JP4303937B2 - Permanent magnet alloy - Google Patents

Permanent magnet alloy Download PDF

Info

Publication number
JP4303937B2
JP4303937B2 JP2002316373A JP2002316373A JP4303937B2 JP 4303937 B2 JP4303937 B2 JP 4303937B2 JP 2002316373 A JP2002316373 A JP 2002316373A JP 2002316373 A JP2002316373 A JP 2002316373A JP 4303937 B2 JP4303937 B2 JP 4303937B2
Authority
JP
Japan
Prior art keywords
alloy
amount
added
less
same conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002316373A
Other languages
Japanese (ja)
Other versions
JP2004149851A (en
Inventor
慎一 紺野
寛久 大元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2002316373A priority Critical patent/JP4303937B2/en
Publication of JP2004149851A publication Critical patent/JP2004149851A/en
Application granted granted Critical
Publication of JP4303937B2 publication Critical patent/JP4303937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は,Co量が比較的低量であっても高いBHmax (最大エネルギー積)と iHc(保磁力) を具備する希土類磁石合金に関する。
【0002】
【従来の技術】
耐酸化性や耐熱性に優れた希土類磁石としてSm−Co磁石が知られているがこの磁石は高価である。より安価な希土類磁石として,R−Fe(Co)−B系の希土類焼結磁石合金が知られている。Rは希土類元素の1種または2種以上を表し,(Co)はCoを含んでいてもよいことを表す。このものは,一般に表面が酸化し易いので磁石表面に対し,メッキ法,スパッタ法,蒸着法,有機物皮膜法等によって耐酸化性の保護被膜を形成することが行われたりしている。
【0003】
より安価で且つ耐酸化性や耐熱性を改善した希土類磁石として,例えば特許第2789364号等に提案されたR−Fe(Co)−B−C系の希土類焼結磁石合金がある。このものは,C(炭素)を合金元素の必須成分として含有し,磁性結晶粒の周囲にC濃度の高い非磁性相が存在することによって,高い最大エネルギー積を保持しながら優れた耐酸化性が得られると説明されている。この系統の永久磁石合金として,例えば特開平4-116144号公報, 特開平4-268045号公報および PCT/JP99/04048 号公報等に記載されたものが知られている。
【0004】
【発明が解決しようとする課題】
R−Fe−(Co)−B系の希土類焼結磁石合金の表面に耐酸化性の保護被膜を形成させる場合には,合金の外表面に数10μm以上の強固且つ均質な膜層を形成させることが必要とされる。R−Fe(Co)−B−C系の希土類焼結磁石合金の場合には,前者よりも耐酸化性に優れるが,十分な耐熱性や耐候性を得るには,特開平4-268045号公報や PCT/JP99/04048 号公報に記載されているようにCoやDyを比較的多量に含有させることが必要であり,また同公報に記載されているように,CoやDyは磁気特性の改善にとって有益に機能することも知られている。
【0005】
しかし,CoやDyは高価な元素であるために,価格の面からは,できるだけ使用量を低減することが望まれる。
【0006】
したがって本発明の課題は,従来のR−Fe(Co)−B−C系の希土類磁石合金において,CoやDyを低減しても,十分な磁気特性, 特に高いエネルギー積 (BHmax)および保磁力 (iHc)を同時に具備する希土類磁石合金を得ることにある。
【0007】
【課題を解決するための手段】
本発明者らは,前記課題を解決するために,種々の試験研究を重ねてきたが,この系統の希土類磁石合金においては iHc とBHmax は添加元素によりトレードオフの関係にあり,両者を両立させることは困難であるが,適量のCuを添加すると,DyおよびCoが少ないところでも,BrおよびBHmax を低下させずに iHc を向上させることができることを見い出した。またCuのほかに,AlとCrは iHc を向上させる効果があり,Cuの一部をこれらの元素で置換できることがわかった。
【0008】
本発明は,このような知見事実に基づいてなされたものであり,
原子百分率(at.%)で,
R:8〜20 at.% ( Rは, Nd,Pr,Ce,La,Y,Gd,Tb,Ho,ErおよびTmの群から選ばれた少なくとも1種の元素を表す),
Dy:2.0 at.%以下 (0%を含まず),
Co:3.0 at.%未満 (0%を含む),
B: 1.0〜6.0 at.%,
C: 0.1〜5.0 at.%,
Cu:3.0 at.%以下 (0%を含まず),
AlまたはCr:2.0 at.%以下 (0%を含む),
残部:Feおよび不可避的不純物,
からなる永久磁石合金を提供する。
【0009】
ここで,B:2.0 at.%以上で,C+B:4.0 〜8.0 at.%であるのが好ましく,CoはCo:3.0 at.%未満 (0%を含まず)であることができる。この永久磁石は,最大エネルギー積(BHmax ):45MGOe以上,好ましくは47MGOe以上で,且つ保磁力(iHc):10kOe以上,好ましくは12kOe以上を具備することができる。
【0010】
【発明の実施の形態】
本発明の磁石合金の成分組成は,前記した範囲に特定されるものであるが,各成分含有量を前記の範囲に特定する理由の概略と本発明に従う合金磁石の製造法について,以下に説明する。
【0011】
〔R:8〜20at.%〕
Dy以外の希土類元素として,Nd,Pr,Ce,La,Y,Gd,Tb,Ho,Er,Tmの一種または二種以上を8〜20at.%含有することにより,Fe(Co)およびBとの共存のもとで,焼結体において磁性相と粒界相を形成し,高い iHc とBrを維持することができる。R元素のうち,特に好ましい元素はNdであり,NdとPrまたはTbの組合せである。Rが8at.%未満では十分なBrが得られず,20at.%を超えても十分なBrが得られない。好ましいR元素の含有量は13〜18at.%である。
【0012】
〔Dy:2.0 at.%以下〕
Dyは保磁力の維持および耐熱性の向上に寄与し,とくに不可逆減磁率を低下させるのに寄与する。しかし,5at.%を超えても耐熱性向上効果は飽和し,かえって磁気特性を劣化させることがある。加えて,Dyは高価であるために,できるだけ少量で必要な磁気特性が発現できることが好ましい。このため,本発明ではDyの上限を2.0 at.%とする。
【0013】
〔B:1.5〜6.at.%〕
Bは磁性相形成のために必要であり,このためには少なくとも0.5at.%を必要とするが,高い iHc とBHmax を得るには1.5at.%以上,好ましくは2.0at.%以上であることが望ましい。しかし,過剰の添加はかえって磁気特性を劣化させる。このため,1.5〜8at.%,好ましくは1.5〜6at.%,さらに好ましくは2.0〜6at.%のB量を含有させるが,好ましいB量は3.0〜5.0at.%の範囲である。
【0014】
〔C:0.1〜5at.%〕
Cは,特開平4−116144号公報に記載のとおり,本磁石合金の磁気特性を良好に維持しながら希土類磁石の欠点である酸化し易い性質を改質し,耐酸化性を向上させる作用を供する。また不可逆減磁率の低下にも寄与する。Cの耐酸化性および耐熱性向上効果は0.1at.%未満では十分ではない。しかし5at.%を超えると磁気特性が低下する場合がある。このため,0.1〜5at.%のC量を含有させるが,好ましいC量は0.1〜3.5at.%の範囲,さらに好ましいC量は0.1〜3at.%の範囲である。
【0015】
〔B:2.0 at.%以上で,C+B:4.0 〜8.0 at.%〕
Bを2.0 at.%以上としたうえで,C+Bを4at.%以上含有させるのが iHc とBHmax の両者を高めるうえで好ましい。しかし,C+Bが8at.%を超えると磁気特性を劣化させることがあるので,C+Bを4〜8at.%とするのがよい。
【0016】
〔Co:3at.%以下〕
Coは高い磁気特性を維持しながらキューリー点を高める作用がある。また耐熱性および耐候性を高めるのにも有効に寄与する。しかしCoは高価な元素であるのでその添加量を低減することが望ましい。本発明においては,他の元素の含有量の規制およびCu(さらにはAlまたはCr)の添加によって,Coを低減しても高い iHc とBHmax を確保できることを見い出したものであり,Coの含有量は3at.%までであればよい。
【0017】
〔Cu:3.0 at.%以下〕
Cuは一般に保磁力を高める作用を供するが,反面,Brを低下させる。ところが,Co含有量が低い領域では,CuはBrやBHmax の低下を招くことなく iHc を高めることができることがわかった。このためには,Cuは少なくとも0.01at.%以上,好ましくは0.05at.%以上を必要とする。しかし,多量にCuを添加すると磁力が低下するので,3at.%以下とするのがよい。好ましいCuの含有量は0.05〜1.5at.%である。
【0018】
〔AlまたはCr:2at.%以下〕
AlまたはCrは,一般に保磁力を高めるのに寄与するが,BrやBHmax を低下させる。この点でCuと類似の作用を供するが,Coの低い領域でも,BrやBHmax を低下させることがある。このために,AlまたはCrは,添加する場合には,2at.%以下,好ましくは1.5at.%以下とするのがよい。
【0019】
〔残部:Feおよび不可避的不純物〕
FeはR−B(C)と共に磁性相を形成するために必須の元素であり,前記の成分の含有量の残りは実質的にFe量とするが,製造上不可避的に含有してくる不純物はある程度許容できる。不純物としての総量は1.0at.%以下であるのが望ましい。
【0020】
以上の理由により,原子百分率(at.%)で,
R:8〜20 at.% ( Rは, Nd,Pr,Ce,La,Y,Gd,Tb,Ho,ErおよびTmの群から選ばれた少なくとも1種の元素を表す),
Dy:2.0 at.%以下 (0%を含まず),
Co:3.0 at.%未満 (0%を含む),
B :1.0 〜6.0 at.%,
C :0.1 〜5.0 at.%,
好ましくはB:2.0 at.%以上で,C+B:4.0 〜8.0 at.%,
Cu:3.0 at.%以下 (0%を含まず),
AlまたはCr:2at.%以下(0%を含む),
残部:Feおよび不可避的不純物,
からなる本発明の永久磁石合金は,高価なCoを3at.%以下,Dyを2at.%以下に低減しながら,保磁力とBHmax を同時に高く維持することができる。例えば最大エネルギー積(BHmax ):45MGOe以上,好ましくは47MGOe以上で,保磁力(iHc):10kOe以上,好ましくは12kOeを示すことができる。
【0021】
本発明の永久磁石合金を製造するには,溶解,鋳造,粉砕,成形,焼結という一連の工程で焼結磁石合金とすることができる。溶解鋳造法としては,真空溶解・鋳造法,不活性ガス雰囲気溶解・鋳造法,急冷ロール法,アトマイズ法等が採用できる。磁気特性と耐熱性に優れた焼結磁石とするには,鋳造工程と粉砕工程の間に熱処理工程を挿入し,粉砕前のものを不活性ガス雰囲気中で600℃以上の温度で熱処理するのが好ましく,これにより一層磁気特性を向上させることができる。また,焼結工程では不活性ガス中で1000〜1200℃の温度で焼結し,この焼結温度から600〜900℃まで徐冷し,次いでその温度から急冷するのが好ましい。この焼結後の急冷によっても磁気特性を向上させることができる。
【0022】
本発明の磁石合金の製造法の概要を説明すると次のとおりである。
【0023】
まず,合金組成となるように秤量した各成分の原料を真空溶解炉で1500℃以上で溶解し,水冷鋳型に急冷鋳造する。得られた鋳塊を前記のように600℃以上でAr雰囲気中で熱処理したあと,ロールクラッシャーで粗粉砕する。得られた粗粉をディスクミルで100μm程度に破砕し,さらに振動ボールミルで微粉砕し,平均粒径1〜5μmの粉末にする。これらの粉砕工程もAr雰囲気中で行う。この粉砕工程において,C原料の一部を添加することができる。すなわちC原料の一部は真空溶解炉に投入するが,残部はこの微粉砕工程で添加する。このC原料としてはカーボンブラックが適切であるが,脂肪族炭化水素,高級脂肪酸系アルコール,高級脂肪酸,脂肪酸アマイド,金属石けん,脂肪酸エステル等のCを含有する有機物質も使用可能である。好ましい添加剤は,ステアリン酸系の粉砕助剤(潤滑剤)である。
【0024】
次いで該粉体を外部磁場中で成形する。成形圧としては0.3〜5t/cm2の範囲,外部磁場としては15KOe 以上が適切である。この成形工程も望ましくはAr雰囲気中で行う。この成形品をAr雰囲気中1000〜1200℃で約2時間の焼結を行う。そして,前記のように焼結温度から600〜900℃まで徐冷し,次いでその温度から急冷する。600〜900℃から急冷を開始させるには,その温度から低温の不活性ガスを吹付ける方法,水または油またはこれに類する液中に浸漬する方法で行うことができるが,この急冷開始温度600〜900℃から400℃まで,またはそれ以下まで−50℃/min 以上, 好ましくは−100℃/min 以上の冷却速度で急冷するのがよい。
【0025】
以下に実施例を挙げて本発明をさらに説明する。
【0026】
【実施例】
〔例1〕
原料として純度99.9%の電解鉄,ボロン含有量19.6%のフェロボロン合金,純度 99.3%のネオジム金属, 純度99.1%のジスプロシウム, 純度99.6%のコバルト金属を使用し,原子百分率(at.%)で,
Nd:11.8at.%,
Dy:2.4 at.%,
Co:9.0 at.%,
B :3.0 at.%,
残部:Fe,
となるように計量,配合した。
【0027】
前記の配合に対し, 純度99.9%の金属銅(銅フレーク)を無添加の場合(No.1)と0.1at.%添加した場合 (No.2)について,いずれも高周波誘導炉で真空中で1600℃で溶解した後,ブックモールド型鋳型に鋳込み,合金塊を得た。これらの合金塊の分析値を表1に示した。
【0028】
各合金塊を横型真空炉からなる熱処理炉に入れ,800℃×14時間の熱処理のあと,アルゴン気流中で冷却した。ついで,ロールクラッシャーにて1mm程度に粉砕し,ディスクミルにて100μm程度に粉砕し,さらに振動ボールミルにて2.5μm程度まで微粉砕した。
【0029】
この粉砕処理にあたっては,ステアリン酸系粉砕助剤(潤滑剤)を予め添加して粉砕処理した。その添加量は,ステアリン酸中のC量が,合金中のCとして3at.%に相当するように調整した。ステアリン酸中のC量は最終磁石合金にほとんど残存する。
【0030】
得られた合金微粉末を20t横磁場(垂直磁場)成形機にて成形した。形成圧力は500kg/cm2である。次いで,この成形品を焼結炉に装入し,ほぼ1050℃で120分のアルゴン雰囲気中で焼結のあと,アルゴン気流中で焼結温度から冷却した。得られた焼結体の組成比を表2に示した。また,焼結体から試験片を切り出し,その試験片を用いてVSMで磁気特性を測定した。その測定結果を表3に示した。
【0031】
【表1】

Figure 0004303937
【0032】
【表2】
Figure 0004303937
【0033】
【表3】
Figure 0004303937
【0034】
表3の結果から,Cuの添加により iHc が向上していることがわかる。
【0035】
〔例2〕
例1と同じ原料配合のもの(銅粉無添加)を,例1と同じ条件で溶解し鋳造して合金塊を得た。得られた合金塊を分析したところ,原子百分率で,
Nd:11.8 at.%,
Dy: 2.4 at.%,
Co: 9.0 at.%,
B : 3.0 at.% ,
C : 0.1 at.%,
Al: 0.7 at.%,
Si: 0.1 at.%,
Cu: 0.0 at.%
残部:Feであった。
【0036】
この合金塊を例1と同じ条件で熱処理したあと,例1と同じ条件で粉砕した。そして,最終の振動ボールミルで微粉砕したあと,その微粉体に,ステアリン酸系粉砕助剤(潤滑剤)と,粒径がほぼ1μmの銅微粉を添加した。潤滑剤の添加量は,いずれも,ステアリン酸中のC量が,合金中のCとして3at.%に相当するように調整した。銅粉の添加量については,合金中のCu量が0at.%(No.3),0.1at.%(No.4)または1.0at.%(No.5)とした。
【0037】
得られた合金微粉末を例1と同じ条件で磁場成形し,成形品を例1と同じ条件で焼結した。得られた焼結体の組成比を表4に示し,焼結体の磁気特性を表5に示した。
【0038】
【表4】
Figure 0004303937
【0039】
【表5】
Figure 0004303937
【0040】
表5の結果から,粉砕後成形前にCuを添加した場合にも, iHc が向上していることがわかる。
【0041】
〔例3〕
本例は,例1〜2よりもCo量を低減した領域において,Cu添加による磁気特性の影響を示すものである。
【0042】
例1と同じ原料を用いて,原子百分率(at.%)で,
Nd:15 at.%,
Dy:0.5 at.%,
Co:1.2 at.%,
B :3.0 at.%,
残部:Fe,
となるように計量,配合した。
【0043】
この配合に対し, 例1と同じ金属銅を無添加の場合(No.6), 0.1 at.% 添加した場合 (No.7)または 0.5 at.% 添加した場合(No.8)について,いずれも例1と同じ条件で溶解し鋳造して合金塊を得た。各合金塊の分析値を表6に示した。
【0044】
各合金塊を例1と同じ条件で粉砕した。粉砕に当たっては,例1と同じステアリン酸系粉砕助剤(潤滑剤)を,ステアリン酸中のC量が,合金中のCとして3at.%となるように,添加した。次いで,例1と同じ条件で磁場成形し,成形品を例1と同じ条件で焼結した。得られた焼結体の組成比を表7に示し,焼結体の磁気特性を表8に示した。
【0045】
【表6】
Figure 0004303937
【0046】
【表7】
Figure 0004303937
【0047】
【表8】
Figure 0004303937
【0048】
表8の結果から,Co含有量が低い場合に,少量のCuの添加で iHc が向上することがわかる。そのさい,BrおよびBHmax の低下は見られない。
【0049】
〔例4〕
本例は,Cuの代わりにAlを添加した以外は,例3と殆ど同じ条件とした例である。
【0050】
例3と同じ原料配合のものに対し,純度99.9%の金属Alを,0.7at.%(No.9),1.4at.%(No.10)または2.2at.%(No.11)添加し,いずれも例1と同じ条件で溶解し鋳造して合金塊を得た。各合金塊の分析値を表9に示した。
【0051】
各合金塊を例1と同じ条件で粉砕した。粉砕に当たっては,例1と同じステアリン酸系粉砕助剤(潤滑剤)を,ステアリン酸中のC量が,合金中のCとして3at.%となるように,添加した。次いで,例1と同じ条件じ磁場成形し,成形品を例1と同じ条件で焼結した。得られた焼結体の組成比を表10に示し,焼結体の磁気特性を表11に示した。
【0052】
【表9】
Figure 0004303937
【0053】
【表10】
Figure 0004303937
【0054】
【表11】
Figure 0004303937
【0055】
表11の結果から,Alを添加するとその添加量が多くなるほど iHc が向上するが,あまり添加量が多いとその効果は飽和することがわかる。またAl添加量が増加するにつれてBrおよびBHmax が減少するようになる。
【0056】
〔例5〕
本例は,Cu添加量は一定にしてCo添加量を変えた場合の磁気特性の変化を見たものである。
【0057】
例1と同じ原料を用いて,原子百分率(at.%)で,
Nd:15 at.%,
Dy:0.5 at.%,
B :3.0 at.%,
Cu:0.1 at.%,
残部:Fe,
となるように計量,配合した。
【0058】
この配合に対し, コバルト金属を, 1.2 at.% 添加した場合 (No.12),3.0 at.%添加した場合 (No.13), 5.8 at.% 添加した場合 (No.14),について,いずれも例1と同じ条件で溶解し鋳造して合金塊を得た。各合金塊の分析値を表12に示した。
【0059】
各合金塊を例1と同じ条件で粉砕した。粉砕に当たっては,例1と同じステアリン酸系粉砕助剤(潤滑剤)を,ステアリン酸中のC量が,合金中のCとして3at.%となるように,添加した。次いで,例1と同じ条件じ磁場成形し,成形品を例1と同じ条件で焼結した。得られた焼結体の組成比を表13に示し,焼結体の磁気特性を表14に示した。
【0060】
【表12】
Figure 0004303937
【0061】
【表13】
Figure 0004303937
【0062】
【表14】
Figure 0004303937
【0063】
表14の結果から,Cu=0.1at.%において,Coの添加量が増加するにつれてBHmax が大きくなる傾向が見られるが, iHc は低下する傾向にあることがわかる。
【0064】
〔例6〕
本例は,合金溶製時にCu=0.1at.%を添加したうえで,B量とC量は変化させたが「B+C」の総量を3at.%の一定とした場合の磁気特性の変化を見たものである。
【0065】
例1と同じ原料を用いて,原子百分率(at.%)で,
Nd:14.5 at.%,
Dy:0.5 at.%,
Co:1.1 at.%,
Cu:0.1 at.%,
B+C:3.0 at.%,
残部:Fe,
となるように計量,配合した。
【0066】
この配合において,「B+C」=「1.1 +2.1 」at.%とした場合(No.15),=「2.0 +1.0 」at.%(No.16),=「3.1 +0.1 」とした場合(No.17)について,いずれも例1と同じ条件で溶解し鋳造して合金塊を得た。各合金塊の分析値を表15に示した。
【0067】
各合金塊を例1と同じ条件で粉砕した。粉砕に当たっては,例1と同じステアリン酸系粉砕助剤(潤滑剤)を,ステアリン酸中のC量が,合金中のCとしてNo.15では5at.%となるように,No.16では4at.%となるように,No.17では3at.%となるように,調整した。次いで,例1と同じ条件じ磁場成形し,成形品を例1と同じ条件で焼結した。得られた焼結体の組成比を表16に示し,焼結体の磁気特性を表17に示した。
【0068】
【表15】
Figure 0004303937
【0069】
【表16】
Figure 0004303937
【0070】
【表17】
Figure 0004303937
【0071】
表17の結果から,B+Cが同量でもB量が多い方が, iHc およびBHmax が高くなることがわかる。
【0072】
〔例7〕
本例は,Co=1.0 at.%において,B=3.5 at.%,Nd+Dy=14.5at.%としたうえで,粉砕後成形前に銅粉を添加した例であり,焼結温度は1035℃としたものである。
【0073】
例1と同じ原料を用いて,原子百分率(at.%)で,
Nd:14.0 at.%,
Dy:0.5 at.%,
Co:1.0 at.%,
B :3.5 at.%,
残部:Fe,
となるように計量,配合した。
【0074】
この配合のものを例1と同じ条件で溶解し鋳造して合金塊を得た。得られた合金塊を分析したところ,原子百分率で,
Nd:14.0 at.%,
Dy: 0.5 at.%,
Co: 1.0 at.%,
B : 3.5 at.% ,
C : 0.1 at.%,
Al: 1.0 at.%,
Si: 0.1 at.%,
Cu: 0.0 at.%
残部:Feであった。
【0075】
この合金塊を例1と同じ条件で熱処理したあと,例1と同じ条件で粉砕した。そして,最終の振動ボールミルで微粉砕したあと,その微粉体に,ステアリン酸系粉砕助剤(潤滑剤)と,例1で用いたの同じ銅粉を添加した。潤滑剤の添加量は,いずれも,ステアリン酸中のC量が,合金中のCとして2.5 at.%に相当するように調整した。銅粉の添加量については,合金中のCu量が0at.%(No.18),0.04at.%(No.19),0.1at.%(No.20)または0.2at.%(No.21)となるように調整した。
【0076】
得られた合金微粉末を例1と同じ条件で磁場成形し,成形品を例1と同じように焼結したが,焼結温度は1035℃とした。得られた焼結体の組成比を表18に示し,焼結体の磁気特性を表19に示した。
【0077】
【表18】
Figure 0004303937
【0078】
【表19】
Figure 0004303937
【0079】
表19の結果から,Cuの添加により iHc が一層高くなること,Cuを添加してもBrおよびBHmax の低下は殆ど起きないことがわかる。
【0080】
〔例8〕
本例は,Co=1.0 at.%において,B=3.5 at.%,Nd+Dy=14.5at.%としたうえで,粉砕後成形前に銅粉を添加した例であり,焼結温度は1070℃としたものである。
【0081】
焼結温度を1035℃から1070℃に変更した以外は,例7を繰り返した。CとCuは例7と同じく粉砕後成形前に添加し,潤滑剤の添加量は,ステアリン酸中のC量が合金中のCとして2.5 at.%に相当するように調整し,銅粉の添加量については合金中のCu量が0at.%(No.22),0.04at.%(No.23),0.1at.%(No.24)または0.2at.%(No.25)となるように調整した。得られた焼結体の組成比を表20に示し,焼結体の磁気特性を表21に示した。
【0082】
【表20】
Figure 0004303937
【0083】
【表21】
Figure 0004303937
【0084】
表21の結果から,Cuの添加により iHc が一層高くなること,Cuを添加してもBrは同じレベルを維持し,BHmax は若干向上し,No.25では iHc =12kOe,BHmax =48MGOeの磁気特性が得られている。
【0085】
〔例9〕
本例は,Co=1.0 at.%において,B=3.5 at.%,Nd+Dy=15.0at.%としたうえで,粉砕後成形前に銅粉を添加した例であり,焼結温度は1035℃としたものである。
【0086】
例1と同じ原料を用いて,原子百分率(at.%)で,
Nd:14.5 at.%,
Dy:0.5 at.%,
Co:1.0 at.%,
B :3.5 at.%,
残部:Fe,
となるように計量,配合した。
【0087】
この配合のものを例1と同じ条件で溶解し鋳造して合金塊を得た。得られた合金塊を分析したところ,原子百分率で,
Nd:14.6 at.%,
Dy: 0.6 at.%,
Co: 1.0 at.%,
B : 3.5 at.% ,
C : 0.1 at.%,
Al: 1.0 at.%,
Si: 0.1 at.%,
Cu: 0.0 at.%
残部:Feであった。
【0088】
この合金塊を例1と同じ条件で熱処理したあと,例1と同じ条件で粉砕した。そして,最終の振動ボールミルで微粉砕したあと,その微粉体に,ステアリン酸系粉砕助剤(潤滑剤)と,例1で用いたの同じ銅粉を添加した。潤滑剤の添加量は,いずれも,ステアリン酸中のC量が,合金中のCとして2.5 at.%に相当するように調整した。銅粉の添加量については,合金中のCu量が0at.%(No.26),0.04at.%(No.27),0.1at.%(No.28)または0.2at.%(No.29)となるように調整した。
【0089】
得られた合金微粉末を例1と同じ条件で磁場成形し,成形品を例1と同じように焼結したが,焼結温度は1035℃とした。得られた焼結体の組成比を表22に示し,焼結体の磁気特性を表23に示した。
【0090】
【表22】
Figure 0004303937
【0091】
【表23】
Figure 0004303937
【0092】
表23の結果から,Cuの添加により iHc が一層高くなること,Cuを添加してもBrおよびBHmax の低下は起きないことがわかる。
【0093】
〔例10〕
本例は,Co=1.0 at.%において,B=3.5 at.%,Nd+Dy=15.0at.%としたうえで,粉砕後成形前に銅粉を添加した例であり,焼結温度は1070℃としたものである。
【0094】
焼結温度を1035℃から1070℃に変更した以外は,例9を繰り返した。CとCuは例9と同じく粉砕後成形前に添加し,潤滑剤の添加量は,ステアリン酸中のC量が合金中のCとして2.5 at.%に相当するように調整し,銅粉の添加量については合金中のCu量が0at.%(No.30),0.04at.%(No.31),0.1at.%(No.32)または0.2at.%(No.33)となるように調整した。得られた焼結体の組成比を表24に示し,焼結体の磁気特性を表25に示した。
【0095】
【表24】
Figure 0004303937
【0096】
【表25】
Figure 0004303937
【0097】
表25の結果から,Cuの添加により iHc が一層高くなること,Cuを添加してもBrは同じレベルを維持し,BHmax は向上し,No.32〜No.33のものでは iHc =13 kOe,BHmax =47.4MGOeレベルの磁気特性が得られている。
【0098】
【発明の効果】
以上説明したように,本発明によると,Coを低域レベルに低下させても,高い保磁力と最大エネルギー積の希土類磁石合金が得られるので,安価な強力永久磁石を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rare earth magnet alloy having a high BHmax (maximum energy product) and iHc (coercive force) even when the amount of Co is relatively low.
[0002]
[Prior art]
An Sm—Co magnet is known as a rare earth magnet excellent in oxidation resistance and heat resistance, but this magnet is expensive. R-Fe (Co) -B rare earth sintered magnet alloys are known as cheaper rare earth magnets. R represents one or more rare earth elements, and (Co) represents that it may contain Co. In general, the surface is easily oxidized, so that an oxidation-resistant protective film is formed on the magnet surface by a plating method, a sputtering method, a vapor deposition method, an organic film method, or the like.
[0003]
As a rare earth magnet that is cheaper and has improved oxidation resistance and heat resistance, for example, there is an R—Fe (Co) —B—C rare earth sintered magnet alloy proposed in Japanese Patent No. 2789364. This material contains C (carbon) as an essential component of the alloying element, and has a high non-magnetic phase with a high C concentration around the magnetic crystal grains, so it has excellent oxidation resistance while maintaining a high maximum energy product. Is obtained. As permanent magnet alloys of this system, for example, those described in JP-A-4-116144, JP-A-4-68045, PCT / JP99 / 04048, and the like are known.
[0004]
[Problems to be solved by the invention]
When an oxidation-resistant protective film is formed on the surface of an R—Fe— (Co) —B rare earth sintered magnet alloy, a strong and homogeneous film layer of several tens μm or more is formed on the outer surface of the alloy. Is needed. In the case of an R—Fe (Co) —B—C rare earth sintered magnet alloy, the oxidation resistance is superior to that of the former, but in order to obtain sufficient heat resistance and weather resistance, JP-A-4-68045 It is necessary to contain a relatively large amount of Co and Dy as described in the gazette and PCT / JP99 / 04048, and Co and Dy have magnetic properties as described in the gazette. It is also known to function beneficially for improvement.
[0005]
However, since Co and Dy are expensive elements, it is desired to reduce the amount of use as much as possible from the viewpoint of price.
[0006]
Therefore, the object of the present invention is to achieve sufficient magnetic properties, particularly high energy product (BHmax) and coercive force, even if Co and Dy are reduced in conventional R—Fe (Co) —B—C rare earth magnet alloys. The object is to obtain a rare earth magnet alloy having (iHc) simultaneously.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have made various tests and researches. In this series of rare earth magnet alloys, iHc and BHmax are in a trade-off relationship depending on the additive element, and both are compatible. Although it is difficult, it has been found that iHc can be improved without lowering Br and BHmax even when Dy and Co are small when an appropriate amount of Cu is added. In addition to Cu, Al and Cr have the effect of improving iHc, and it has been found that a part of Cu can be substituted with these elements.
[0008]
The present invention has been made based on such findings and facts,
Atomic percentage (at.%)
R: 8 to 20 at.% (R represents at least one element selected from the group consisting of Nd, Pr, Ce, La, Y, Gd, Tb, Ho, Er, and Tm),
Dy: 2.0 at.% Or less (excluding 0%),
Co: Less than 3.0 at.% (Including 0%),
B: 1.0-6.0 at.%,
C: 0.1-5.0 at.%,
Cu: 3.0 at.% Or less (excluding 0%),
Al or Cr: 2.0 at.% Or less (including 0%),
Balance: Fe and inevitable impurities,
A permanent magnet alloy is provided.
[0009]
Here, it is preferable that B is 2.0 at.% Or more and C + B is 4.0 to 8.0 at.%, And Co can be less than Co: 3.0 at.% (Not including 0%). The permanent magnet can have a maximum energy product (BHmax): 45 MGOe or more, preferably 47 MGOe or more, and a coercive force (iHc): 10 kOe or more, preferably 12 kOe or more.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The component composition of the magnet alloy of the present invention is specified in the above-mentioned range, but the outline of the reason for specifying each component content in the above-mentioned range and the method for producing the alloy magnet according to the present invention will be described below. To do.
[0011]
[R: 8-20at.%]
As rare earth elements other than Dy, Fe (Co) and B are contained by containing 8 to 20 at.% Of one or more of Nd, Pr, Ce, La, Y, Gd, Tb, Ho, Er, and Tm. Under the coexistence of the above, a magnetic phase and a grain boundary phase can be formed in the sintered body, and high iHc and Br can be maintained. Among the R elements, a particularly preferable element is Nd, which is a combination of Nd and Pr or Tb. If R is less than 8 at.%, Sufficient Br cannot be obtained, and if it exceeds 20 at.%, Sufficient Br cannot be obtained. A preferable R element content is 13 to 18 at.%.
[0012]
[Dy: 2.0 at.% Or less]
Dy contributes to maintaining the coercive force and improving the heat resistance, and particularly contributes to reducing the irreversible demagnetization rate. However, even if it exceeds 5 at.%, The heat resistance improvement effect is saturated, and the magnetic properties may be deteriorated. In addition, since Dy is expensive, it is preferable that necessary magnetic characteristics can be expressed with as little amount as possible. For this reason, in the present invention, the upper limit of Dy is set to 2.0 at.%.
[0013]
[B: 1.5-6.at.%]
B is necessary for the formation of the magnetic phase. For this purpose, at least 0.5 at.% Is required, but in order to obtain high iHc and BHmax, it is 1.5 at.% Or more, preferably 2.0 at.%. The above is desirable. However, excessive addition deteriorates the magnetic properties. Therefore, a B amount of 1.5 to 8 at.%, Preferably 1.5 to 6 at.%, More preferably 2.0 to 6 at.% Is contained, but a preferable B amount is 3.0 to 5.0 at%. It is in the range of.%.
[0014]
[C: 0.1 to 5 at.%]
C, as described in JP-A-4-116144, has the effect of improving the oxidation resistance by modifying the oxidizable property, which is a defect of the rare earth magnet, while maintaining the magnetic properties of the present magnet alloy well. Provide. It also contributes to a decrease in irreversible demagnetization rate. The effect of improving the oxidation resistance and heat resistance of C is less than 0.1 at.%. However, if it exceeds 5 at.%, The magnetic properties may deteriorate. For this reason, a C amount of 0.1 to 5 at.% Is contained, but a preferable C amount is in the range of 0.1 to 3.5 at.%, And a more preferable C amount is in the range of 0.1 to 3 at.%. .
[0015]
[B: 2.0 at.% Or more, C + B: 4.0 to 8.0 at.%]
In order to increase both iHc and BHmax, it is preferable to contain B at 2.0 at.% And C + B at 4 at.% Or more. However, if C + B exceeds 8 at.%, The magnetic characteristics may be deteriorated, so it is preferable to set C + B to 4-8 at.%.
[0016]
[Co: 3at.% Or less]
Co has the effect of increasing the Curie point while maintaining high magnetic properties. Moreover, it contributes effectively to enhancing heat resistance and weather resistance. However, since Co is an expensive element, it is desirable to reduce its addition amount. In the present invention, it has been found that high iHc and BHmax can be secured even if Co is reduced by regulating the content of other elements and adding Cu (or Al or Cr). Can be up to 3at.%.
[0017]
[Cu: 3.0 at.% Or less]
Cu generally serves to increase the coercive force, but on the other hand reduces Br. However, in the region where the Co content is low, it has been found that Cu can increase iHc without causing a decrease in Br or BHmax. For this purpose, Cu needs to be at least 0.01 at.% Or more, preferably 0.05 at.% Or more. However, if a large amount of Cu is added, the magnetic force decreases, so it is better to make it 3 at.% Or less. A preferable Cu content is 0.05 to 1.5 at.%.
[0018]
[Al or Cr: 2 at.% Or less]
Al or Cr generally contributes to increasing the coercive force, but decreases Br and BHmax. In this respect, the same effect as Cu is provided, but Br and BHmax may be lowered even in a low Co region. Therefore, when Al or Cr is added, it should be 2 at.% Or less, preferably 1.5 at.% Or less.
[0019]
[Balance: Fe and inevitable impurities]
Fe is an essential element for forming a magnetic phase together with R—B (C), and the remainder of the content of the above components is substantially the amount of Fe, but impurities inevitably contained in production. Is acceptable to some extent. The total amount of impurities is preferably 1.0 at.% Or less.
[0020]
For the above reasons, atomic percentage (at.%)
R: 8 to 20 at.% (R represents at least one element selected from the group consisting of Nd, Pr, Ce, La, Y, Gd, Tb, Ho, Er, and Tm),
Dy: 2.0 at.% Or less (excluding 0%),
Co: Less than 3.0 at.% (Including 0%),
B: 1.0-6.0 at.%,
C: 0.1 to 5.0 at.%,
Preferably B: 2.0 at.% Or more, C + B: 4.0 to 8.0 at.%,
Cu: 3.0 at.% Or less (excluding 0%),
Al or Cr: 2 at.% Or less (including 0%),
Balance: Fe and inevitable impurities,
The permanent magnet alloy of the present invention can maintain high coercivity and BHmax at the same time while reducing expensive Co to 3 at.% Or less and Dy to 2 at.% Or less. For example, the maximum energy product (BHmax) is 45 MGOe or more, preferably 47 MGOe or more, and the coercive force (iHc) is 10 kOe or more, preferably 12 kOe.
[0021]
In order to produce the permanent magnet alloy of the present invention, a sintered magnet alloy can be formed by a series of steps of melting, casting, crushing, molding and sintering. As a melting casting method, a vacuum melting / casting method, an inert gas atmosphere melting / casting method, a rapid cooling roll method, an atomizing method, or the like can be adopted. In order to make a sintered magnet with excellent magnetic properties and heat resistance, a heat treatment step is inserted between the casting step and the crushing step, and the pre-crushed one is heat treated at a temperature of 600 ° C. or higher in an inert gas atmosphere. Is preferable, and this can further improve the magnetic characteristics. In the sintering step, it is preferable to sinter at a temperature of 1000 to 1200 ° C. in an inert gas, gradually cool from the sintering temperature to 600 to 900 ° C., and then rapidly cool from the temperature. The magnetic properties can also be improved by this rapid cooling after sintering.
[0022]
The outline of the method for producing the magnet alloy of the present invention will be described as follows.
[0023]
First, raw materials of each component weighed so as to have an alloy composition are melted at 1500 ° C. or higher in a vacuum melting furnace, and then rapidly cast into a water-cooled mold. The obtained ingot is heat-treated in an Ar atmosphere at 600 ° C. or higher as described above, and then coarsely pulverized with a roll crusher. The obtained coarse powder is crushed to about 100 μm with a disk mill and further pulverized with a vibration ball mill to obtain a powder having an average particle diameter of 1 to 5 μm. These pulverization steps are also performed in an Ar atmosphere. In this pulverization step, a part of the C raw material can be added. That is, a part of the C raw material is put into a vacuum melting furnace, and the rest is added in this pulverization step. Carbon black is suitable as the C raw material, but organic substances containing C such as aliphatic hydrocarbons, higher fatty acid alcohols, higher fatty acids, fatty acid amides, metal soaps, fatty acid esters and the like can also be used. A preferred additive is a stearic acid-based grinding aid (lubricant).
[0024]
The powder is then molded in an external magnetic field. A molding pressure in the range of 0.3 to 5 t / cm 2 and an external magnetic field of 15 KOe or more are appropriate. This forming step is also preferably performed in an Ar atmosphere. The molded product is sintered in an Ar atmosphere at 1000 to 1200 ° C. for about 2 hours. Then, as described above, it is gradually cooled from the sintering temperature to 600 to 900 ° C., and then rapidly cooled from that temperature. In order to start the rapid cooling from 600 to 900 ° C., it is possible to carry out by a method of spraying a low-temperature inert gas from that temperature, a method of immersing in water or oil or a similar liquid. It is preferable to quench rapidly from ˜900 ° C. to 400 ° C. or less at a cooling rate of −50 ° C./min or more, preferably −100 ° C./min or more.
[0025]
The following examples further illustrate the present invention.
[0026]
【Example】
[Example 1]
Using 99.9% purity electrolytic iron, 19.6% boron ferroboron alloy, 99.3% purity neodymium metal, 99.1% purity dysprosium and 99.6% purity cobalt metal as raw materials, in atomic percentage (at.%),
Nd: 11.8at.%,
Dy: 2.4 at.%,
Co: 9.0 at.%,
B: 3.0 at.%,
The rest: Fe,
Weighed and blended so that
[0027]
In the case of no addition of 99.9% pure copper (copper flakes) to the above composition (No. 1) and 0.1 at. After melting at 1600 ° C., it was cast into a book mold mold to obtain an alloy lump. The analytical values of these alloy ingots are shown in Table 1.
[0028]
Each alloy lump was put in a heat treatment furnace comprising a horizontal vacuum furnace, and after heat treatment at 800 ° C. × 14 hours, it was cooled in an argon stream. Then, it was pulverized to about 1 mm with a roll crusher, pulverized to about 100 μm with a disk mill, and further pulverized to about 2.5 μm with a vibration ball mill.
[0029]
In this pulverization treatment, a stearic acid-based pulverization aid (lubricant) was added in advance and pulverization was performed. The amount added was adjusted so that the amount of C in stearic acid was equivalent to 3 at.% As C in the alloy. Most of the amount of C in stearic acid remains in the final magnet alloy.
[0030]
The obtained alloy fine powder was molded by a 20 t transverse magnetic field (vertical magnetic field) molding machine. The forming pressure is 500 kg / cm 2 . Next, the molded product was placed in a sintering furnace, sintered in an argon atmosphere at approximately 1050 ° C. for 120 minutes, and then cooled from the sintering temperature in an argon stream. Table 2 shows the composition ratio of the obtained sintered body. Further, a test piece was cut out from the sintered body, and the magnetic properties were measured by VSM using the test piece. The measurement results are shown in Table 3.
[0031]
[Table 1]
Figure 0004303937
[0032]
[Table 2]
Figure 0004303937
[0033]
[Table 3]
Figure 0004303937
[0034]
From the results in Table 3, it can be seen that iHc is improved by the addition of Cu.
[0035]
[Example 2]
An alloy lump was obtained by melting and casting the same raw material composition as in Example 1 (no addition of copper powder) under the same conditions as in Example 1. Analysis of the resulting alloy ingot shows atomic percentage,
Nd: 11.8 at.%,
Dy: 2.4 at.%,
Co: 9.0 at.%,
B: 3.0 at.%
C: 0.1 at.%,
Al: 0.7 at.%,
Si: 0.1 at.%,
Cu: 0.0 at.%
The remainder: Fe.
[0036]
The alloy lump was heat-treated under the same conditions as in Example 1 and then pulverized under the same conditions as in Example 1. Then, after finely pulverizing with a final vibration ball mill, stearic acid-based pulverization aid (lubricant) and copper fine powder having a particle size of about 1 μm were added to the fine powder. The amount of lubricant added was adjusted so that the amount of C in stearic acid was equivalent to 3 at.% As C in the alloy. Regarding the amount of copper powder added, the amount of Cu in the alloy was 0 at.% (No. 3), 0.1 at.% (No. 4) or 1.0 at.% (No. 5).
[0037]
The obtained alloy fine powder was magnetically molded under the same conditions as in Example 1, and the molded product was sintered under the same conditions as in Example 1. The composition ratio of the obtained sintered body is shown in Table 4, and the magnetic properties of the sintered body are shown in Table 5.
[0038]
[Table 4]
Figure 0004303937
[0039]
[Table 5]
Figure 0004303937
[0040]
From the results in Table 5, it can be seen that iHc is also improved when Cu is added after pulverization and before forming.
[0041]
[Example 3]
This example shows the influence of magnetic properties due to the addition of Cu in the region where the amount of Co is reduced as compared with Examples 1 and 2.
[0042]
Using the same raw materials as Example 1, at atomic percentage (at.%),
Nd: 15 at.%,
Dy: 0.5 at.%,
Co: 1.2 at.%,
B: 3.0 at.%,
The rest: Fe,
Weighed and blended so that
[0043]
For this formulation, the same metallic copper as in Example 1 (No. 6), 0.1 at.% Added (No. 7) or 0.5 at.% Added (No. 8) Was melted and cast under the same conditions as in Example 1 to obtain an alloy lump. The analysis value of each alloy lump is shown in Table 6.
[0044]
Each alloy lump was pulverized under the same conditions as in Example 1. In grinding, the same stearic acid-based grinding aid (lubricant) as in Example 1 was added so that the amount of C in stearic acid was 3 at.% As C in the alloy. Next, magnetic field molding was performed under the same conditions as in Example 1, and the molded product was sintered under the same conditions as in Example 1. The composition ratio of the obtained sintered body is shown in Table 7, and the magnetic properties of the sintered body are shown in Table 8.
[0045]
[Table 6]
Figure 0004303937
[0046]
[Table 7]
Figure 0004303937
[0047]
[Table 8]
Figure 0004303937
[0048]
From the results in Table 8, it can be seen that when the Co content is low, iHc is improved by adding a small amount of Cu. At that time, there is no decrease in Br and BHmax.
[0049]
[Example 4]
In this example, almost the same conditions as in Example 3 were used except that Al was added instead of Cu.
[0050]
For the same raw material composition as in Example 3, 99.9% pure Al was added at 0.7 at.% (No.9), 1.4 at.% (No.10), or 2.2 at.% (No. .11) Addition, all were melted and cast under the same conditions as in Example 1 to obtain an alloy lump. The analytical values of each alloy lump are shown in Table 9.
[0051]
Each alloy lump was pulverized under the same conditions as in Example 1. In grinding, the same stearic acid-based grinding aid (lubricant) as in Example 1 was added so that the amount of C in stearic acid was 3 at.% As C in the alloy. Next, magnetic field molding was performed under the same conditions as in Example 1, and the molded product was sintered under the same conditions as in Example 1. Table 10 shows the composition ratio of the obtained sintered body, and Table 11 shows the magnetic properties of the sintered body.
[0052]
[Table 9]
Figure 0004303937
[0053]
[Table 10]
Figure 0004303937
[0054]
[Table 11]
Figure 0004303937
[0055]
From the results in Table 11, it can be seen that when Al is added, iHc improves as the amount added increases, but the effect is saturated when the amount added is too large. In addition, Br and BHmax decrease as the Al content increases.
[0056]
[Example 5]
In this example, the change in magnetic characteristics is observed when the Cu addition amount is kept constant and the Co addition amount is changed.
[0057]
Using the same raw materials as Example 1, at atomic percentage (at.%),
Nd: 15 at.%,
Dy: 0.5 at.%,
B: 3.0 at.%,
Cu: 0.1 at.%,
The rest: Fe,
Weighed and blended so that
[0058]
For this formulation, cobalt metal was added at 1.2 at.% (No. 12), added at 3.0 at.% (No. 13), and added at 5.8 at.% (No. 14). All were melt | dissolved and cast on the same conditions as Example 1, and the alloy lump was obtained. The analysis values of each alloy lump are shown in Table 12.
[0059]
Each alloy lump was pulverized under the same conditions as in Example 1. In grinding, the same stearic acid-based grinding aid (lubricant) as in Example 1 was added so that the amount of C in stearic acid was 3 at.% As C in the alloy. Next, magnetic field molding was performed under the same conditions as in Example 1, and the molded product was sintered under the same conditions as in Example 1. The composition ratio of the obtained sintered body is shown in Table 13, and the magnetic properties of the sintered body are shown in Table 14.
