JP3023881B2 - R-Fe-BC bonded magnet with excellent oxidation resistance - Google Patents

R-Fe-BC bonded magnet with excellent oxidation resistance

Info

Publication number
JP3023881B2
JP3023881B2 JP3053105A JP5310591A JP3023881B2 JP 3023881 B2 JP3023881 B2 JP 3023881B2 JP 3053105 A JP3053105 A JP 3053105A JP 5310591 A JP5310591 A JP 5310591A JP 3023881 B2 JP3023881 B2 JP 3023881B2
Authority
JP
Japan
Prior art keywords
magnetic
oxidation resistance
alloy powder
bonded magnet
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3053105A
Other languages
Japanese (ja)
Other versions
JPH04269806A (en
Inventor
祐一 佐藤
哲男 土肥
直明 田中
美喜男 出射
俊雄 上田
誠一 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP3053105A priority Critical patent/JP3023881B2/en
Publication of JPH04269806A publication Critical patent/JPH04269806A/en
Application granted granted Critical
Publication of JP3023881B2 publication Critical patent/JP3023881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,希土類(R)-鉄(Fe)-
硼素(B)-炭素(C) からなる磁性合金粉末と樹脂成分と
からなる耐酸化性の優れたボンド磁石に関する。
The present invention relates to a rare earth (R) -iron (Fe)-
The present invention relates to a bonded magnet having excellent oxidation resistance and comprising a magnetic alloy powder composed of boron (B) -carbon (C) and a resin component.

【0002】[0002]

【従来の技術】近年, Sm-Co磁石の磁力を凌ぐ次世代
の永久磁石としてR-Fe-B系磁石が佐川らによって開
示されて以来, 多くの報告がなされてきた。しかしなが
ら該磁石はSm-Co系磁石に比べて磁力では優れるもの
の,その磁気特性の耐酸化性が著しく劣り, 例えば, 特
開昭59-46008号公報で開示された永久磁石材料では,実
質上耐得ることは困難である。
2. Description of the Related Art In recent years, many reports have been made since R-Fe-B magnets were disclosed by Sagawa et al. As next-generation permanent magnets exceeding the magnetic force of Sm-Co magnets. However, although the magnet is superior in magnetic force to the Sm-Co based magnet, its magnetism is significantly inferior in oxidation resistance. For example, the permanent magnet material disclosed in Japanese Patent Application Laid-Open No. 59-46008 is substantially resistant to oxidation. It is difficult to get.

【0003】また,該磁石合金は通常は焼結法によって
製造されることから,製品化するためには,研削, 切削
等の加工が必要となりコストの高いものとなってしま
う。この加工を必要としない方法として例えば特開昭59
-294808号公報で開示されるようにボンド法を用いるこ
とができる。
[0003] Further, since the magnet alloy is usually manufactured by a sintering method, processing such as grinding and cutting is required in order to produce a product, and the cost is high. A method that does not require this processing is disclosed in, for example,
The bonding method can be used as disclosed in JP-294808-A.

【0004】しかしながら, 耐酸化性に関する抜本的な
解決はなされておらず,前述焼結磁石と同様に耐酸化性
が著しく劣るため, 永久磁石材料として実用上耐え得る
ことは困難である。
[0004] However, no drastic solution has been made regarding the oxidation resistance, and the oxidation resistance is remarkably inferior as in the case of the above-mentioned sintered magnet, so that it is difficult to practically endure as a permanent magnet material.

【0005】[0005]

【発明が解決しようとする課題】 このように従来のR
-Fe-B系ボンド磁石では耐酸化性において抜本的な改
善効果を得るには至っておらず, 実用レベルでは耐酸化
性に問題があった。
As described above, the conventional R
In -fe-B Keibo command magnet not yet to obtain a drastic improvement in the oxidation resistance, at a practical level has a problem in oxidation resistance.

【0006】 一般にR-Fe-B系磁石は,耐酸化性を
持たせるために,表面に強固な耐酸化性保護皮膜の形成
が必須となるが,磁性合金粉末の場合, その表面に強固
な耐酸化性保護皮膜を形成し,さらに形成した膜が取れ
ないような製造方法を確立しなければならない問題があ
る。本発明はこのような問題点を解決しようとするもの
であり,優れた耐酸化性を付与された磁性合金粉末を用
いて耐酸化性の優れたボンド磁石を提供しようとするも
のである。
[0006] In general R-Fe-B system magnets, in order to impart oxidation resistance, but the formation of strong oxidation resistant protective film on the surface is essential, if the magnetic alloy powder, firmly on its surface There is a problem that it is necessary to establish a manufacturing method that forms an oxidation-resistant protective film and prevents the formed film from being removed. The present invention is shall be trying to solve this problem, is intended to provide an excellent bonded magnet oxidation resistance with excellent oxidation resistance magnetic alloy powder was granted.

【0007】[0007]

【課題を解決するための手段】本発明者等は,これらの
問題点を解決するため,磁石表面を耐酸化性保護膜で被
覆するという従来の巨視的な観念ではなく,微視的な観
念による抜本的な耐酸化性の改善を鋭意検討した結果,
磁性合金粉末中の磁性結晶粒の各々を耐酸化性保護膜で
被覆するという従来技術では予想すら困難であった新規
技術を見出すに至り,更には,従来技術ではもはや高い
磁気特性が得られず実用範囲外とされていたB含有量2
原子%未満領域でも実用に耐え得る良好な磁気特性を付
与し得ることを新たに見出すことによって,耐酸化性が
画期的に高められた新規なボンド磁石の提供を可能とし
た。
In order to solve these problems, the present inventors have developed a microscopic concept, rather than the conventional macroscopic concept of coating the magnet surface with an oxidation-resistant protective film. As a result of intensive studies on drastic improvement of oxidation resistance by
With the conventional technology of coating each of the magnetic crystal grains in the magnetic alloy powder with an oxidation-resistant protective film, a new technology was found that was difficult even with the conventional technology, and furthermore, the conventional technology no longer provides high magnetic properties. B content 2 outside the practical range
By newly finding that good magnetic properties that can withstand practical use can be imparted even in the region of less than atomic%, it has become possible to provide a novel bonded magnet with an epoch-makingly improved oxidation resistance.

【0008】すなわち本発明は,R-Fe-B-C系の合金
粉末(但し, RはYを含む希土類元素の少なくとも1
種)であって且つ該合金粉末中の磁性結晶粒の各々が16
重量%以下 (0重量%を含まず)のCを含む耐酸化性保
護膜で覆われている磁性合金粉末と,体積比率で50%
以下の樹脂成分とからなる,R-Fe-B-C系ボンド磁石
を提供するものである。ここで該磁性結晶粒は,粒径が
好ましくは0.3〜50μmの範囲にあり, この粒径の各結晶
粒を覆っている粒界相の厚みは0.001〜30μmの範囲であ
る。本発明のボンド磁石における磁性合金粉末の好まし
い組成(磁性結晶粒と耐酸化性保護膜を併せた全体の組
成)は, 原子百分比で,R:10〜30%, B:7%以下好
ましくは2%未満(0原子%を含まず), C:0.1〜20
%, 残部がFeおよび製造上不可避的な不純物からな
り,Bは2%以上でも耐酸化性の効果は充分に発揮され
るものではあるが,特にBが2%未満と少ない場合に磁
気特性も充分に示しながら耐酸化性も顕著に良好となる
ものである。
That is, the present invention relates to an R—Fe—BC alloy powder (where R is at least one of rare earth elements including Y).
Seed) and each of the magnetic crystal grains in the alloy powder is 16
50% by volume of magnetic alloy powder covered with an oxidation-resistant protective film containing C in an amount of not more than 0% by weight (not including 0% by weight)
An object of the present invention is to provide an R-Fe-BC bonded magnet comprising the following resin components. Here, the magnetic crystal grains preferably have a grain size in the range of 0.3 to 50 μm, and the thickness of the grain boundary phase covering each crystal grain of this grain size is in the range of 0.001 to 30 μm. The preferred composition of the magnetic alloy powder (the total composition of the magnetic crystal grains and the oxidation-resistant protective film) in the bonded magnet of the present invention is, as an atomic percentage, R: 10 to 30%, B: 7% or less, preferably 2% or less. % (Excluding 0 atomic%), C: 0.1-20
%, The balance consists of Fe and impurities inevitable in production. Even if B is 2% or more, the effect of oxidation resistance is sufficiently exhibited, but especially when B is less than 2%, the magnetic properties are also low. The oxidation resistance is remarkably improved while being sufficiently shown.

【0009】〔作用〕このような耐酸化性は,本発明ボ
ンド磁石を構成している磁性粉末中の各磁性結晶粒の周
囲を適切なC含有量をもつ非磁性膜で覆ったことによっ
て得られたものである。すなわち,本発明者等は非磁性
相である粒界相に上記C (炭素) の所定量を含有せしめ
ることにより, 具体的には該膜の16重量%以下がCとな
るように,好ましくは0.05〜16重量%の範囲がCとなる
ように含有させることにより,この非磁性相に著しい耐
酸化性機能を付与することができることを見い出した。
この耐酸化機能をもつ非磁性膜で各磁性結晶粒を被覆す
ることにより, 従来と同等のB含有量でも充分な耐酸化
性効果を示すことができること,更に該C含有保護膜の
形成はB量の低減を可能とし,これにより2原子%未満
でも, この磁性合金粉末と樹脂成分とからなるボンド磁
石の磁気特性は従来と同等レベル以上でありながら耐酸
化性が画期的に改善さることを見出した。
[Action] Such oxidation resistance is obtained by covering the periphery of each magnetic crystal grain in the magnetic powder constituting the bonded magnet of the present invention with a nonmagnetic film having an appropriate C content. It was done. That is, the present inventors include the above-mentioned predetermined amount of C (carbon) in the grain boundary phase which is a non-magnetic phase, specifically, so that 16% by weight or less of the film becomes C, preferably, It has been found that by containing C in the range of 0.05 to 16% by weight, a remarkable oxidation resistance function can be imparted to this nonmagnetic phase.
By coating each magnetic crystal grain with this non-magnetic film having an oxidation resistance function, a sufficient oxidation resistance effect can be exhibited even with the same B content as in the past, and the formation of the C-containing protective film can be achieved by using a B film. This makes it possible to reduce the amount, and even if it is less than 2 atomic%, the magnetic properties of the bonded magnet consisting of this magnetic alloy powder and the resin component are more than the same level as before, and the oxidation resistance is dramatically improved. Was found.

【0010】〔発明の詳述〕本発明のボンド磁石はC
(炭素) の利用の仕方に大きな特徴があるので,先ずこ
の点から説明する。R-Fe-B系磁石において,従来で
はCは磁気特性および耐酸化性について消極的元素とさ
れており,必須の添加元素とはされていなかった。
[Detailed Description of the Invention] The bonded magnet of the present invention is C
The use of (carbon) has significant characteristics, so we will first explain from this point. In the R-Fe-B magnet, C has conventionally been regarded as a passive element with respect to magnetic properties and oxidation resistance, and has not been regarded as an essential additive element.

【0011】本発明者等は,CをBの単なる置換元素と
して含有させるのではなく,当該合金の磁性結晶粒を包
囲する非磁性相 (粒界) 中にCを積極的に含有させると
いう添加の仕方をするならば,従来の常識に反してCは
磁性合金粉末の耐酸化性に大きく寄与できることを見い
出したものであり,しかも, これによって,磁気特性の
向上が図れることも明らかとなった。すなわち, このよ
うな磁性合金粉末における非磁性相へのCの含有によっ
て,Bの含有量が公知の通常範囲であっても従来に比べ
て耐酸化性が改善され,特に2原子%未満のB量の場合
にはその効果が更に著しいものになることがわかった。
例えば従来ではBの含有量が2原子%未満ではiHcが1K
Oe以下になるとされていたのであるが,本発明では2原
子%未満のB量であってもiHcは4KOe以上となる。この
ような本発明による新規な効果が磁性結晶粒の各々を包
囲するC含有耐酸化性保護膜の形成によりもたらされ
る。このことから, これまでの耐酸化性の劣化及び磁気
特性の低下をもたらしていたCを消極元素とする従来磁
石とは全く異なり, Cを必須とする新規なボンド磁石の
発明を完成することができた。
[0011] The present inventors have proposed the addition of C to a nonmagnetic phase (grain boundary) surrounding magnetic crystal grains of the alloy, instead of including C as a mere substitution element for B. In this way, contrary to conventional wisdom, it has been found that C can greatly contribute to the oxidation resistance of the magnetic alloy powder, and it has also been clarified that this can improve the magnetic properties. . That is, due to the inclusion of C in the non-magnetic phase in such a magnetic alloy powder, even if the B content is within a known ordinary range, the oxidation resistance is improved as compared with the conventional case, and in particular, the B content is less than 2 atomic%. The effect was found to be even more pronounced in the case of the amount.
For example, conventionally, if the B content is less than 2 atomic%, iHc is 1K
According to the present invention, iHc is 4 KOe or more even if the amount of B is less than 2 atomic%. Such a novel effect according to the present invention is brought about by the formation of the C-containing oxidation-resistant protective film surrounding each of the magnetic crystal grains. From this, it is completely different from the conventional magnet using C as the depolarizing element, which has caused the deterioration of the oxidation resistance and the deterioration of the magnetic properties. did it.

【0012】この場合, 磁性結晶粒の各々を包囲するC
含有耐酸化性保護膜は,C以外に磁性結晶粒を構成して
いる合金元素の実質上全てを含むものである。このよう
なC含有耐酸化性保護膜の形成は, 磁性合金粉末中にお
ける磁性結晶粒子間に存在する粒界層にCを含有せしめ
ることにより可能となる。その理由については以下のよ
うに推察する。
In this case, C surrounding each of the magnetic crystal grains
The contained oxidation-resistant protective film contains substantially all of the alloying elements constituting the magnetic crystal grains other than C. Such a C-containing oxidation-resistant protective film can be formed by allowing C to be contained in the grain boundary layer existing between the magnetic crystal grains in the magnetic alloy powder. The reason is presumed as follows.

【0013】つまり, 該保護膜は上記磁性結晶粒を構成
している合金元素の実質上全てを含むことから,特にR
-Fe-C金属間化合物の生成によるところが大きいと考
える。一般に希土類元素は錆やすく,また希土類元素の
炭化物は加水分解されやすいと言われている。しかしな
がら,本発明による保護膜では不定比なR-Fe-C系の
金属間化合物が生成していると推察され,これにより上
記欠点が抑制されると考えられる。
That is, since the protective film contains substantially all of the alloying elements constituting the magnetic crystal grains, particularly,
It is thought to be largely due to the formation of -Fe-C intermetallic compound. It is generally said that rare earth elements are easily rusted and carbides of rare earth elements are easily hydrolyzed. However, it is presumed that a non-stoichiometric R-Fe-C-based intermetallic compound is generated in the protective film according to the present invention, which is considered to suppress the above-mentioned disadvantages.

【0014】このように,本発明者等は磁性合金粉末中
の個々の磁性結晶粒をC含有耐酸化性保護膜で被覆する
ことにより耐酸化性を著しく高め,更にはB含有量の低
減により一層その効果が著しくなることを見い出し,公
知の技術では困難であった良好なボンド磁石を発明する
に至った。
As described above, the present inventors remarkably improve the oxidation resistance by coating each magnetic crystal grain in the magnetic alloy powder with the C-containing oxidation-resistant protective film, and further reduce the B content. They have found that the effect is even more remarkable, and have invented a good bonded magnet which has been difficult with known techniques.

【0015】このC含有耐酸化性保護膜は,前記のよう
に磁性結晶粒を構成している各元素の実質的に全てを含
んでおり,且つそのC含有量は保護膜組成において16重
量%(0重量%を含まず)であることが必要である。す
なわち該保護膜中のCは磁石に耐酸化性を付与するだけ
でなく,Bの減少に伴うiHcの低下を抑制する効果をも
たらすことから,その含有量は保護膜の組成において好
ましくは0.05〜16重量%さらに好ましくは0.1〜12重量
%を必須とする。Cの含有量が0.05重量%未満では耐酸
化性を付与することが出来ず, またiHcが4KOe未満とな
る。一方保護膜中のC量が16重量%を超えると磁石のB
rの低下が著しく, もはや実用が困難となる。
The C-containing oxidation-resistant protective film contains substantially all of the elements constituting the magnetic crystal grains as described above, and the C content is 16% by weight in the protective film composition. (Not including 0% by weight). That is, since C in the protective film not only imparts oxidation resistance to the magnet but also has the effect of suppressing the decrease in iHc due to the decrease in B, its content is preferably 0.05 to 0.05% in the composition of the protective film. 16% by weight, more preferably 0.1 to 12% by weight is essential. If the content of C is less than 0.05% by weight, oxidation resistance cannot be imparted, and iHc is less than 4KOe. On the other hand, if the C content in the protective film exceeds 16% by weight,
The decrease of r is remarkable, and it is no longer practical.

【0016】尚,本発明のボンド磁石において,磁性合
金粉末中の保護膜の組成成分としては, C以外にも, 磁
性結晶粒とはその量比が異なるとしても, 磁性結晶粒を
構成している合金元素の実質上全てを含む。この保護膜
の厚みについては個々の磁性結晶粒を均一に被覆してさ
えおれば,その厚みに依存せず耐酸化性は実質的に保持
されるが,膜厚が0.001μm未満ではiHcの低下が著しく,
また30μmを超えるとBrがもはや本発明で意図する値
を満足しなくなるので,0.001μm〜30μmの範囲,好ま
しくは0.005μm〜15μmの範囲とするのがよい。なお,
上記保護膜の厚みは粒界三重点も含むものである。この
保護膜の厚みはTEMを用いて測定することができる。
In the bonded magnet of the present invention, the composition of the protective film in the magnetic alloy powder is not limited to C, and may be composed of magnetic crystal grains even if the amount ratio differs from that of the magnetic crystal grains. Contains substantially all of the alloying elements present. Oxidation resistance is substantially maintained irrespective of the thickness of the protective film as long as it covers the individual magnetic crystal grains uniformly, but iHc decreases when the film thickness is less than 0.001 μm. Noticeably,
On the other hand, if it exceeds 30 μm, Br no longer satisfies the value intended in the present invention. Therefore, the range is preferably 0.001 μm to 30 μm, more preferably 0.005 μm to 15 μm. In addition,
The thickness of the protective film includes the grain boundary triple point. The thickness of this protective film can be measured using a TEM.

【0017】一方, この耐酸化性保護膜で囲われる各磁
性結晶粒自身は,周知のR-Fe-B-(C)系永久磁石と同
様の組成であってもよい。しかしBが低量であっても本
発明ボンド磁石の場合には良好な磁気特性を発現でき
る。本発明ボンド磁石における磁性合金粉末組成 (磁性
結晶粒と耐酸化性保護膜とを併せた全体の組成) は,好
ましくは原子百分比で,R:10〜30%, B:7%以下望
ましくは2%未満(0%を含まず),C:0.1〜20%,
残部:Feおよび製造上不可避な不純物からなる。この
磁性合金粉末によって所要の形状に成形されたボンド磁
石とするのに体積比率で50%以下の樹脂成分を用い
る。
On the other hand, each magnetic crystal grain itself surrounded by the oxidation-resistant protective film may have the same composition as a well-known R-Fe-B- (C) -based permanent magnet. However, even when the amount of B is low, the bonded magnet of the present invention can exhibit good magnetic properties. The composition of the magnetic alloy powder (the entire composition including the magnetic crystal grains and the oxidation-resistant protective film) in the bonded magnet of the present invention is preferably R: 10 to 30%, B: 7% or less, preferably 2% or less in atomic percentage. % (Excluding 0%), C: 0.1-20%,
The balance: Fe and impurities unavoidable in production. A resin component having a volume ratio of 50% or less is used to obtain a bonded magnet formed into a required shape from the magnetic alloy powder.

【0018】 本発明ボンド磁石の磁性合金粉末中の総
C含有量は好ましくは0.1〜20原子%である。該総C含
有量が20原子%を超えるとBrの低下が著しく,一方,
0.1原子%未満ではもはや耐酸化性を付与することが困
難になる。このように,磁性合金粉末中の総C含有量と
しては, 好ましくは0.1〜20原子%とするが,前述の耐
酸化性保護膜中のCは耐酸化性を付与するだけでなく,
Bの減少に伴うiHcの低下を抑制する効果をもたらすこ
とから,その含有量は保護膜の組成において, 16重量%
以下 (0%を含まず), 好ましくは0.05〜16重量%, さ
らに好ましくは0.1〜12重量%を必須とする。Cの原料
としてはカーボンブラック,高純度カーボンを用いるこ
とができる。
The total C content in the magnetic alloy powder of the bonded magnet of the present invention is preferably 0.1 to 20 atomic%. When the total C content exceeds 20 atomic%, the decrease of Br is remarkable,
If it is less than 0.1 atomic%, it is no longer possible to impart oxidation resistance. As described above, the total C content in the magnetic alloy powder is preferably 0.1 to 20 atomic%, but C in the above-described oxidation-resistant protective film not only imparts oxidation resistance,
Since it has the effect of suppressing the decrease in iHc due to the decrease in B, its content is 16% by weight in the composition of the protective film.
The following (excluding 0%), preferably 0.05 to 16% by weight, more preferably 0.1 to 12% by weight is essential. The C of the raw material can be used carbon black, high purity carbon emissions.

【0019】Rは希土類元素であってY,La,Ce,Nd,
Pr,Tb,Dy,Ho,Er,Sm,Gd,Eu,Pm,Tm,Yb及びLu
のうち一種又は二種以上が用いられる。尚, 二種以上の
混合物であるミッシュメタル, ジジム等も用いることが
できる。ここでRを好ましくは10〜30原子%とするの
は,この範囲内ではBrが実用上非常に優れているため
である。
R is a rare earth element, Y, La, Ce, Nd,
Pr, Tb, Dy, Ho, Er, Sm, Gd, Eu, Pm, Tm, Yb and Lu
One or more of them are used. Incidentally, a mixture of two or more kinds, such as misch metal and dymium, can also be used. Here, the reason why R is preferably set to 10 to 30 atomic% is that Br is extremely excellent in practical use within this range.

【0020】Bとしては, 純ボロン又はフエロボロンを
用いることができ, その含有量は公知の範囲である2原
子%を超えても7原子%程度まで含有させても従来技術
に比べて耐酸化性は著しく改善され, 本発明の前記目的
が達成されるのであるが,好ましくはBは2原子%未
満,更に好ましくは1.8原子%以下においてより一層の
効果がある。他方, B無添加では耐酸化性は良好となる
もののiHcが極端に低下し,本発明の目的を達成できな
くなる。フエロボロンとしてはAl,Si等の不純物を含
有するものでも用いることができる。
As B, pure boron or ferroboron can be used, and its content exceeds the known range of 2 at.% Or up to about 7 at. Is remarkably improved, and the above object of the present invention is achieved. However, it is preferable that B is less than 2 atomic%, more preferably 1.8 atomic% or less. On the other hand, when B is not added, the oxidation resistance is good, but iHc is extremely reduced, and the object of the present invention cannot be achieved. As the ferroboron, those containing impurities such as Al and Si can also be used.

【0021】本発明のボンド磁石は, 前述のように,磁
性合金粉末中の各々の磁性結晶粒は厚みが好ましくは
0.001〜30μm, さらに好ましくは0.005〜15μmの範囲の
C含有耐酸化性保護膜で覆われているものであるが,そ
の磁性結晶粒の粒径は好ましくは0.3〜50μm, さらに好
ましくは1〜30μmの範囲にある。磁性結晶粒の粒径が
0.3μm未満になるとiHcが4KOe未満となり, また50μm
を超えるとiHcの低下が著しくなり,本発明磁石の特徴
が損なわれる。なおこの結晶粒の粒径の測定は SEMによ
って, また組成分析はEPMAを用いて正確に行うことがで
きる。
As described above, in the bonded magnet of the present invention, each magnetic crystal grain in the magnetic alloy powder preferably has a thickness.
It is covered with a C-containing oxidation-resistant protective film in the range of 0.001 to 30 μm, more preferably 0.005 to 15 μm, and the magnetic crystal grains preferably have a particle size of 0.3 to 50 μm, more preferably 1 to 30 μm. In the range. The size of the magnetic crystal grains
If less than 0.3μm, iHc becomes less than 4KOe, and 50μm
When i exceeds 3, the decrease in iHc becomes remarkable, and the characteristics of the magnet of the present invention are impaired. The grain size can be accurately measured by SEM, and the composition analysis can be accurately performed by EPMA.

【0022】さらに本発明のボンド磁石は前記磁性合金
粉末を樹脂成分で所要形状に成形したものであり,樹脂
成分は体積比率50%以下, 好ましくは5〜40%とする。
樹脂成分が5%以下では成形困難となり,50%を越える
と良好な磁気特性を発現できないからである。
Further, the bonded magnet of the present invention is obtained by molding the magnetic alloy powder into a required shape with a resin component, and the resin component has a volume ratio of 50% or less, preferably 5 to 40%.
If the resin component is less than 5%, molding becomes difficult, and if it exceeds 50%, good magnetic properties cannot be exhibited.

【0023】樹脂成分としては熱可塑性樹脂, 熱硬化性
樹脂のいずれでも使用できる。例えば機械的・熱的性質
およびその他の特性に優れる樹脂としてフエノール樹
脂, フラン樹脂, ポリエステル樹脂, エポキシ樹脂, ポ
リウレタン樹脂, ケイ素樹脂,フッ素樹脂, ポリイミド
樹脂, ポリアミド樹脂, ジアリルフタレート樹脂, ポリ
フエニルオキサイド樹脂などが適宜選択される。また,
磁性合金粉末は, 樹脂との接着性を高め, 機械的・熱的
性質を向上するために, シランカップリング剤,チタネ
ートカップリング剤, アルミニウムカップリング剤, ジ
ルコアルミネートカップリング剤, 機能性モノマーなど
各種処理剤による表面処理も併用できる。必要に応じて
可塑性, 滑剤などが使用される。これらの可塑剤として
は代表的なものとしてジブチルフタレート (DBP),ジ
オクチルフタレート (DOP),ジオクチルアジペート
(DOA) などが使用できる。滑剤として代表的なもの
として脂肪酸エステル, 金属石鹸などが使用できる。
As the resin component, either a thermoplastic resin or a thermosetting resin can be used. For example, phenolic resin, furan resin, polyester resin, epoxy resin, polyurethane resin, silicon resin, fluororesin, polyimide resin, polyamide resin, diallyl phthalate resin, polyphenyl oxide resin are resins having excellent mechanical and thermal properties and other properties. Is appropriately selected. Also,
Magnetic alloy powder enhances adhesiveness with resin and improves mechanical and thermal properties. Silane coupling agent, titanate coupling agent, aluminum coupling agent, zircoaluminate coupling agent, functional monomer Surface treatment with various treatment agents can be used together. Plasticity, lubricants, etc. are used as needed. Representative examples of these plasticizers are dibutyl phthalate (DBP), dioctyl phthalate (DOP), and dioctyl adipate.
(DOA) can be used. Representative examples of lubricants include fatty acid esters and metal soaps.

【0024】本発明のボンド磁石の磁性粉末を製造する
方法としては,焼結体から粉砕する場合には,溶解・鋳
造・粉砕・成形・焼結・粉砕若しくは溶解・鋳造・粉砕
・成形・焼結・粉砕・熱処理の一連の工程からなる従来
同様の方法でも作製可能であるが,好ましくは上記製造
プロセスにおいて,鋳造後に該鋳造合金を熱処理する工
程を導入するか,または粉砕時若しくは粉砕後にC原料
の一部若しくは全量を二次添加する工程を導入するこ
と,さらにはこの二つの工程を組合わせて導入すること
によって, 有利に製造できる。鋳造合金から粉砕する場
合には,熱間塑性加工法を用い粉砕若しくは粉砕・熱処
理することによって前述の効果を発揮する良好な磁性合
金粉末を得ることが出来る。また,溶湯を噴霧法を用い
粉末とする若しくは,その粉末を熱処理しても前述の効
果を発揮する良好な磁性合金粉末を得ることができる。
As a method of producing the magnetic powder of the bonded magnet of the present invention, when pulverizing from a sintered body, melting, casting, pulverizing, molding, sintering, pulverizing or melting, casting, pulverizing, molding, firing, etc. Although it can be produced by a conventional method comprising a series of steps of sintering, pulverization and heat treatment, preferably, in the above-mentioned production process, a step of heat-treating the cast alloy after casting or introducing C The production can be advantageously performed by introducing a step of secondary addition of a part or all of the raw material, or by introducing these two steps in combination. When pulverizing from a cast alloy, a good magnetic alloy powder exhibiting the above-described effects can be obtained by pulverizing or pulverizing and heat-treating using a hot plastic working method. In addition, a good magnetic alloy powder exhibiting the above-mentioned effects can be obtained even if the molten metal is formed into a powder by a spraying method or the powder is heat-treated.

【0025】ボンド磁石成形品は前記磁性合金粉末と樹
脂成分を混合, 成形, 固化することにより製造できる。
成形方法は,圧縮成形, 射出成形, 押出成形, 静水圧成
形などを用いることによって, 前述の効果を発揮する本
発明のボンド磁石を作製することができる。
A bonded magnet molded product can be manufactured by mixing, molding, and solidifying the magnetic alloy powder and a resin component.
By using compression molding, injection molding, extrusion molding, hydrostatic molding, or the like, the bonded magnet of the present invention exhibiting the above-described effects can be produced.

【0026】なお,このような本発明によるボンド磁石
は耐酸化性について従来材に比べ画期的に改善されるこ
とから,従来のようにボンド磁石の最外表面を耐酸化性
の保護被膜で被覆しなくても, 磁石自身が極めて優れた
耐酸化性を有するので,場合によっては前記の最外表面
の保護被膜は不要となる。
Since the bonded magnet according to the present invention is remarkably improved in oxidation resistance as compared with the conventional material, the outermost surface of the bonded magnet is coated with an oxidation-resistant protective film as in the prior art. Even without coating, the magnet itself has extremely excellent oxidation resistance, so that the protective coating on the outermost surface may be unnecessary in some cases.

【0027】このように本発明によれば, 従来材に比べ
て耐酸化性が著しく改善され, また良好な磁気特性を有
することから, 種々の磁石応用製品に好適に用いられ
る。磁石応用製品としては,例えば次の製品が挙げられ
る。DCブラシレスモーター,サーボモーター等の各種
モーター;駆動用アクチュエーター, 光学ビックアップ
用F/Tアクチュエーター等の各種アクチュエーター;ス
ピーカー, ヘッドホン,イヤホン等の各種音響機器;回
転センサー, 磁気センサー等の各種センサー;MRI等の
電磁石代替製品;リードリレー, 有極リレー等の各種リ
レー;ブレーキ,クラッチ等の各種磁気カップリング;
ブザー, チャイム等の各種振動発振機;マグネットセパ
レーター, マグネットチャック等の各種吸着用機器;電
磁開閉器,マイクロスイッチ, ロッドレスエアーシリン
ダー等の各種開閉制御機器;光アイソレーター, クライ
ストロン, マグネトロン等の各種マイクロ波機器;マグ
ネット発電器;健康器具, 玩具等である。なお,このよ
うな磁石応用製品は一例であり, これらに限定されるも
のではない。
As described above, according to the present invention, the oxidation resistance is remarkably improved as compared with the conventional material, and the magnetic material has good magnetic properties, so that it can be suitably used for various magnet applied products. Examples of the magnet application products include the following products. Various motors such as DC brushless motors and servo motors; various actuators such as drive actuators and F / T actuators for optical big-up; various audio equipment such as speakers, headphones and earphones; various sensors such as rotation sensors and magnetic sensors; Electromagnet replacement products such as; Reed relays, polarized relays and other various relays; Brake, clutches and other magnetic couplings;
Various vibration oscillators such as buzzers and chimes; Various suction devices such as magnet separators and magnet chucks; Various opening and closing control devices such as electromagnetic switches, micro switches, rodless air cylinders; Various micro devices such as optical isolators, klystrons, and magnetrons Wave equipment; magnet generator; health equipment, toys, etc. In addition, such a magnet application product is an example, and is not limited to these.

【0028】また,本発明によるボンド磁石の特徴は,
錆難く高い環境温度で使用しても,従来材よりも特性の
劣化は少なく, 又従来材のように磁石品の最外露出表面
に耐酸化性保護被膜を形成しなくても高い磁気特性を保
持しながら該磁石自身に優れた耐酸化性が付与されてい
ることから, 別途の該保護被膜が不要となることはもと
より, 特殊な環境用として保護被膜の必要が生じた場合
でも, 磁石内部からの錆の発生がないので, 保護被膜を
形成するさいの接着性が良好であると共に, 被膜の剥離
や被膜厚みの変動による寸法精度の問題等が解消され
る。この面からも耐酸化性を必要とする用途には最適な
ボンド磁石を提供できる。以下に実施例を挙げる。
The characteristics of the bonded magnet according to the present invention are as follows.
Even when used at high environmental temperature, it does not easily rust, and its characteristics are less deteriorated than conventional materials.High magnetic characteristics can be achieved without forming an oxidation-resistant protective coating on the outermost exposed surface of the magnet product unlike conventional materials. Since the magnet itself has excellent oxidation resistance while being held, not only is the separate protective coating unnecessary, but even if a protective coating is needed for special environments, Since there is no rust from the surface, the adhesion is good when the protective film is formed, and the problem of dimensional accuracy due to peeling of the film and fluctuation of the film thickness is eliminated. From this aspect as well, it is possible to provide an optimal bonded magnet for applications requiring oxidation resistance. Examples will be described below.

【0029】[0029]

【実施例1】原料として純度99.9%の電解鉄, ボロン含
有量19.32%のフエロボロン合金及び純度98.5% (不純
物として他の希土類金属を含有する) ネオジウム金属を
使用し, 組成比 (原子比) として20Nd-72Fe-1Bとな
るように計量・配合し,真空中, 高周波誘導炉で溶解し
た後, 水冷銅鋳型中に鋳込み, 合金塊を得た。このよう
にした得られた合金塊をジョークラッシャーで10〜15mm
に破砕し,次いで700℃で5時間保持した後,50℃/分の
速度で冷却した。更にこの合金塊をアルゴンガス中でス
タンプミルを用いて−100meshまで粗砕した後, 組成比
(原子比) が20Nd-72Fe-1B-7Cとなるように, 更に純
度99.5%のカーボンブラックを該粗砕粉に添加し,次い
で, 振動ミルを用いて平均粒子径5μmまで粉砕した。
このようにして得られた合金粉末を10KOeの磁界中1ton
/cm2の圧力で形成した後,アルゴンガス中1100℃で2時
間保持した後,急冷し,焼結体を得た。このようにした
得られた焼結体をアルゴンガス中でスタンプミルを用い
て−100meshまで粗砕し磁性合金粉末を得た。この磁性
合金粉末における耐酸化性保護膜中のカーボン含有量は
4.3重量%であり, 保護膜の厚みは0.012〜6.3μm, 磁性
結晶粒径は1.3〜29μm であった。
Example 1 As raw materials, electrolytic iron having a purity of 99.9%, ferroboron alloy having a boron content of 19.32%, and neodymium metal having a purity of 98.5% (containing other rare earth metals as impurities) were used as composition ratios (atomic ratios). It was weighed and blended to 20Nd-72Fe-1B, melted in a high-frequency induction furnace in a vacuum, and cast into a water-cooled copper mold to obtain an alloy ingot. The obtained alloy mass in this way is 10-15 mm with a jaw crusher
And then kept at 700 ° C. for 5 hours, then cooled at a rate of 50 ° C./min. Furthermore, this alloy ingot was crushed to -100 mesh using a stamp mill in argon gas.
Carbon black having a purity of 99.5% was further added to the crushed powder so that the (atomic ratio) became 20Nd-72Fe-1B-7C, and then ground using a vibrating mill to an average particle diameter of 5 μm.
The alloy powder obtained in this way is put in a magnetic field of 10 KOe for 1 ton.
After forming at a pressure of / cm 2 , it was kept at 1100 ° C. for 2 hours in an argon gas, and then rapidly cooled to obtain a sintered body. The sintered body thus obtained was roughly crushed to −100 mesh using a stamp mill in an argon gas to obtain a magnetic alloy powder. The carbon content of the oxidation-resistant protective film in this magnetic alloy powder is
The thickness of the protective film was 0.012 to 6.3 μm, and the magnetic crystal grain size was 1.3 to 29 μm.

【0030】このようにして得られた磁性合金粉末にア
ルゴンガス中で体積比率12%のエポキシ樹脂を添加し,
混練機で混練し,この混練物を20KOe磁界中で4ton/cm2
で形成した後130℃×1時間, 加熱硬化させてボンド磁
石を得た。なお,比較例1として,原料はカーボンブラ
ックを除き上記実施例1と同一とし,組成比(原子比)
が20Nd-74Fe-6Bとなるように計量・配合し,実施例
1と同様に(但しカーボンブラックは無添加)溶解後,
粗砕,微粉砕,磁場成形焼結,急冷,粉砕した磁性合金
粉末を得たのち,実施例1と同様にこの磁性合金粉末を
混練,磁場成形,加熱硬化してボンド磁石を得た。この
ようにして得られたボンド磁石の耐酸化性の評価(耐候
性試験)として,温度80℃, 湿度90%の恒温・恒湿下で
96時間放置した時のBrとiHcのそれぞれの減磁率を表1
に示した。
An epoxy resin having a volume ratio of 12% was added to the magnetic alloy powder thus obtained in argon gas,
The mixture is kneaded with a kneader, and the kneaded material is 4 ton / cm 2 in a 20KOe magnetic field.
After heating at 130 ° C. for 1 hour, a bonded magnet was obtained. As Comparative Example 1, the raw materials were the same as in Example 1 except for carbon black, and the composition ratio (atomic ratio)
Was measured and blended so as to be 20Nd-74Fe-6B, and dissolved as in Example 1 (but no carbon black was added).
After obtaining a magnetic alloy powder obtained by crushing, pulverizing, magnetic forming sintering, quenching, and pulverizing, this magnetic alloy powder was kneaded, magnetically formed, and heat-cured in the same manner as in Example 1 to obtain a bonded magnet. The evaluation of the oxidation resistance (weather resistance test) of the bonded magnet obtained in this way was conducted at a constant temperature and humidity of 80 ° C and 90% humidity.
Table 1 shows the demagnetization rates of Br and iHc when left for 96 hours.
It was shown to.

【0031】表1から明らかなように,本発明による実
施例1の(C含有保護膜で各磁性結晶粒を被覆してなる
磁性合金粉末から作製された) ボンド磁石では96時間後
の減磁率がBr;−1.6%, iHc;−14.1%と極めて小さ
く, 耐酸化性が著しく向上ししていることが認められ
る。また顕微鏡による表面観察でも錆の発生は認められ
なかった。
As can be seen from Table 1, the demagnetization rate of the bonded magnet of Example 1 (prepared from the magnetic alloy powder obtained by coating each magnetic crystal grain with the C-containing protective film) according to the present invention after 96 hours. Is extremely small, Br; -1.6%, iHc; -14.1%, and it is recognized that the oxidation resistance is remarkably improved. No rust was observed by microscopic surface observation.

【0032】これに対してC含有の保護膜をもたない磁
性合金粉末から作成された比較例1のボンド磁石ではわ
ずか96時間の放置時間で錆が激しくサンプル形状をとど
めず測定不能となった。
On the other hand, in the bonded magnet of Comparative Example 1 made from the magnetic alloy powder having no C-containing protective film, the rust was so severe that the sample shape was not retained even after leaving for only 96 hours. .

【0033】また, 表1には磁気特性としてVSMを用い
て測定したBr, iHc及び (BH)maxの値も示した。本発
明によるボンド磁石は比較例1のものに比べて耐酸化性
が著しく優れるが,同時に磁石特性も同等以上であるこ
とがわかる。
Table 1 also shows the values of Br, iHc and (BH) max measured using a VSM as magnetic properties. It can be seen that the bonded magnet according to the present invention has significantly better oxidation resistance than that of Comparative Example 1, but at the same time has the same or better magnet properties.

【0034】[0034]

【実施2〜3】実施例1で使用した磁性合金粉末とエポ
キシ樹脂を表1に示す体積比率になるように配合した以
外は全て実施例1と同様の操作を行いボンド磁石を得
た。このようにして得られたボンド磁石の耐酸化性およ
び磁気特性を実施例1と同一の方法で評価し,その結果
を表1に記載示した。
Examples 2 to 3 Bonded magnets were obtained in the same manner as in Example 1 except that the magnetic alloy powder and the epoxy resin used in Example 1 were mixed so as to have the volume ratio shown in Table 1. The oxidation resistance and magnetic properties of the bond magnet thus obtained were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0035】表1から明らかなように本発明によるボン
ド磁石は比較例1のものに比べて耐酸化性が著しく優
れ,また磁石特性も同等以上であることがわかる。
As is clear from Table 1, the bonded magnet according to the present invention has remarkably excellent oxidation resistance as compared with that of Comparative Example 1, and has the same or better magnet properties.

【0036】[0036]

【実施例4】原料として純度99.9%の電解鉄, ボロン含
有量19.32%のフエロボロン合金,純度99.5%のカーボン
ブラック及び純度98.5% (不純物として他の希土類金属
を含有する) ネオジウム金属を使用し,組成比 (原子
比) として20Nd-72Fe-1B-7Cとなるように計量・配
合し,真空中, 高周波誘導炉で溶解した後, アトマイズ
法を用いて−100meshとし合金粉末を得た。このように
して得られた合金粉末をアルゴンガス中で700℃で5時
間保持した後,50℃/分の冷却速度で冷却し磁性合金粉
末を得た。この磁性粉末における耐酸化性保護膜中のカ
ーボン含有量は3.9重量%である。保護膜の厚みは0.010
〜6.5μm,また磁性結晶粒は1.2〜32μmであった。
Example 4 Electrolytic iron having a purity of 99.9%, ferroboron alloy having a boron content of 19.32%, carbon black having a purity of 99.5%, and neodymium metal having a purity of 98.5% (containing other rare earth metals as impurities) were used as raw materials. The alloy powder was weighed and blended to have a composition ratio (atomic ratio) of 20Nd-72Fe-1B-7C, melted in a high-frequency induction furnace in a vacuum, and adjusted to -100 mesh by an atomizing method to obtain an alloy powder. The alloy powder thus obtained was kept in an argon gas at 700 ° C. for 5 hours, and then cooled at a cooling rate of 50 ° C./min to obtain a magnetic alloy powder. The carbon content of the magnetic powder in the oxidation-resistant protective film is 3.9% by weight. 0.010 protective film thickness
6.56.5 μm, and the magnetic grains were 1.2-32 μm.

【0037】このようにして得られた磁性結晶粉末にア
ルゴンガス中で体積比率12%のエポキシ樹脂を添加して
混練機で混練したうえ,この混練物を4ton/cm2で形成
した後, 130℃×1時間, 加熱硬化させてボンド磁石を
得た。なお,比較例2として, 原料はカーボンブラック
を除き上記実施例1と同一とし,組成比(原子比)が20
Nd-74Fe-6Bとなるように計量・配合し,溶解後,アト
マイズ法にて, 磁性合金粉末を得たのち, 実施例4と同
様に,この磁性合金粉末を混練,成形,加熱硬化してボ
ンド磁石を得た。このようにして得られたボンド磁石の
耐酸化性および磁気特性を実施例1と同一の方法で評価
し,その結果を表1に示した。表1から明らかなように
本発明によるボンド磁石は比較例のものに比べて耐酸化
性が著しく優れ,また磁石特性も同等以上であることが
わかる。
The magnetic crystal powder thus obtained was mixed with an epoxy resin having a volume ratio of 12% in argon gas and kneaded with a kneading machine. The kneaded product was formed at 4 ton / cm 2 , and then kneaded. It was cured by heating at ℃ 1 hour to obtain a bonded magnet. In Comparative Example 2, the raw materials were the same as in Example 1 except for carbon black, and the composition ratio (atomic ratio) was 20.
After weighing and blending to obtain Nd-74Fe-6B, melting and obtaining a magnetic alloy powder by an atomizing method, the magnetic alloy powder is kneaded, molded and heat-cured in the same manner as in Example 4. A bonded magnet was obtained. The oxidation resistance and magnetic properties of the thus obtained bonded magnet were evaluated in the same manner as in Example 1, and the results are shown in Table 1. As is clear from Table 1, the bonded magnet according to the present invention has remarkably excellent oxidation resistance as compared with that of the comparative example, and has the same or better magnet properties.

【0038】[0038]

【表1】 [Table 1]

フロントページの続き (72)発明者 出射 美喜男 東京都千代田区丸の内一丁目8番2号同 和鉱業株式会社内 (72)発明者 上田 俊雄 東京都千代田区丸の内一丁目8番2号同 和鉱業株式会社内 (72)発明者 久野 誠一 東京都千代田区丸の内一丁目8番2号同 和鉱業株式会社内 (56)参考文献 特開 平2−208902(JP,A) 特開 平2−250303(JP,A) 特開 平4−119605(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/08 C22C 33/02 H01F 1/053 Continuing from the front page (72) Inventor Mikio Minato 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Toshio Ueda 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. In-company (72) Inventor Seiichi Kuno 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (56) References JP-A-2-208902 (JP, A) JP-A-2-250303 (JP) , A) JP-A-4-119605 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 1/08 C22C 33/02 H01F 1/053

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原子百分比でR:10〜30%, B:7%以
下(0原子%を含まず),C: 0.1〜20%, 残部がFe
および製造上不可避的不純物からなるR−Fe−B−C
系の合金粉末 (但し,RはYを含む希土類元素の少なく
とも1種)であって且つ該合金粉末中の磁性結晶粒が粒
径1〜50μmを有しその磁性結晶粒の各々が16重量%以
下 (0重量%を含まず)のCを含む耐酸化性保護膜で覆
われている磁性合金粉末と,体積比率で50%以下の樹脂
成分とからなる耐酸化性に優れたR−Fe−B−C系ボ
ンド磁石。
1. An atomic percentage of R: 10 to 30% and B: 7% or less.
Bottom (not including 0 atomic%), C: 0.1-20%, balance Fe
And R-Fe-BC composed of unavoidable impurities in production
Alloy powder (where R is at least one of rare earth elements including Y) and the magnetic crystal grains in the alloy powder are
A magnetic alloy powder having a diameter of 1 to 50 μm , each of whose magnetic crystal grains is covered with an oxidation-resistant protective film containing C of 16% by weight or less (not including 0% by weight), and 50% by volume An R-Fe-BC bonded magnet excellent in oxidation resistance comprising the following resin components.
【請求項2】 酸化性保護膜は,厚みが 0.001〜30μ
mの範囲にある請求項1に記載のボンド磁石。
Wherein oxidation resistance protective film has a thickness 0.001~30μ
The bonded magnet according to claim 1, which is in a range of m.
【請求項3】 耐酸化性保護膜の0.05〜16重量%が, C
である請求項1または2に記載のボンド磁石。
3. An oxidation-resistant protective film comprising 0.05 to 16% by weight of C
The bonded magnet according to claim 1 or 2, wherein
JP3053105A 1991-02-26 1991-02-26 R-Fe-BC bonded magnet with excellent oxidation resistance Expired - Fee Related JP3023881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3053105A JP3023881B2 (en) 1991-02-26 1991-02-26 R-Fe-BC bonded magnet with excellent oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3053105A JP3023881B2 (en) 1991-02-26 1991-02-26 R-Fe-BC bonded magnet with excellent oxidation resistance

Publications (2)

Publication Number Publication Date
JPH04269806A JPH04269806A (en) 1992-09-25
JP3023881B2 true JP3023881B2 (en) 2000-03-21

Family

ID=12933512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3053105A Expired - Fee Related JP3023881B2 (en) 1991-02-26 1991-02-26 R-Fe-BC bonded magnet with excellent oxidation resistance

Country Status (1)

Country Link
JP (1) JP3023881B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355050A (en) 2001-06-29 2001-12-25 Sumitomo Special Metals Co Ltd R-t-b-c based rare earth magnet powder and bond magnet
EP1583111B1 (en) * 2003-01-10 2013-03-13 Hitachi Metals, Ltd. Oxidation-resistant rare earth containing magnet powder and method for production thereof, compound for rare earth containing bonded magnet, rare earth containing bonded magnet and method for production thereof

Also Published As

Publication number Publication date
JPH04269806A (en) 1992-09-25

Similar Documents

Publication Publication Date Title
EP0239031B1 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
EP0302947B1 (en) Rare earth element-iron base permanent magnet and process for its production
JP6447380B2 (en) SmFeN-based metal bond magnet compact with high specific resistance
US6338761B1 (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
JPH1053844A (en) (rare earth)-iron-boron magnetic alloy and its production and bond magnet using the (rare earth)-iron-boron magnetic alloy
JP5743458B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
EP0414645B2 (en) Permanent magnet alloy having improved resistance to oxidation and process for production thereof
JP2794496B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP3023881B2 (en) R-Fe-BC bonded magnet with excellent oxidation resistance
JP2739525B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JP3391704B2 (en) Rare earth magnet
JP3023880B2 (en) R-Fe-Co-BC-based bonded magnet with excellent oxidation resistance
JP2789364B2 (en) Manufacturing method of permanent magnet alloy with excellent oxidation resistance
JP2739502B2 (en) Permanent magnet alloy with excellent oxidation resistance
JPH04268703A (en) R-fe-b-c bonded magnet with excellent oxidation-resistant property
JP2935376B2 (en) permanent magnet
JP2000331810A (en) R-Fe-B RARE EARTH PERMANENT MAGNET MATERIAL
JPH04268704A (en) R-fe-co-b-c bonded magnet with excellent oxidation resistant property
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPH0845719A (en) Quenched thin band for bond magnet, particles for bond magnet, bond magnet and manufacture thereof
JP2619653B2 (en) Rare earth magnet
JP2961360B2 (en) Manufacturing method of permanent magnet alloy with excellent oxidation resistance
JPH05211102A (en) Powder for permanent magnet and permanent magnet
JPS61139638A (en) Manufacture of sintered permanent magnet material
JPS6144155A (en) Permanent magnet alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees