100 pieces from the M photo, the range is 0.7 to 25μ
m. On the other hand, the thickness of the protective film measured by TEM was 0.01 to
It was 5.6 μm. These values are shown in Table 1 below.
In addition, Br, iHc and (B
H) The values of max are shown in Table 1.

このように本発明による永久磁石合金は比較例1の公
知のものに比べて耐酸化性が著しく優れ,また磁石特性
も同等以上であることがわかる。
Thus, it can be seen that the permanent magnet alloy according to the present invention has remarkably excellent oxidation resistance as compared with the known alloy of Comparative Example 1, and has the same or better magnet properties.

〔実施例2〜6〕 原料の溶解時に表1に示すボロン(B)量になるよう
に計量・配合する以外は全て実施例1と同様の操作を行
い焼結体を得た。
[Examples 2 to 6] A sintered body was obtained by performing the same operations as in Example 1 except that the amounts of boron (B) shown in Table 1 were measured and blended when the raw materials were dissolved.

なお,比較例2はボロン量を0原子%とした例であ
り,ボロンを配合しなかった以外は上記と同様な操作で
焼結体を得たものである。
Comparative Example 2 was an example in which the amount of boron was 0 atomic%, and a sintered body was obtained by the same operation as described above except that boron was not blended.

得られた各焼結体の耐酸化性,保護膜におけるC量,
磁性結晶粒径,保護膜の厚み,磁気特性を実施例1と同
一の方法で評価し,その結果を表1に記載示した。ま
た,実施例5および6の耐酸化性評価結果を第1図に併
記した。
Oxidation resistance of each obtained sintered body, C content in protective film,
The magnetic crystal grain size, the thickness of the protective film, and the magnetic properties were evaluated in the same manner as in Example 1, and the results are shown in Table 1. FIG. 1 also shows the oxidation resistance evaluation results of Examples 5 and 6.

これらの結果から,本発明のC含有保護膜をもつ焼結
体は,長期にわたって減磁率が極めて小さく耐酸化性に
優れていることがわかる。この効果はB=3原子%の実
施例6でも充分なものであるが,特にBが2原子%未満
の例(例えば第1図の実施例1や5)において顕著であ
る。
From these results, it can be seen that the sintered body having the C-containing protective film of the present invention has a very small demagnetization rate over a long period of time and has excellent oxidation resistance. This effect is sufficient even in Example 6 where B = 3 atomic%, but is particularly remarkable in an example where B is less than 2 atomic% (for example, Examples 1 and 5 in FIG. 1).

〔実施例7〜10〕 カーボン量が表2に示す組成比になるようにカーボン
ブラックを微粉砕時に追添した以外は,実施例1と同様
の操作を行い焼結体を得た。なお,実施例7は溶解時に
カーボンブラックを添加せず微粉砕時の添加のみであ
る。
[Examples 7 to 10] A sintered body was obtained in the same manner as in Example 1, except that carbon black was additionally added at the time of pulverization so that the amount of carbon became the composition ratio shown in Table 2. In addition, Example 7 does not add carbon black at the time of dissolution but only adds at the time of pulverization.

更に比較例3として18Nd−81Fe−1Bとなるように計量
・配合した後,比較例1と同様の操作を行い焼結体を得
た。また比較例4として組成比を18Nd−56Fe−1B−25C
とした以外は上記実施例と同一の方法で焼結体を得た。
Further, as Comparative Example 3, after weighing and blending to obtain 18Nd-81Fe-1B, the same operation as in Comparative Example 1 was performed to obtain a sintered body. As Comparative Example 4, the composition ratio was 18Nd-56Fe-1B-25C.
A sintered body was obtained in the same manner as in the above example except that the above conditions were satisfied.

このようにして得られた焼結体の耐酸化性,保護膜に
おけるC量,磁性結晶粒径,保護膜の厚み磁気特性を実
施例1と同一の方法で評価した。その結果を表2に示し
た。
The oxidation resistance of the sintered body thus obtained, the C content in the protective film, the magnetic crystal grain size, and the thickness magnetic properties of the protective film were evaluated in the same manner as in Example 1. The results are shown in Table 2.

表2の結果に示されるように,本発明に従う合金組成
(原子百分率)並びに保護膜の要件を備えた焼結体は,
いずれも減磁率が低く優れた耐酸化性を示す。なお比較
例3では保護膜中にCが含有されていないので耐酸化性
は測定不能なまでに錆びが発生した。比較例4では保護
膜のC含有量が過大なためにBr値が低くなっている。
As shown in the results of Table 2, the sintered body having the alloy composition (atomic percentage) and the requirement for the protective film according to the present invention was:
Each of them has low demagnetization rate and shows excellent oxidation resistance. In Comparative Example 3, since the protective film did not contain C, rust occurred before the oxidation resistance could not be measured. In Comparative Example 4, the Br value was low because the C content of the protective film was excessive.

〔実施例11〜13〕 ネオジウム量が表3に示す組成比になるように計量・
配合した以外は全て実施例1と同一の操作を行い焼結体
を得た。
[Examples 11 to 13] The amounts of neodymium were measured and measured so as to have the composition ratios shown in Table 3.
Except for blending, all operations were the same as in Example 1 to obtain a sintered body.

このようにして得られた焼結体の耐酸化性,保護膜に
おけるC量,磁性結晶粒径,保護膜の厚みおよび磁気特
性を実施例1と同一の方法で評価しその結果を表3に示
した。
The oxidation resistance of the sintered body thus obtained, the C content in the protective film, the magnetic crystal grain size, the thickness of the protective film, and the magnetic properties were evaluated in the same manner as in Example 1. The results are shown in Table 3. Indicated.

表3の結果に見られるように,本発明焼結体は優れた
磁気特性を有しその耐酸化性も極めて良好であることが
わかる。
As can be seen from the results in Table 3, the sintered body of the present invention has excellent magnetic properties and extremely good oxidation resistance.

〔実施例14〜22〕 原料の溶解時にネオジウムに換えて表4に示す希土類
元素を添加した以外は,全て実施例1と同一の操作を行
い焼結体を得た。
[Examples 14 to 22] Except for adding rare earth elements shown in Table 4 in place of neodymium during melting of the raw materials, all operations were the same as in Example 1 to obtain a sintered body.

このようにして得られた焼結体の耐酸化性,保護膜に
おけるC量,磁性結晶粒径,保護膜の厚みおよび磁気特
性を実施例1と同一の方法で評価しその結果を表4に示
した。
The oxidation resistance of the sintered body thus obtained, the C content in the protective film, the magnetic crystal grain size, the thickness of the protective film, and the magnetic characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 4. Indicated.

表4の結果から,本発明に従う焼結体磁石はいずれも
優れた磁気特性を有し,且つその耐酸化性も極めて良好
であることが明らかである。
From the results shown in Table 4, it is clear that all of the sintered magnets according to the present invention have excellent magnetic properties and extremely good oxidation resistance.

〔実施例23〕 合金微粉末を無磁場中で成形した以外は,全て実施例
1と同一の操作を行い焼結体を得た。
Example 23 A sintered body was obtained by performing the same operation as in Example 1 except that the alloy fine powder was molded in the absence of a magnetic field.

このようにして得られた焼結体の耐酸化性,保護膜に
おけるC量,磁性結晶粒径,保護膜の厚みおよび磁気特
性も実施例1と同一の方法で評価しその結果を表5に示
した。
The oxidation resistance of the thus obtained sintered body, the C content in the protective film, the magnetic crystal grain size, the thickness of the protective film, and the magnetic properties were also evaluated in the same manner as in Example 1. The results are shown in Table 5. Indicated.

【図面の簡単な説明】[Brief description of the drawings]

第1図は,C含有耐酸化性保護膜で各磁性結晶粒を被覆し
てなる本発明の焼結体磁石(実施例1,5,6)を,その磁
石表面を露出したまま60℃×RH90%の雰囲気中で放置し
たさいの放置時間とBr,iHcの減磁率との関係を,該C含
有耐酸化性保護膜をもたない比較例のものと対比して示
した図, 第2図は,実施例1の本発明磁石の金属組織を示す写
真, 第3図は,第2図の金属組織におけるNd,Fe,C元素のラ
イン分析結果を示した写真, 第4図は,第3図のライン分析線を写しとった図であ
り,各ライン線の元素名を表示するためのものである。
FIG. 1 shows a sintered magnet (Examples 1, 5, and 6) of the present invention, in which each magnetic crystal grain is covered with a C-containing oxidation-resistant protective film, at 60 ° C. × FIG. 2 is a graph showing the relationship between the storage time when left in an atmosphere of 90% RH and the demagnetization rate of Br and iHc in comparison with a comparative example having no C-containing oxidation-resistant protective film. Fig. 3 is a photograph showing the metallographic structure of the magnet of the present invention of Example 1, Fig. 3 is a photograph showing the line analysis results of Nd, Fe, C elements in the metallic structure of Fig. 2, and Fig. 4 is FIG. 3 is a diagram in which the line analysis lines of FIG. 3 are copied, for displaying the element names of the respective line lines.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】R−Fe−B−C系合金磁石(但し,RはYを
含む希土類元素の少なくとも1種)において,該合金の
磁性結晶粒の各々が耐酸化性保護膜で覆われており,こ
の耐酸化性保護膜は該磁性結晶粒を構成している合金元
素の実質上全てを含み且つその0.1〜16重量%がCであ
ることを特徴とする耐酸化性の優れたR−Fe−B−C系
永久磁石合金。
In an R-Fe-BC-based alloy magnet (where R is at least one of rare earth elements including Y), each magnetic crystal grain of the alloy is covered with an oxidation-resistant protective film. The oxidation-resistant protective film contains substantially all of the alloying elements constituting the magnetic crystal grains, and 0.1 to 16% by weight of it is C. Fe-BC permanent magnet alloy.
【請求項2】磁性結晶粒は,粒径が0.5〜50μmの範囲
にあり,耐酸化性保護膜の厚みが0.001〜15μmの範囲
にある請求項1に記載の永久磁石合金。
2. The permanent magnet alloy according to claim 1, wherein the magnetic crystal grains have a particle size in the range of 0.5 to 50 μm and a thickness of the oxidation-resistant protective film in a range of 0.001 to 15 μm.
【請求項3】該磁石合金の組成(磁性結晶粒と耐酸化性
保護膜とを併せた全体の組成)が,原子百分比で,R:10
〜30%,B:2%未満(0原子%を含まず),C:0.5〜20%,
残部がFeおよび製造上不可避な不純物からなる請求項1
または2に記載の永久磁石合金。
3. The composition of the magnet alloy (the total composition of the magnetic crystal grains and the oxidation-resistant protective film) is expressed by an atomic percentage of R: 10.
~ 30%, B: less than 2% (excluding 0 atomic%), C: 0.5 ~ 20%,
2. The composition according to claim 1, wherein the balance comprises Fe and impurities inevitable in production.
Or the permanent magnet alloy according to 2.
JP1217500A 1989-08-25 1989-08-25 Permanent magnet alloy with excellent oxidation resistance Expired - Fee Related JP2739502B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1217500A JP2739502B2 (en) 1989-08-25 1989-08-25 Permanent magnet alloy with excellent oxidation resistance
US07/565,452 US5147473A (en) 1989-08-25 1990-08-09 Permanent magnet alloy having improved resistance to oxidation and process for production thereof
DE69017309T DE69017309T3 (en) 1989-08-25 1990-08-22 Permanent magnet alloy with improved resistance to oxidation and method of manufacture.
DE69029405T DE69029405T3 (en) 1989-08-25 1990-08-22 Permanent magnet alloy with better oxidation resistance and manufacturing process
EP90810632A EP0414645B2 (en) 1989-08-25 1990-08-22 Permanent magnet alloy having improved resistance to oxidation and process for production thereof
EP93113410A EP0571002B2 (en) 1989-08-25 1990-08-22 Permanent magnet alloy having improved resistance to oxidation and process for production thereof
US07/710,800 US5183630A (en) 1989-08-25 1991-06-04 Process for production of permanent magnet alloy having improved resistence to oxidation
US07/842,949 US5269855A (en) 1989-08-25 1992-02-27 Permanent magnet alloy having improved resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1217500A JP2739502B2 (en) 1989-08-25 1989-08-25 Permanent magnet alloy with excellent oxidation resistance

Publications (2)

Publication Number Publication Date
JPH0382742A JPH0382742A (en) 1991-04-08
JP2739502B2 true JP2739502B2 (en) 1998-04-15

Family

ID=16705211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1217500A Expired - Fee Related JP2739502B2 (en) 1989-08-25 1989-08-25 Permanent magnet alloy with excellent oxidation resistance

Country Status (1)

Country Link
JP (1) JP2739502B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319336B1 (en) 1998-07-29 2001-11-20 Dowa Mining Co., Ltd. Permanent magnet alloy having improved heat resistance and process for production thereof
JP2007207936A (en) * 2006-01-31 2007-08-16 Tdk Corp Rare earth permanent magnet
JP6429021B2 (en) * 2015-03-20 2018-11-28 Tdk株式会社 permanent magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225893A (en) * 1983-06-08 1984-12-18 Hitachi Ltd Joining method of ti or ti alloy to al or al alloy
JPH01178382A (en) * 1988-01-08 1989-07-14 Hitachi Ltd Solid phase joining method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225893A (en) * 1983-06-08 1984-12-18 Hitachi Ltd Joining method of ti or ti alloy to al or al alloy
JPH01178382A (en) * 1988-01-08 1989-07-14 Hitachi Ltd Solid phase joining method

Also Published As

Publication number Publication date
JPH0382742A (en) 1991-04-08

Similar Documents

Publication Publication Date Title
JP6265368B2 (en) R-T-B rare earth sintered magnet and method for producing the same
JP7220300B2 (en) Rare earth permanent magnet material, raw material composition, manufacturing method, application, motor
KR102527128B1 (en) R-T-B rare earth permanent magnet material, manufacturing method and application
JPWO2005123974A1 (en) R-Fe-B rare earth permanent magnet material
JP2023509225A (en) Heavy rare earth alloy, neodymium iron boron permanent magnet material, raw material and manufacturing method
JP2794496B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP5743458B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
EP0571002B1 (en) Permanent magnet alloy having improved resistance to oxidation and process for production thereof
JP2740981B2 (en) R-Fe-Co-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
JP2739502B2 (en) Permanent magnet alloy with excellent oxidation resistance
JP2739525B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JP2789364B2 (en) Manufacturing method of permanent magnet alloy with excellent oxidation resistance
JP2779654B2 (en) Sintered permanent magnet alloy with excellent oxidation resistance
JP2000331810A (en) R-Fe-B RARE EARTH PERMANENT MAGNET MATERIAL
JP2740901B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP2794494B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP2961360B2 (en) Manufacturing method of permanent magnet alloy with excellent oxidation resistance
JP2743114B2 (en) R-Fe-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
JP3023881B2 (en) R-Fe-BC bonded magnet with excellent oxidation resistance
JP2740902B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP3142851B2 (en) Manufacturing method of permanent magnet alloy with excellent oxidation resistance
JP2794497B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JP3023880B2 (en) R-Fe-Co-BC-based bonded magnet with excellent oxidation resistance
JP2794493B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JP2794495B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees