JPS6297918A - Electrically conductive fiber - Google Patents

Electrically conductive fiber

Info

Publication number
JPS6297918A
JPS6297918A JP23350785A JP23350785A JPS6297918A JP S6297918 A JPS6297918 A JP S6297918A JP 23350785 A JP23350785 A JP 23350785A JP 23350785 A JP23350785 A JP 23350785A JP S6297918 A JPS6297918 A JP S6297918A
Authority
JP
Japan
Prior art keywords
conductive
sheath
acid
organic acid
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23350785A
Other languages
Japanese (ja)
Other versions
JPH0357967B2 (en
Inventor
Setsuo Yamada
山田 浙雄
Fumiki Takabayashi
高林 文樹
Masahiro Oshida
押田 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP23350785A priority Critical patent/JPS6297918A/en
Publication of JPS6297918A publication Critical patent/JPS6297918A/en
Publication of JPH0357967B2 publication Critical patent/JPH0357967B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:The titled fibers which are conjugate fibers, constituted of a sheath component consisting of a fiber-forming polymer and a core part, consisting of a specific low-temperature flowable highly crystalline polymer and having an organic acid present in the inner surface layer of the sheath part in contact with the core part and having improved flex durability. CONSTITUTION:Fibers, consisting of (A) a sheath part consisting of a fiber- forming polymer, e.g. polyethylene terephthalate or nylon-6, and (B) a core part consisting of a low-temperature flowable highly crystalline polymer, e.g. polyethylene or polypropylene, containing dispersed electrically conductive metal oxide fine powder, e.g. stannic oxide or zinc oxide, and having an organic acid present in the inner surface layer of the sheath part thereof in contact with the core part. The above-mentioned organic acid is preferably a >=4C organic carboxylic acid and/or organic sulfonic acid.

Description

【発明の詳細な説明】 (a)技術分野 本発明は、導電性繊維、特に屈曲耐久性の優れた白色導
電性芯鞘型複合繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to conductive fibers, particularly white conductive core-sheath type composite fibers having excellent bending durability.

(b)従来技術 ポリエヂレン、ポリアミド、ポリエステル等の熱可塑性
重合体は繊維、フィルム、その他の成形品として多くの
用途に用いられているが、訓電性にとぼしいために帯電
し易い欠点を有する。例えば、ポリエチレンテレフタレ
ート繊維よりなる衣服は、その帯電性のために、着用時
に身体にまつわりつき易いこと、空気中に浮遊する塵埃
を吸着して汚れ易いこと、更にはかかる繊維よりなるカ
ーペット上を歩いてドアの把手に触れたときに放電ショ
ックを受は易いこと等多くの問題がある。
(b) Prior Art Thermoplastic polymers such as polyethylene, polyamide, and polyester are used in many applications as fibers, films, and other molded products, but they have the disadvantage of being easily charged due to poor electrostatic properties. For example, clothing made of polyethylene terephthalate fibers tends to cling to the body when worn due to its electrostatic properties, easily gets dirty by attracting dust floating in the air, and even when walking on carpets made of such fibers. There are many problems, such as the fact that when you touch a door handle, you can easily receive an electric discharge shock.

かかる問題に対処するために、導電性繊維に関する多く
の提案がなされている。第1の方法として導電性カーボ
ン粒子を繊維中に練り込むが、又は導電性カーボン粉末
を熱可塑性重合体中に分散させたものを芯部とし、繊維
形成性重合体を鞘部とした複合繊維にする方法がある。
To address such problems, many proposals regarding conductive fibers have been made. The first method involves kneading conductive carbon particles into fibers, or composite fibers having a core made of conductive carbon powder dispersed in a thermoplastic polymer and a sheath made of a fiber-forming polymer. There is a way to do it.

しかしながら、かかる導電性!!紺は、導電性カーボン
が黒色であるために着色が著しく、審美性を要求される
分野に用いることかできず、その用途が極めて限定され
るという欠点を有する。
However, such conductivity! ! Since the conductive carbon is black, navy blue is extremely colored and cannot be used in fields where aesthetics are required, so its uses are extremely limited.

第2の方法として、IIi雑表面表面電性物質層を設け
る方法がある。更に詳しく)ホへると、繊維表面上に化
学メッキした金属メッキ繊維、金属粉末やカーボンブラ
ック等の導電性粉末を塗布する方法である。これらの導
電性繊維は確かに初期の導電性能は良好であるが、着用
時の摩耗や洗濯等により表面の導電剤層がはがれて導電
性が箸しく低下するばかりか、耐薬品性も不良で防塵衣
等での発塵源となり、更には導電性物質による着色も避
けられない。
As a second method, there is a method of providing a surface conductive material layer on an IIi rough surface. In more detail, this is a method in which chemically plated metal-plated fibers, metal powder, and conductive powder such as carbon black are applied onto the fiber surface. Although these conductive fibers certainly have good initial conductive performance, not only do the conductive agent layer on the surface peel off due to wear and washing during wearing, the conductivity decreases considerably, but their chemical resistance is also poor. It becomes a source of dust in dust-proof clothing, etc., and furthermore, it is unavoidable that it will be colored by conductive substances.

以上の欠点を解決する方法として、近時、無色又は淡色
の導電性金属化合物を用いた導電性繊維を176方法が
提案されている。
As a method for solving the above-mentioned drawbacks, a method has recently been proposed for producing conductive fibers using a colorless or light-colored conductive metal compound.

(C)解決すべき問題点 しかしながら、これらの提案に基いて製造された導電性
繊維は数100回の屈曲摩耗により導電性が失われ、着
用短時間でその期待される効果である訓電性を失う結果
、前述の衣服のまつわりつきゃ埃の付着を引き起こす。
(C) Problems to be solved However, the conductive fibers manufactured based on these proposals lose their conductivity due to bending and abrasion several hundred times, and the expected effect of electroconductive properties after wearing them for a short time is lost. As a result, the above-mentioned clinging to clothing causes dust to accumulate.

(d)問題解決の手段 本発明者等は、かかる欠点のない導電性繊維を提供せん
として鋭意研究を重ねた結果導電性の芯鞘型複合繊維の
芯部には低温流動性高結晶性重合体のマトリックス中に
導電性金属酸化物が存在するが、これが単に均一分散さ
れているだけでは導電性は認められない。紡糸・延伸・
熱処理等の過程で受ける熱により、低温流動性重合体は
高結晶化配向現象を引き起こし、そのために導電性金属
酸化物が低温流動性重合体の系外にはじきとばされて相
分離を生じる結果、金fi!化物が凝集・再配列して連
鎖構造形成により初めて導電機能が発現する。しかしな
がら、この様にして17だ繊維は屈曲摩耗させると電気
抵抗値が高くなり、導電性不良となる。本発明者等は、
この現象を種々解析し、芯部の高結晶化した低温流動性
重合体層と鞘部の重合体層の界面接着性が低いことに起
因していることを児いだした。即ち、界面接着性が悪い
と、屈曲摩耗時に容易に芯部と鞘部の剥離を引き起こし
、芯部に存在する金属酸化物の連鎖構造破壊が発生する
ことを知った。この芯部と鞘部の界面接着性を向上さけ
る技術について鋭意検討を重ねた結果、金属酸化物と低
温流動性高結晶重合体の混合系に有11を配合すること
により屈曲耐久性を改良することに成功した。即ち、有
機酸を芯部に配合しておくことにより、低温流動性重合
体が高結晶配向化を起こす際に、導電性金属化合物ばか
りでなく、有機酸をも相分離させ、芯部の系外に出た有
機酸は鞘部の内面層に拡散・浸透するというブリードア
ウト現象が生じる。その結果、芯部層と鞘部内面層の界
面接着性が飛躍的に向上し、屈曲摩耗俊の導電性ta紺
の電気抵抗値が109Ω/Cm未渦に維持され、まつわ
りつきゃ、埃付着のない布帛が得られることを解明し、
本発明に到達したものでおる。
(d) Means for Solving the Problem The present inventors have conducted extensive research in an effort to provide conductive fibers free of such defects. As a result, the core of conductive core-sheath type composite fibers contains Although a conductive metal oxide is present in the matrix of the coalescence, conductivity cannot be observed if this is merely uniformly dispersed. Spinning/drawing/
The heat received during heat treatment causes a highly crystallized orientation phenomenon in the low-temperature fluid polymer, which causes the conductive metal oxide to be blown out of the low-temperature fluid polymer system, resulting in phase separation. , gold fi! The conductive function is only achieved when the compounds aggregate and rearrange to form a chain structure. However, when the 17 fibers are bent and abraded in this manner, the electrical resistance value becomes high and the conductivity becomes poor. The inventors,
After various analyzes of this phenomenon, they found that it is caused by low interfacial adhesion between the highly crystallized low-temperature fluid polymer layer in the core and the polymer layer in the sheath. That is, it has been found that poor interfacial adhesion easily causes the core and sheath to separate during bending wear, leading to destruction of the chain structure of the metal oxides present in the core. As a result of intensive research on technology to improve the interfacial adhesion between the core and sheath, we have found that bending durability is improved by adding 11 to a mixed system of metal oxide and low-temperature fluid high-crystalline polymer. It was very successful. That is, by blending an organic acid in the core, when the low-temperature fluid polymer undergoes high crystal orientation, not only the conductive metal compound but also the organic acid is phase separated, and the core system is A bleed-out phenomenon occurs in which the released organic acid diffuses and permeates into the inner layer of the sheath. As a result, the interfacial adhesion between the core layer and the inner surface layer of the sheath has been dramatically improved, and the electrical resistance value of the conductive TA navy blue, which is flex-wear-fast, is maintained at 109Ω/Cm without swirling, and when it is tied, it is free from dust adhesion. We discovered that it is possible to obtain fabrics that do not have
This is what the present invention has been achieved.

即ち、本発明は繊維形成性重合体よりなる鞘部と、導電
性金属酸化物微粉末を分散させた低温流動性高結晶性重
合体よりなる芯部とから構成された複合繊維であって、
該鞘部の芯部に接する内面層に有機酸を存在させてなる
導電性繊維に係るものである。 かかる本発明の導電性
繊維は、低温流動性高結晶性重合体と微粉末状の導電性
金属酸化物とからなる導電性組成物中に予め有UJ[2
を配合し、この導電性組成物か芯部を、繊維形成性重合
体が鞘部を構成するように溶融紡糸して複合繊維となし
、必要に応じて延伸、熱処理することによって製造され
る。このように芯部となる成分に有機酸を配合しておく
ことにより、前述した如く紡糸、延伸、熱処理等の過程
で受ける熱、史には布帛にした後に行う、例えば精練、
染色等の過程で受ける熱により、右@酸は第1図に示す
ように、芯部に接する鞘部の内面層に移行し、存在する
ようになる。この鞘部内面層の有機酸の存在は、繊維断
面を 2000倍程度に拡大した電顕写真で容易に識別
することができる。
That is, the present invention provides a composite fiber composed of a sheath made of a fiber-forming polymer and a core made of a low-temperature fluid highly crystalline polymer in which conductive metal oxide fine powder is dispersed,
The present invention relates to a conductive fiber in which an organic acid is present in the inner layer in contact with the core of the sheath. The conductive fibers of the present invention have UJ [2
This conductive composition or core is melt-spun into a composite fiber so that the fiber-forming polymer constitutes a sheath, and if necessary, it is produced by stretching and heat treatment. By blending an organic acid into the core component in this way, it is possible to absorb the heat received during processes such as spinning, stretching, and heat treatment, as described above, and to reduce the amount of heat that is received during processes such as spinning, stretching, and heat treatment.
Due to the heat received during the dyeing process, the acid migrates to the inner surface layer of the sheath in contact with the core, as shown in FIG. 1, and comes to exist there. The presence of organic acid in the inner layer of the sheath can be easily identified in an electron micrograph of the fiber cross section magnified approximately 2000 times.

本発明の導電性繊維の鞘部を構成する重合体は熱可塑性
でしかも繊維形成能を有する重合体であればよい。例え
ばポリエチレンテレフタレー1〜。
The polymer constituting the sheath portion of the conductive fiber of the present invention may be a thermoplastic polymer having fiber-forming ability. For example, polyethylene terephthalate 1~.

ナイロン−6、ナイロン−6,6,ポリプロピレン等が
めげられる。
Examples include nylon-6, nylon-6,6, and polypropylene.

低温流動性高結晶性重合体は、鞘部を構成するI!維影
形成性重合体流動温度より低い流動温度を有し、且つ高
結晶性の熱可塑性重合体であればよく、具体的にはポリ
エチレン、ポリプロピレン。
The low-temperature flowable highly crystalline polymer is the I! that constitutes the sheath. Any thermoplastic polymer may be used as long as it has a flow temperature lower than that of the fiber-forming polymer and is highly crystalline, specifically polyethylene and polypropylene.

ポリスチレン、ポリブタジェン、ポリイソプレン。Polystyrene, polybutadiene, polyisoprene.

ティトン−6,ナイロン−6,6,ポリエチレンテレフ
タレート、ポリエチレンテレフタレート等を主たる対象
とするが、これ等の一部を共重合成分で置き換えたもの
でもよく、また低温流動性で且つ高結晶性であれば目的
に応じ上記以外のを使用してもよく、更に必要に応じて
それ等の2種以上を混合したものであっても良い。
The main targets are Teton-6, Nylon-6,6, polyethylene terephthalate, polyethylene terephthalate, etc., but some of these may be replaced with copolymer components, and even those with low temperature fluidity and high crystallinity may be used. For example, materials other than those mentioned above may be used depending on the purpose, and two or more of them may be mixed as necessary.

本発明でいう導電性金属酸化物としては、特に酸化第二
錫及び酸化亜鉛が好ましい。ここでいう酸化第二錫には
、少量のアンチモン化合物を含む酸化第二錫、酸化チタ
ン粒子の表面に少量のアンチモン化合物を含む酸化第二
錫をコーティングして1qられる導電性金属複合体も含
まれる。また酸化亜鉛には少量の酸化アルミニウム、酸
化リチウム、酸化インジウム等を溶解した導電性酸化亜
鉛も含まれる。これ等は通常微粉末として取り扱われる
As the conductive metal oxide in the present invention, stannic oxide and zinc oxide are particularly preferred. The stannic oxide mentioned here also includes stannic oxide containing a small amount of antimony compound and a conductive metal composite made by coating the surface of titanium oxide particles with stannic oxide containing a small amount of antimony compound. It will be done. Zinc oxide also includes conductive zinc oxide in which small amounts of aluminum oxide, lithium oxide, indium oxide, etc. are dissolved. These are usually treated as fine powders.

芯部の低温流動性高結晶性重合体に予め配合する有機酸
としては、炭素14以上の有機カルボン酸又は有機スル
ホン酸が好ましく、特に炭素数24までのものが好まし
い。カルボキシル基、スルホン酸基に結合する有機残基
としてはアルキル基、アルキレン基、アリール基、アル
キルアリール塁、アラルキル基を右するものが好ましく
、またこれ等の基がカルボキシル 外の基であれば、任意の置換基を有していても差しつか
えない。
The organic acid to be blended in advance into the low-temperature-fluid, highly crystalline polymer of the core is preferably an organic carboxylic acid or an organic sulfonic acid having 14 or more carbon atoms, and particularly preferably an organic acid having up to 24 carbon atoms. The organic residues bonded to carboxyl groups and sulfonic acid groups are preferably alkyl groups, alkylene groups, aryl groups, alkylaryl groups, and aralkyl groups, and if these groups are non-carboxyl groups, It may have any substituent.

かかる有機カルボン酸の具体例としてはn−力プロン酸
,n−へブタン酸,安息香酸,n−カプリル酸,フェニ
ル酢酸,トルイル酸,n−ノナン酸,ステアリン酸等が
あげられる。また、社殿スルホン酸の具体例としてはn
−ペンタンスルホン酸,ペンピンスルホン酸,ドデシル
ベンゼンスルホン酸等があげられる。これ等有機カルボ
ン酸。
Specific examples of such organic carboxylic acids include n-proic acid, n-hebutanoic acid, benzoic acid, n-caprylic acid, phenylacetic acid, toluic acid, n-nonanoic acid, and stearic acid. In addition, as a specific example of shrine sulfonic acid, n
- Pentanesulfonic acid, penpinesulfonic acid, dodecylbenzenesulfonic acid, etc. These are organic carboxylic acids.

有機スルホン酸は甲独で用いても良く、また適宜組合せ
て使用してもよい。
The organic sulfonic acids may be used singly or in appropriate combinations.

一ヒ記看機酸を低温流動性重合体に配合するには0v笈
酸である有機カルボン酸や有機スルホン酸の熱的特性を
考慮して (1)低温流動性重合体と導電性金属酸化物と有機酸と
を直接溶融混合する方法、 (2)導電性金属酸化物を予め有機酸で処理した後、低
温流動性重合体と溶融混合する方法のいずれかを適宜選
択するのが良い。
Note: In order to incorporate a mechanical acid into a low-temperature fluid polymer, consider the thermal properties of the organic carboxylic acid or organic sulfonic acid, which is 0V phosphoric acid.(1) Low-temperature fluid polymer and conductive metal oxidation (2) a method in which a conductive metal oxide is previously treated with an organic acid and then melt-mixed with a low-temperature fluid polymer, as appropriate.

例えば、n−へブタン酸の如き沸点の低い有機酸を比較
的高融点の低温流動性重合体へ導電性金属酸化物ととも
に直接溶融混合して導電性組成物を冑ようとすることは
好ましくない。かかる場合は、予め導電性金属酸化物を
n−へブタン酸で処理した後低温流動性重合体と溶融混
合する方法が好ましい。
For example, it is undesirable to melt conductive compositions by directly melt-mixing a low-boiling organic acid such as n-hebutanoic acid with a conductive metal oxide into a relatively high-melting low-temperature fluid polymer. . In such a case, it is preferable to treat the conductive metal oxide with n-hebutanoic acid in advance and then melt-mix it with the low-temperature fluid polymer.

これに対し、同じn−へブタン酸を有機酸とする場合で
も、用いる低温流動性重合体がポリエチレンの如く比較
的低融点の場合には、導電性金属酸化物とn−へブタン
酸とを直接ポリエチレンに溶融混合しても何んら差しつ
かえない。
On the other hand, even if the same n-hebutanoic acid is used as an organic acid, if the low-temperature fluid polymer used has a relatively low melting point such as polyethylene, a conductive metal oxide and n-hebutanoic acid may be used as an organic acid. There is no problem in directly melt-mixing it with polyethylene.

予め導電性金属酸化物を右は酸で処理する方法としでは
、有機酸を有機溶媒に溶解させてjqられる溶液に、所
望の導電性金属酸化物粉体を吸入分散させ、数時間攪拌
した後@機溶媒と粉体とを濾別するという極めて簡単な
方法が用いられる。
In the method of pre-treating a conductive metal oxide with an acid, the desired conductive metal oxide powder is inhaled and dispersed in a solution prepared by dissolving an organic acid in an organic solvent, and after stirring for several hours. An extremely simple method is used in which the solvent and the powder are separated by filtration.

導電性金属酸化物を有機酸で予め処理するに当たり、前
述の如く有機酸の有機溶媒溶液に導電性金属酸化物を投
入分散させ、常温で数時間攪拌するだけでもよいが、よ
り短時間で処理するためには加熱攪拌することが効果的
である。ここで用いる有機溶媒は、有機酸である有機カ
ルボン酸及び/又は有機スルホン酸化合物を溶解するも
のでおれば特に限定されない。また、この処理に当たり
、有機酸を多量使用したときは、濾別後過剰の有機酸を
洗浄除去すればよい。有職酸の使用量は必要且つ十分な
最少量にとどめることが好ましく、通常導電性金属酸化
物粉体100重量部に対して0.1〜3重量部の範囲が
好ましい。有機酸の圏が0.1重量部以下の場合には、
導電層でおる芯部と鞘部の界面接着性が充分に改善され
ず、充分な耐屈曲性の改善効果が得られない。また、3
型苗部を越えた場合には、処理後有機溶媒に分散液から
濾別するのが困難となったり、濾別後過剰の有機酸を洗
浄除去する必要が生じて好ましくない。また、有機酸と
導電性金属酸化物とを直接低温流動性重合体と溶融混合
する場合、有機酸を過剰に加えることは、低温流動性重
合体の物性を損なうため好ましくない。
When pre-treating a conductive metal oxide with an organic acid, it is possible to simply add and disperse the conductive metal oxide in an organic solvent solution of an organic acid and stir it at room temperature as described above, but it is also possible to treat the conductive metal oxide in a shorter time. For this purpose, it is effective to heat and stir. The organic solvent used here is not particularly limited as long as it dissolves the organic carboxylic acid and/or organic sulfonic acid compound that is the organic acid. Furthermore, when a large amount of organic acid is used in this treatment, the excess organic acid may be washed and removed after filtration. The amount of the professional acid used is preferably kept to a necessary and sufficient minimum amount, and is usually preferably in the range of 0.1 to 3 parts by weight per 100 parts by weight of the conductive metal oxide powder. When the amount of organic acid is 0.1 part by weight or less,
The interfacial adhesion between the core and sheath portions covered by the conductive layer is not sufficiently improved, and a sufficient effect of improving bending resistance cannot be obtained. Also, 3
If the amount exceeds the seedling area, it becomes difficult to filter the organic solvent from the dispersion after treatment, or it becomes necessary to wash away excess organic acid after filtration, which is not preferable. Furthermore, when an organic acid and a conductive metal oxide are directly melt-mixed with a low-temperature fluid polymer, it is not preferable to add an excessive amount of the organic acid because this will impair the physical properties of the low-temperature fluid polymer.

(f)発明の効果 本発明の導電性繊維は、耐屈曲摩耗性が格段に改善され
ており、糸条や布帛等いずれの形態にも極めて有効に適
用される。また、本発明の白色導電性繊維は、洗濯、ク
リニング、スチーミング等の後処理をしても、電気抵抗
値の変化が認められなかった。
(f) Effects of the Invention The conductive fiber of the present invention has significantly improved bending abrasion resistance, and can be extremely effectively applied to any form such as yarn or fabric. Furthermore, no change in electrical resistance was observed in the white conductive fiber of the present invention even after post-treatments such as washing, cleaning, and steaming.

(g)実施例 以下実施例により本発明を具体的に説明する。(g) Examples The present invention will be specifically explained below using Examples.

測定法 (1)屈曲摩耗試験法: ポリエステル100%平織物に導電性域1ff13フィ
ラメントを0.5cm間隔で縫い付け、ユニバーリル型
摩耗試験機にレットし、引張荷重220(]。
Measurement method (1) Flexural abrasion test method: 1FF13 conductive regions were sewn onto a 100% polyester plain weave fabric at 0.5 cm intervals, placed in a universal abrasion tester, and subjected to a tensile load of 220 (]).

押え荷重なしてO〜1,200回屈曲と摩耗を繰り返し
た( 20’Cx 50%RH)。
Bending and abrasion were repeated 0 to 1,200 times without any presser load (20'Cx 50%RH).

(2)電気抵抗値(Rs)測定法 絶縁ポリエチレンテレフタレートフィルム上で精密に2
.0cmに両端を断面方向にカットした導電性繊維の断
面にAgドウタイト(導電性樹脂塗料、藤倉工業製)を
付着させ、20’Cx 30%R1−1下で、1KVの
直流電圧を印加して電気抵抗値を測定した(単位はΩ/
cm)。
(2) Electrical resistance value (Rs) measurement method Precisely measure 2 on an insulating polyethylene terephthalate film.
.. Ag dotite (conductive resin paint, manufactured by Fujikura Industries) was attached to the cross section of a conductive fiber whose ends were cut in the cross-sectional direction to 0 cm, and a DC voltage of 1 KV was applied under 20'Cx 30% R1-1. The electrical resistance value was measured (unit: Ω/
cm).

実施例1 酸化チタン微粒子の表面に少量の三酸化アンチモンを含
む導電性酸化第二錫をコーティングした平均粒径0.2
μ、非抵抗10Ω・cmの導電性粉体1kgとステアリ
ン酸20(]にトルエン3.l!を加えて激しく攪拌し
ながら5時間加熱還流させた。この混合液を1夜静置し
た後デカンデージョンにより大部分のトルエンを除き、
粉体を濾別し、トルエンで充分洗浄し、乾燥した。
Example 1 The surface of titanium oxide fine particles was coated with conductive tin oxide containing a small amount of antimony trioxide, with an average particle size of 0.2
3.1 toluene was added to 1 kg of conductive powder with μ, non-resistance 10 Ω cm and 20 stearic acid, and the mixture was heated under reflux for 5 hours with vigorous stirring.The mixture was allowed to stand overnight, and then decane was added. Most of the toluene is removed by dision,
The powder was separated by filtration, thoroughly washed with toluene, and dried.

こうして得た粉体250重里部、流動パラフィン20f
fR足部及びメルトインデックス75(JISK676
0−1971)のポリエチレン80重量部をニーダ−に
仕込み、175℃に加熱して5時間混合した。
250 parts of the powder thus obtained, 20 parts of liquid paraffin
fR foot and melt index 75 (JISK676
0-1971) was charged into a kneader, heated to 175°C, and mixed for 5 hours.

17られた導電性組成物の比抵抗は1 X 102Ω・
cmであった。溶融紡糸により、この導電性組成物を芯
とし、ポリエチレンテレフタレートを鞘とする芯鞘型複
合繊維(芯鞘比=1/6)を作り、4倍延伸して100
デニール、単糸数12の導電性マルチフィラメントを(
qた。
The specific resistance of the electrically conductive composition obtained was 1 x 102Ω・
It was cm. A core-sheath type composite fiber (core-sheath ratio = 1/6) with this conductive composition as a core and polyethylene terephthalate as a sheath was made by melt spinning, and was stretched 4 times to 100%.
Conductive multifilament with denier and single thread count of 12 (
It was.

この導電性複合繊維の屈曲摩耗回数と電気抵抗値の関係
を調べた結果を第1表に示した。また、走査型電顕によ
り2000侶に拡大した断面写真を第1図に示した。写
真より鞘部内面層に有機酸であるステアリン酸がブリー
ドアウトして第三の層を形成しているのが認められる。
Table 1 shows the results of investigating the relationship between the number of times of bending abrasion and the electrical resistance value of this conductive composite fiber. Furthermore, a cross-sectional photograph enlarged to 2000 mm with a scanning electron microscope is shown in FIG. From the photograph, it can be seen that stearic acid, an organic acid, bleeds out from the inner layer of the sheath and forms a third layer.

この第三の層により鞘部と芯部の界面接着性が良好にな
り、導電性の屈曲摩耗耐久性が向上したものと考えられ
る。
It is considered that this third layer improves the interfacial adhesion between the sheath portion and the core portion, and improves the bending abrasion durability of the conductive material.

比較例 実施例1で使用したステアリン酸の代わりにステアリン
酸亜鉛を用いる以外は実施例1と同様にしてポリエチレ
ンテレフタレートを鞘とする導電性複合繊維を得た。
Comparative Example A conductive composite fiber having a polyethylene terephthalate sheath was obtained in the same manner as in Example 1, except that zinc stearate was used instead of the stearic acid used in Example 1.

この繊維について、実施例1と同じ方法により、屈曲試
験を行い屈曲回数と電気抵抗値の関係を調べた結果、第
1表の結果を得た。走査型電顕断面写真では第1図の如
きブリードアウト現象による第三の層は認められず、芯
部と鞘部の界面接着↑4が不良で剥離を生じており、そ
の結果電気抵抗値の屈曲摩耗耐久性が不良で、実用レベ
ルの導電性にはとても及ばない。
This fiber was subjected to a bending test in the same manner as in Example 1 to examine the relationship between the number of bends and the electrical resistance value, and the results shown in Table 1 were obtained. In the scanning electron microscopy cross-sectional photograph, no third layer due to the bleed-out phenomenon as shown in Figure 1 was observed, indicating that the interfacial adhesion ↑4 between the core and sheath was poor, causing peeling, and as a result, the electrical resistance value decreased. The bending abrasion durability is poor, and the conductivity is far below the practical level.

第1表 実施例2 少量の三酸化アンチモンを含む酸化第二錫からなる導電
性金属粉体250重量部とメルトフローインデックス1
.0  (AST)101238−651)のポリプロ
ピレン50重量部をニーダ−に仕込み200℃で30分
間溶溶融金した後、ドデシルベンゼンスルホン酸2重量
部、流動パラフィン50重量部、イルガノックス101
00.5重量部を加え更に4時間混練した。
Table 1 Example 2 250 parts by weight of conductive metal powder made of stannic oxide containing a small amount of antimony trioxide and melt flow index 1
.. 0 (AST) 101238-651) was charged into a kneader and melted at 200°C for 30 minutes, followed by 2 parts by weight of dodecylbenzenesulfonic acid, 50 parts by weight of liquid paraffin, and Irganox 101.
00.5 parts by weight was added and kneaded for further 4 hours.

こうして17た導電性組成物の比抵抗は6.0X102
Ω・cmであった。溶融紡糸により、この導電性組成物
を芯とし、ポリエチレンテレフタレートを鞘とする芯鞘
型複合繊維(芯鞘比=115)を作り、4倍に延伸して
100デニール単系数12の導電性マルチフィラメント
を(qだ。
The specific resistance of the conductive composition thus obtained is 6.0X102
It was Ωcm. By melt spinning, a core-sheath type composite fiber (core-sheath ratio = 115) with this conductive composition as a core and polyethylene terephthalate as a sheath was made, and it was drawn 4 times to make a 100-denier conductive multifilament with a monofilament number of 12. (q.

この導電性複合繊維を160″Cx1分の乾熱処理し、
屈曲摩耗回数と電気抵抗値の関係を調べた結果を第2表
に示した。
This conductive composite fiber was subjected to dry heat treatment at 160″C x 1 minute,
Table 2 shows the results of investigating the relationship between the number of bending wear and the electrical resistance value.

第2表Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の導電性繊維の断面の走査型電顕による
2000倍の拡大写真である。
FIG. 1 is a 2000 times enlarged photograph of the cross section of the conductive fiber of the present invention taken with a scanning electron microscope.

Claims (1)

【特許請求の範囲】 1、繊維形成性重合体よりなる鞘部と、導電性金属酸化
物微粉末を分散させた低温流動性高結晶性重合体よりな
る芯部とから構成された複合繊維であつて、該鞘部の芯
部に接する内面層に有機酸を存在させてなる導電性繊維
。 2、有機酸が炭素数4以上の有機カルボン酸及び有機ス
ルホン酸より選ばれた少なくとも1種の有機酸である特
許請求の範囲第1項記載の導電性繊維。
[Claims] 1. A composite fiber composed of a sheath made of a fiber-forming polymer and a core made of a low-temperature fluid highly crystalline polymer in which conductive metal oxide fine powder is dispersed. A conductive fiber having an organic acid present in the inner layer in contact with the core of the sheath. 2. The conductive fiber according to claim 1, wherein the organic acid is at least one organic acid selected from organic carboxylic acids and organic sulfonic acids having 4 or more carbon atoms.
JP23350785A 1985-10-21 1985-10-21 Electrically conductive fiber Granted JPS6297918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23350785A JPS6297918A (en) 1985-10-21 1985-10-21 Electrically conductive fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23350785A JPS6297918A (en) 1985-10-21 1985-10-21 Electrically conductive fiber

Publications (2)

Publication Number Publication Date
JPS6297918A true JPS6297918A (en) 1987-05-07
JPH0357967B2 JPH0357967B2 (en) 1991-09-04

Family

ID=16956111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23350785A Granted JPS6297918A (en) 1985-10-21 1985-10-21 Electrically conductive fiber

Country Status (1)

Country Link
JP (1) JPS6297918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110764U (en) * 1991-03-06 1992-09-25 株式会社松井色素化学工業所 Thermochromic composite fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711213A (en) * 1980-06-19 1982-01-20 Kanebo Synthetic Fibers Ltd Electrically conductive conjugate fiber and its production
JPS5860015A (en) * 1981-10-07 1983-04-09 Teijin Ltd Preparation of electrically conductive composite fiber
JPS58149311A (en) * 1982-02-25 1983-09-05 Toyo Ink Mfg Co Ltd Colorant for spun-dyed polyester fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711213A (en) * 1980-06-19 1982-01-20 Kanebo Synthetic Fibers Ltd Electrically conductive conjugate fiber and its production
JPS5860015A (en) * 1981-10-07 1983-04-09 Teijin Ltd Preparation of electrically conductive composite fiber
JPS58149311A (en) * 1982-02-25 1983-09-05 Toyo Ink Mfg Co Ltd Colorant for spun-dyed polyester fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110764U (en) * 1991-03-06 1992-09-25 株式会社松井色素化学工業所 Thermochromic composite fiber

Also Published As

Publication number Publication date
JPH0357967B2 (en) 1991-09-04

Similar Documents

Publication Publication Date Title
JPS5839175B2 (en) Antistatic synthetic polymer composition
JPS6297918A (en) Electrically conductive fiber
JPH01292116A (en) Electrically conductive fiber and production thereof
US3669736A (en) Textile material having a durable antistatic property and the fibers to be used for its purpose
JPH03182546A (en) Polyester composition and fiber
JPS6253416A (en) Electrically conductive fiber and production thereof
JPH01213411A (en) Electrically conductive yarn
EP0276756A2 (en) Conductive composite filaments and fibrous articles containing the same
JPH031338B2 (en)
JPS6392724A (en) Composite fiber having excellent heat-resistance, chemical resistance and antistaticity
JPH0364604B2 (en)
JPS58201828A (en) Electrically condutive polymer composition
JP2778981B2 (en) Conductive composite fiber and method for producing the same
JPS6290316A (en) Production of electrically conductive fiber
JPS61113824A (en) Electrically conductive composite fiber
JP2856798B2 (en) Conductive fiber
JPS6211086B2 (en)
JP4763451B2 (en) Conductive composite fiber
JPH01111015A (en) Electrically conductive composite fiber
JP5420196B2 (en) Acrylic synthetic fiber and method for producing the same
JP3113054B2 (en) Conductive composite fiber
JPS63288215A (en) Electrically conductive conjugate fiber
JPH03241010A (en) Electrically conductive conjugate fiber
JPH04361613A (en) Conjugate fiber
JPS6385113A (en) Electrically conductive conjugate fiber