[0060]
[Table 12]
Figure 0004303937
[0061]
[Table 13]
Figure 0004303937
[0062]
[Table 14]
Figure 0004303937
[0063]
From the results shown in Table 14, it can be seen that at Cu = 0.1 at.%, BHmax tends to increase as the amount of Co increases, but iHc tends to decrease.
[0064]
[Example 6]
In this example, the addition of Cu = 0.1 at.% During the melting of the alloy, the B and C amounts were changed, but the change in magnetic properties when the total amount of "B + C" was kept constant at 3 at.% It is what saw.
[0065]
Using the same raw materials as Example 1, at atomic percentage (at.%),
Nd: 14.5 at.%,
Dy: 0.5 at.%,
Co: 1.1 at.%,
Cu: 0.1 at.%,
B + C: 3.0 at.%,
The rest: Fe,
Weighed and blended so that
[0066]
In this composition, when “B + C” = “1.1 + 2.1” at.% (No.15), = “2.0 + 1.0” at.% (No.16), = “3.1 + 0.1” In this case (No. 17), all were melted and cast under the same conditions as in Example 1 to obtain an alloy lump. The analysis values of each alloy lump are shown in Table 15.
[0067]
Each alloy lump was pulverized under the same conditions as in Example 1. In grinding, the same stearic acid-based grinding aid (lubricant) as in Example 1 was used, so that the amount of C in stearic acid was 5 at. It was adjusted so that it would be 3at.% In No.17 so that it would be.%. Next, magnetic field molding was performed under the same conditions as in Example 1, and the molded product was sintered under the same conditions as in Example 1. The composition ratio of the obtained sintered body is shown in Table 16, and the magnetic properties of the sintered body are shown in Table 17.
[0068]
[Table 15]
Figure 0004303937
[0069]
[Table 16]
Figure 0004303937
[0070]
[Table 17]
Figure 0004303937
[0071]
From the results in Table 17, it can be seen that iHc and BHmax are higher when the amount of B is larger even if B + C is the same amount.
[0072]
[Example 7]
In this example, at Co = 1.0 at.%, B = 3.5 at.%, Nd + Dy = 14.5 at.%, And after pulverization, copper powder was added before forming, and the sintering temperature was 1035 ° C. It is what.
[0073]
Using the same raw materials as Example 1, at atomic percentage (at.%),
Nd: 14.0 at.%,
Dy: 0.5 at.%,
Co: 1.0 at.%,
B: 3.5 at.%,
The rest: Fe,
Weighed and blended so that
[0074]
This compound was melted and cast under the same conditions as in Example 1 to obtain an alloy lump. Analysis of the resulting alloy ingot shows atomic percentage,
Nd: 14.0 at.%,
Dy: 0.5 at.%,
Co: 1.0 at.%,
B: 3.5 at.%
C: 0.1 at.%,
Al: 1.0 at.%,
Si: 0.1 at.%,
Cu: 0.0 at.%
The remainder: Fe.
[0075]
The alloy lump was heat-treated under the same conditions as in Example 1 and then pulverized under the same conditions as in Example 1. And after finely pulverizing with the final vibration ball mill, the same copper powder used in Example 1 and the stearic acid type pulverization aid (lubricant) were added to the fine powder. The amount of lubricant added was adjusted so that the amount of C in stearic acid was 2.5 at.% As C in the alloy. Regarding the amount of copper powder added, the amount of Cu in the alloy is 0 at.% (No.18), 0.04 at.% (No.19), 0.1 at.% (No.20) or 0.2 at.%. (No. 21) was adjusted.
[0076]
The obtained alloy fine powder was magnetically molded under the same conditions as in Example 1, and the molded product was sintered in the same manner as in Example 1, but the sintering temperature was 1035 ° C. The composition ratio of the obtained sintered body is shown in Table 18, and the magnetic characteristics of the sintered body are shown in Table 19.
[0077]
[Table 18]
Figure 0004303937
[0078]
[Table 19]
Figure 0004303937
[0079]
From the results shown in Table 19, it can be seen that iHc is further increased by addition of Cu, and that Br and BHmax are hardly lowered even when Cu is added.
[0080]
[Example 8]
In this example, at Co = 1.0 at.%, B = 3.5 at.%, Nd + Dy = 14.5 at.%, And after pulverization, copper powder was added before forming, and the sintering temperature was 1070 ° C. It is what.
[0081]
Example 7 was repeated except that the sintering temperature was changed from 1035 ° C to 1070 ° C. C and Cu were added after pulverization and before molding as in Example 7. The amount of lubricant was adjusted so that the amount of C in stearic acid was 2.5 at.% As C in the alloy. Regarding the amount of addition, the amount of Cu in the alloy is 0 at.% (No. 22), 0.04 at.% (No. 23), 0.1 at.% (No. 24) or 0.2 at.% (No. 25). ). The composition ratio of the obtained sintered body is shown in Table 20, and the magnetic properties of the sintered body are shown in Table 21.
[0082]
[Table 20]
Figure 0004303937
[0083]
[Table 21]
Figure 0004303937
[0084]
From the results of Table 21, iHc is further increased by addition of Cu, Br remains at the same level even when Cu is added, and BHmax is slightly improved. Characteristics are obtained.
[0085]
[Example 9]
In this example, at Co = 1.0 at.%, B = 3.5 at.%, Nd + Dy = 15.0 at.%, And after pulverization, copper powder was added before forming, and the sintering temperature was 1035 ° C. It is what.
[0086]
Using the same raw materials as Example 1, at atomic percentage (at.%),
Nd: 14.5 at.%,
Dy: 0.5 at.%,
Co: 1.0 at.%,
B: 3.5 at.%,
The rest: Fe,
Weighed and blended so that
[0087]
This compound was melted and cast under the same conditions as in Example 1 to obtain an alloy lump. Analysis of the resulting alloy ingot shows atomic percentage,
Nd: 14.6 at.%,
Dy: 0.6 at.%,
Co: 1.0 at.%,
B: 3.5 at.%
C: 0.1 at.%,
Al: 1.0 at.%,
Si: 0.1 at.%,
Cu: 0.0 at.%
The remainder: Fe.
[0088]
The alloy lump was heat-treated under the same conditions as in Example 1 and then pulverized under the same conditions as in Example 1. And after finely pulverizing with the final vibration ball mill, the same copper powder used in Example 1 and the stearic acid type pulverization aid (lubricant) were added to the fine powder. The amount of lubricant added was adjusted so that the amount of C in stearic acid was 2.5 at.% As C in the alloy. Regarding the amount of copper powder added, the amount of Cu in the alloy is 0 at.% (No. 26), 0.04 at.% (No. 27), 0.1 at.% (No. 28), or 0.2 at.%. (No. 29) was adjusted.
[0089]
The obtained alloy fine powder was magnetically molded under the same conditions as in Example 1, and the molded product was sintered in the same manner as in Example 1, but the sintering temperature was 1035 ° C. The composition ratio of the obtained sintered body is shown in Table 22, and the magnetic properties of the sintered body are shown in Table 23.
[0090]
[Table 22]
Figure 0004303937
[0091]
[Table 23]
Figure 0004303937
[0092]
From the results of Table 23, it can be seen that iHc is further increased by addition of Cu, and that Br and BHmax are not lowered even when Cu is added.
[0093]
[Example 10]
In this example, when Co = 1.0 at.%, B = 3.5 at.%, Nd + Dy = 15.0 at.%, And after pulverization, copper powder was added before forming, and the sintering temperature was 1070 ° C. It is what.
[0094]
Example 9 was repeated except that the sintering temperature was changed from 1035 ° C. to 1070 ° C. C and Cu are added after pulverization and before molding as in Example 9, and the amount of lubricant added is adjusted so that the amount of C in stearic acid corresponds to 2.5 at.% As C in the alloy. Regarding the addition amount, the amount of Cu in the alloy is 0 at.% (No. 30), 0.04 at.% (No. 31), 0.1 at.% (No. 32), or 0.2 at.% (No. 33). ). The composition ratio of the obtained sintered body is shown in Table 24, and the magnetic characteristics of the sintered body are shown in Table 25.
[0095]
[Table 24]
Figure 0004303937
[0096]
[Table 25]
Figure 0004303937
[0097]
From the results of Table 25, it can be seen that iHc is further increased by addition of Cu, Br remains at the same level even when Cu is added, and BHmax is improved, iHc = 13 kOe for No.32 to No.33. , BHmax = 47.4 MGOe level magnetic characteristics are obtained.
[0098]
【The invention's effect】
As described above, according to the present invention, a rare earth magnet alloy having a high coercive force and a maximum energy product can be obtained even when Co is lowered to a low level, so that an inexpensive strong permanent magnet can be provided.

Claims (6)

原子百分率(at.%)で、
R:8〜20 at.%(Rは、Nd、Pr、Ce、La、Y、Gd、Tb、Ho、ErおよびTmの群から選ばれた少なくとも1種の元素を表す)、
Dy:0.5〜2.5 at.%、
Co:1.0〜9.2 at.%、
B :1.0〜6.0 at.%、
C :0.1〜5.0 at.%、
Cu:3.0 at.%以下(0 %を含まず)、
Al:2.0 at.%以下(0 %を含まず)、
Si:0.1〜0.2 at.%、
残部:Feおよび不可避的不純物、
からなる焼結永久磁石合金。
Atomic percentage (at.%)
R: 8-20 at. % (R represents at least one element selected from the group consisting of Nd, Pr, Ce, La, Y, Gd, Tb, Ho, Er, and Tm),
Dy: 0.5 to 2.5 at. %,
Co: 1.0-9.2 at. %,
B: 1.0-6.0 at. %,
C: 0.1-5.0 at. %,
Cu: 3.0 at. % Or less (excluding 0%),
Al: 2.0 at. % Or less (excluding 0%),
Si: 0.1-0.2 at. %,
Balance: Fe and inevitable impurities,
A sintered permanent magnet alloy comprising:
原子百分率(at.%)で、
R:8〜20 at.%(Rは、Nd、Pr、Ce、La、Y、Gd、Tb、Ho、ErおよびTmの群から選ばれた少なくとも1種の元素を表す)、
Dy:0.5〜2.5 at.%、
Co:1.0〜9.2 at.%、
B :1.1〜3.4 at.%、
C :0.1〜5.0 at.%、
Cu:3.0 at.%以下(0 %を含まず)、
Al:2.0 at.%以下(0 %を含まず)、
残部:Feおよび不可避的不純物、
からなる焼結永久磁石合金。
Atomic percentage (at.%)
R: 8-20 at. % (R represents at least one element selected from the group consisting of Nd, Pr, Ce, La, Y, Gd, Tb, Ho, Er, and Tm),
Dy: 0.5 to 2.5 at. %,
Co: 1.0-9.2 at. %,
B: 1.1-3.4 at. %,
C: 0.1-5.0 at. %,
Cu: 3.0 at. % Or less (excluding 0%),
Al: 2.0 at. % Or less (excluding 0%),
Balance: Fe and inevitable impurities,
A sintered permanent magnet alloy comprising:
原子百分率(at.%)で、
R:8〜20 at.%(Rは、Nd、Pr、Ce、La、Y、Gd、Tb、Ho、ErおよびTmの群から選ばれた少なくとも1種の元素を表す)、
Dy:0.5〜2.5 at.%、
Co:1.0〜9.2 at.%、
B :1.1〜3.4 at.%、
C :0.1〜5.0 at.%、
Cu:3.0 at.%以下(0 %を含まず)、
Al:2.0 at.%以下(0 %を含まず)、
Si:0.1〜0.2 at.%、
残部:Feおよび不可避的不純物、
からなる焼結永久磁石合金。
Atomic percentage (at.%)
R: 8-20 at. % (R represents at least one element selected from the group consisting of Nd, Pr, Ce, La, Y, Gd, Tb, Ho, Er, and Tm),
Dy: 0.5 to 2.5 at. %,
Co: 1.0-9.2 at. %,
B: 1.1-3.4 at. %,
C: 0.1-5.0 at. %,
Cu: 3.0 at. % Or less (excluding 0%),
Al: 2.0 at. % Or less (excluding 0%),
Si: 0.1-0.2 at. %,
Balance: Fe and inevitable impurities,
A sintered permanent magnet alloy comprising:
B:2.0 at.%以上で、C+B:4.0〜8.0 at.%である請求項1〜3のいずれかに記載の焼結永久磁石合金。B: 2.0 at. % And C + B: 4.0 to 8.0 at. The sintered permanent magnet alloy according to any one of claims 1 to 3 . Co:3.0 at.%未満(0 %を含まず)である請求項1〜4のいずれかに記載の焼結永久磁石合金。Co: 3.0 at. The sintered permanent magnet alloy according to any one of claims 1 to 4, which is less than 0% (not including 0%). 最大エネルギー積(BHmax):45 MGOe以上、保磁力(iHc):10 kOe以上を示す請求項1〜5のいずれかに記載の焼結永久磁石合金。The sintered permanent magnet alloy according to any one of claims 1 to 5, which exhibits a maximum energy product (BHmax) of 45 MGOe or more and a coercive force (iHc) of 10 kOe or more.
JP2002316373A 2002-10-30 2002-10-30 Permanent magnet alloy Expired - Fee Related JP4303937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002316373A JP4303937B2 (en) 2002-10-30 2002-10-30 Permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316373A JP4303937B2 (en) 2002-10-30 2002-10-30 Permanent magnet alloy

Publications (2)

Publication Number Publication Date
JP2004149851A JP2004149851A (en) 2004-05-27
JP4303937B2 true JP4303937B2 (en) 2009-07-29

Family

ID=32460104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316373A Expired - Fee Related JP4303937B2 (en) 2002-10-30 2002-10-30 Permanent magnet alloy

Country Status (1)

Country Link
JP (1) JP4303937B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005040047A1 (en) * 2003-10-27 2007-11-22 アクア・エナジー株式会社 Method for producing reduced hydrogen water and apparatus for producing the same
JP5115511B2 (en) * 2008-03-28 2013-01-09 Tdk株式会社 Rare earth magnets
CN102360910B (en) * 2011-06-30 2013-05-15 安徽大地熊新材料股份有限公司 Method for processing neodymium iron boron magnet
CN111986907A (en) * 2020-01-08 2020-11-24 山东光韵智能科技有限公司 Low-cost nano composite permanent magnet conductive contact and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004149851A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
US11024448B2 (en) Alloy for R-T-B-based rare earth sintered magnet, process of producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process of producing R-T-B-based rare earth sintered magnet, and motor
EP2388350B1 (en) Method for producing r-t-b sintered magnet
JP4470884B2 (en) R-T-B system sintered magnet and manufacturing method thereof
US8361242B2 (en) Powders for rare earth magnets, rare earth magnets and methods for manufacturing the same
EP1780736B1 (en) R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
JPWO2005123974A1 (en) R-Fe-B rare earth permanent magnet material
JP2006303433A (en) Rare earth permanent magnet
JP4605013B2 (en) R-T-B system sintered magnet and rare earth alloy
US8182618B2 (en) Rare earth sintered magnet and method for producing same
JP2009302318A (en) RL-RH-T-Mn-B-BASED SINTERED MAGNET
JP4433282B2 (en) Rare earth magnet manufacturing method and manufacturing apparatus
JP2015193925A (en) R-t-b alloy powder and r-t-b sintered magnet
JP4895027B2 (en) R-T-B sintered magnet and method for producing R-T-B sintered magnet
JP2006219723A (en) R-Fe-B-BASED RARE EARTH PERMANENT MAGNET
JP5743458B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP4303937B2 (en) Permanent magnet alloy
JP4415374B2 (en) Manufacturing method of rare earth sintered magnet
JP5753481B2 (en) Rare earth alloy and method for producing the same
JP2005288493A (en) Method and apparatus for producing alloy strip, and method for producing alloy powder
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JPH03162546A (en) Manufacture of permanent magnet alloy having excellent oxidation resistance
JPH05182813A (en) Manufacture of rare earth permanent magnet
JP4506981B2 (en) Manufacturing method of rare earth sintered magnet
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JP2005136356A (en) Method of manufacturing sintered rare-earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees