JPH0357967B2 - - Google Patents

Info

Publication number
JPH0357967B2
JPH0357967B2 JP60233507A JP23350785A JPH0357967B2 JP H0357967 B2 JPH0357967 B2 JP H0357967B2 JP 60233507 A JP60233507 A JP 60233507A JP 23350785 A JP23350785 A JP 23350785A JP H0357967 B2 JPH0357967 B2 JP H0357967B2
Authority
JP
Japan
Prior art keywords
conductive
organic acid
core
organic
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60233507A
Other languages
Japanese (ja)
Other versions
JPS6297918A (en
Inventor
Setsuo Yamada
Fumiki Takabayashi
Masahiro Oshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP23350785A priority Critical patent/JPS6297918A/en
Publication of JPS6297918A publication Critical patent/JPS6297918A/en
Publication of JPH0357967B2 publication Critical patent/JPH0357967B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(a) 技術分野 本発明は、導電性繊維、特に屈曲耐久性の優れ
た白色導電性芯鞘型複合繊維に関するものであ
る。 (b) 従来技術 ポリエチレン、ポリアミド、ポリエステル等の
熱可塑性重合体は繊維、フイルム、その他の成形
品として多くの用途に用いられているが、制電性
にとぼしいために帯電し易い欠点を有する。例え
ば、ポリエチレンテレフタレート繊維よりなる衣
服は、その帯電性のために、着用時に身体にまつ
わりつき易いこと、空気中に浮遊する塵埃を吸着
して汚れ易いこと、更にはかかる繊維よりなるカ
ーペツト上を歩いてドアの把手に触れたときに放
電シヨツクを受け易いこと等多くの問題がある。 かかる問題に対処するために、導電性繊維に関
する多くの提案がなされている。第1の方法とし
て導電性カーボン粒子を繊維中に練り込むか、又
は導電性カーボン粉末を熱可塑性重合体中に分散
させたものを芯部とし、繊維形成性重合体を鞘部
とした複合繊維にする方法がある。しかしなが
ら、かかる導電性繊維は、導電性カーボンが黒色
であるために着色が著しく、審美性を要求される
分野に用いることができず、その用途が極めて限
定されるという欠点を有する。 第2の方法として、繊維表面に導電性物質層を
設ける方法がある。更に詳しく述べると、繊維表
面上に化学メツキした金属メツキ繊維、金属粉末
やカーボンブラツク等の導電性粉末を塗布する方
法である。これらの導電性繊維は確かに初期の導
電性能は良好であるが、着用時の摩耗や洗濯等に
より表面の導電剤層がはがれて導電性が著しく低
下するばかりか、耐薬品性も不良で防塵衣等での
発塵源となり、更には導電性物質による着色も避
けられない。 以上の欠点を解決する方法として、近時、無色
又は淡色の導電性金属化合物を用いた導電性繊維
を得る方法が提案されている。 (c) 解決すべき問題点 しかしながら、これらの提案に基いて製造され
た導電性繊維は数100回の屈曲摩耗により導電性
が失われ、着用短時間でその期待される効果であ
る制電性を失う結果、前述の衣服のまつわりつき
や埃の付着を引き起こす。 (d) 問題解決の手段 本発明者等は、かかる欠点のない導電性繊維を
提供せんとして鋭意研究を重ねた結果導電性の芯
鞘型複合繊維の芯部には低温流動性高結晶性重合
体のマトリツクス中に導電性金属酸化物が存在す
るが、これが単に均一分散されているだけでは導
電性は認められない。紡糸・延伸・熱処理等の過
程で受ける熱により、低温流動性重合体は高結晶
化配向現象を引き起こし、そのために導電性金属
酸化物が低温流動性重合体の系外にはじきとばさ
れて相分離を生じる結果、金属酸化物が凝集・再
配列して連鎖構造形成により初めて導電機能が発
現する。しかしながら、この様にして得た繊維は
屈曲摩耗させると電気抵抗値が高くなり、導電性
不良となる。本発明者等は、この現象を種々解析
し、芯部の高結晶化した低温流動性重合体層と鞘
部の重合体層の界面接着性が低いことに起因して
いることを見いだした。即ち、界面接着性が悪い
と、屈曲摩耗時に容易に芯部と鞘部の剥離を引き
起こし、芯部に存在する金属酸化物の連鎖構造破
壊が発生することを知つた。この芯部と鞘部の界
面接着性を向上させる技術について鋭意検討を重
ねた結果、金属酸化物と低温流動性高結晶重合体
の混合系に有機酸を配合することにより屈曲耐久
性を改良することに成功した。即ち、有機酸を芯
部に配合しておくことにより、低温流動性重合体
が高結晶配向化を起こす際に、導電性金属化合物
ばかりでなく、有機酸をも相分離させ、芯部の系
外に出た有機酸は鞘部の内面層に拡散・浸透する
というブリードアウト現象が生じる。その結果、
芯部層と鞘部内面層の界面接着性が飛躍的に向上
し、屈曲摩耗後の導電性繊維の電気抵抗値が109
Ω/cm未満に維持され、まつわりつきや、埃付着
のない布帛が得られることを解明し、本発明に到
達したものである。 即ち、本発明は繊維形成性重合体よりなる鞘部
と、導電性金属酸化物微粉末を分散させた低温流
動性高結晶性重合体よりなる芯部とから構成され
た複合繊維であつて、該芯部に配合せしめた有機
酸を拡散・浸透させて該芯部と接する内面層に有
機酸を存在させてなる導電性繊維に係るものであ
る。かかる本発明の導電性繊維は、低温流動性高
結晶性重合体と微粉末状の導電性金属酸化物とか
らなる導電性組成物中に予め有機酸を配合し、こ
の導電性組成物が芯部を、繊維形成性重合体が鞘
部を構成するように溶融紡糸して複合繊維とな
し、必要に応じて延伸、熱処理することによつて
製造される。このように芯部となる成分に有機酸
を配合しておくことにより、前述した如く紡糸、
延伸、熱処理等の過程で受ける熱、更には布帛に
した後に行う、例えば精練、染色等の過程で受け
る熱により、有機酸は第1図に示すように、芯部
に接する鞘部の内面層に移行し、存在するように
なる。この鞘部内面層の有機酸の存在は、繊維断
面を2000倍程度に拡大した電顕写真で容易に識別
することができる。 本発明の導電性繊維の鞘部を構成する重合体は
熱可塑性でしかも繊維形成能を有する重合体であ
ればよい。例えばポリエチレンテレフタレート、
ナイロン−6、ナイロン−6,6、ポリプロピレ
ン等があげられる。 低温流動性高結晶性重合体は、鞘部を構成する
繊維形成性重合体の流動温度より低い流動温度を
有し、且つ高結晶性の熱可塑性重合体であればよ
く、具体的にはポリエチレン、ポリプロピレン、
ポリスチレン、ポリブチジエン、ポリイソプレ
ン、ナイトン−6、ナイロン−6,6、ポリエチ
レンテレフタレート、ポリブリレンテレフタレー
ト等を主たる対象とするが、これ等の一部を共重
合成分で置き換えたものでもよく、また低温流動
性で且つ高結晶性であれば目的に応じ上記以外の
を使用してもよく、更に必要に応じてそれ等の2
種以上を混合したものであつても良い。 本発明でいう導電性金属酸化物としては、特に
酸化第二錫及び酸化亜鉛が好ましい。ここでいう
酸化第二錫には、少量のアンチモン化合物を含む
酸化第二錫、酸化チタン粒子の表面に少量のアン
チモン化合物を含む酸化第二錫をコーテイングし
て得られる導電性金属複合体も含まれる。また酸
化亜鉛には少量の酸化アルミニウム、酸化リチウ
ム、酸化インジウム等を溶解した導電性酸化亜鉛
も含まれる。これ等は通常微粉末として取り扱わ
れる。 芯部の低温流動性高結晶性重合体に予め配合す
る有機酸としては、炭素数4以上の有機カルボン
酸又は有機スルホン酸が好ましく、特に炭素数24
までのものが好ましい。カルボキシル基、スルホ
ン酸基に結合する有機残基としてはアルキル基、
アルキレン基、アリール基、アルキルアリール
基、アラルキル基を有するものが好ましく、また
これ等の基がカルボキシル基、スルホン酸基以外
の基であれば、任意の置換基を有していても差し
つかえない。 かかる有機カルボン酸の具体例としてはn−カ
プロン酸、n−ヘプタン酸、安息香酸、n−カプ
リル酸、フエニル酸、トルイル酸、n−ノナン
酸、ステアリン酸等があげられる。また、有機ス
ルホン酸の具体例としてはn−ペンタンスルホン
酸、ベンゼンスルホン酸、ドデシルベンゼンスル
ホン酸等があげられる。これ等有機カルボン酸、
有機スルホン酸は単独で用いても良く、また適宜
組合せて使用してもよい。 上記有機酸を低温流動性重合体に配合するには
有機酸である有機カルボン酸や有機スルホン酸の
熱的特性を考慮して (1) 低温流動性重合体と導電性金属酸化物と有機
酸とを直接溶融混合する方法、 (2) 導電性金属酸化物を予め有機酸で処理した
後、低温流動性重合体と溶融混合する方法 のいずれかを適宜選択するのが良い。 例えば、n−ヘプタン酸の如き沸点の低い有機
酸を比較的高融点の低温流動性重合体へ導電性金
属酸化物とともに直接溶融混合して導電性組成物
を得ようとすることは好ましくない。かかる場合
は、予め導電性金属酸化物をn−ヘプタン酸で処
理した後低温流動性重合体と溶融混合する方法が
好ましい。 これに対し、同じn−ヘプタン酸を有機酸とす
る場合でも、用いる低温流動性重合体がポリエチ
レンの如く比較的融点の場合には、導電性金属酸
化物とn−ヘプタン酸とを直接ポリエチレンに溶
融混合しても何んら差しつかえない。 予め導電性金属酸化物を有機酸で処理する方法
としては、有機酸を有機溶媒に溶解させて得られ
る溶液に、所望の導電性金属酸化物粉体を吸入分
散させ、数時間撹拌した後有機溶媒と粉体とを濾
別するという極めて簡単な方法が用いられる。 導電性金属酸化物を有機酸で予め処理するに当
たり、前述の如く有機酸の有機溶媒溶液に導電性
金属酸化物を投入分散させ、常温で数時間撹拌す
るだけでもよいが、より短時間で処理するために
は加熱撹拌することが効果的である。ここで用い
る有機溶媒は、有機酸である有機カルボン酸及
び/又は有機スルホン酸化合物を溶解するもので
あれば特に限定されない。また、この処理に当た
り、有機酸を多量使用したときは、濾別後過剰の
有機酸を洗浄除去すればよい。有機酸の使用量は
必要且つ十分な最少量にとどめることが好まし
く、通常導電性金属酸化物粉体100重量部に対し
て0.1〜3重量部の範囲が好ましい。有機酸の量
が0.1重量部以下の場合には、導電層である芯部
と鞘部の界面接着性が充分に改善されず、充分な
耐屈曲性の改善効果が得られない。また、3重量
部を越えた場合には、処理後有機溶媒に分散液か
ら濾別するのが困難となつたり、濾別後過剰の有
機酸を洗浄除去する必要が生じて好ましくない。
また、有機酸と導電性金属酸化物とを直接低温流
動性重合体と溶融混合する場合、有機酸を過剰に
加えることは、低温流動性重合体の物性を損なう
ため好ましくない。 (f) 発明の効果 本発明の導電性繊維は、耐屈曲摩耗性が格段に
改善されており、糸条や布帛等いずれの形態にも
極めて有効に適用される。また、本発明の白色導
電性繊維は、洗濯、クリニング、スチーミング等
の後処理をしても、電気抵抗値の変化が認められ
なかつた。 (g) 実施例 以下実施例により本発明を具体的に説明する。 測定法 (1) 屈曲摩耗試験法: ポリエステル100%平織物に導電性繊維3フ
イラメントを0.5cm間隔で縫い付け、ユニバー
サル型摩耗試験機にセツトし、引張荷重220g、
押え荷重なしで0〜1200回屈曲と摩耗を繰り返
した(20℃×50%RH)。 (2) 電気抵抗値(Rs)測定法 絶縁ポリエチレンテレフタレートフイルム上
で精密に2.0cmに両端を断面方向にカツトした
導電性繊維の断面にAgドウタイト(導電性樹
脂塗料、藤倉工業製)を付着させ、20℃×30%
RH下で、1KVの直流電圧を印加して電気抵抗
値を測定した(単位はΩ/cm)。 実施例 1 酸化チタン微粒子の表面に少量の三酸化アンチ
モンを含む導電性酸化第二錫をコーテイングした
平均粒径0.2μ、非抵抗10Ω・cmの導電性粉体1Kg
とステアリン酸20gにトルエン3を加えて激し
く撹拌しながら5時間加熱還流させた。この混合
液を1夜静置した後デカンテーシヨンにより大部
分のトルエンを除き、粉体を濾別し、トルエンで
充分洗浄し、乾燥した。 こうして得た粉体250重量部、流動パラフイン
20重量部及びメルトインデツクス75(JIS K6760
−1971)のポリエチレン80重量部をニーダーに仕
込み、175℃に加熱して5時間混合した。 得られた導電性組成物の比抵抗は1×102Ω・
cmであつた。溶融紡糸により、この導電性組成物
を芯とし、ポリエチレンテレフタレートを鞘とす
る芯鞘型複合繊維(芯鞘比=1/6)を作り、4
倍延伸して100デニール、単糸数12の導電性マル
チフイラメントを得た。 この導電性複合繊維の屈曲摩耗回数と電気抵抗
値の関係を調べた結果を第1表に示した。また、
走査型電顕により2000倍に拡大した断面写真を第
1図に示した。写真より鞘部内面層に有機酸であ
るステアリン酸がブリードアウトして第三の層を
形成しているのが認められる。この第三の層によ
り鞘部と芯部の界面接着性が良好になり、導電性
の屈曲摩耗耐久性が向上したものと考えられる。 比較例 実施例1で使用したステアリン酸の代わりにス
テアリン酸亜鉛を用いる以外は実施例1と同様に
してポリエチレンテレフタレートを鞘とする導電
性複合繊維を得た。 この繊維について、実施例1と同じ方法によ
り、屈曲試験を行い屈曲回数と電気抵抗値の関係
を調べた結果、第1表の結果を得た。走査型電顕
断面写真では第1図の如きブリードアウト現象に
よる第三の層は認められず、芯部と鞘部の界面接
着性が不良で剥離を生じており、その結果電気抵
抗値の屈曲摩耗耐久性が不良で、実用レベルの導
電性にはとても及ばない。
(a) Technical Field The present invention relates to conductive fibers, particularly white conductive core-sheath type composite fibers having excellent bending durability. (b) Prior Art Thermoplastic polymers such as polyethylene, polyamide, and polyester are used in many applications as fibers, films, and other molded products, but they have the disadvantage of being easily charged due to poor antistatic properties. For example, clothing made of polyethylene terephthalate fibers tends to cling to the body when worn due to its electrostatic properties, easily gets dirty by attracting dust floating in the air, and even when walking on carpets made of such fibers. There are many problems such as being susceptible to discharge shock when touching the door handle. To address such problems, many proposals regarding conductive fibers have been made. The first method is to knead conductive carbon particles into fibers, or conductive carbon powder dispersed in thermoplastic polymer to form a core, and a fiber-forming polymer to form a sheath of composite fibers. There is a way to do it. However, such conductive fibers have the drawback that, because the conductive carbon is black, they are significantly colored and cannot be used in fields where aesthetics are required, and their uses are extremely limited. A second method is to provide a conductive material layer on the fiber surface. More specifically, it is a method of coating chemically plated metal-plated fibers, metal powder, or conductive powder such as carbon black on the fiber surface. Although these conductive fibers do have good initial conductivity, not only do the conductive agent layer on the surface peel off due to wear and washing, resulting in a significant decrease in conductivity, but they also have poor chemical resistance and are not dustproof. It becomes a source of dust in clothing, etc., and furthermore, coloring due to conductive substances is unavoidable. As a method for solving the above-mentioned drawbacks, a method of obtaining conductive fibers using a colorless or light-colored conductive metal compound has recently been proposed. (c) Problems to be solved However, conductive fibers manufactured based on these proposals lose their conductivity due to bending and abrasion several hundred times, and the expected antistatic effect cannot be achieved even after wearing for a short time. As a result, the above-mentioned clinging of clothes and adhesion of dust occur. (d) Means for Solving the Problem The inventors of the present invention have conducted extensive research in an effort to provide conductive fibers that do not have these drawbacks, and as a result, the core of conductive core-sheath type composite fibers contains a low-temperature fluid, highly crystalline polymer. Although conductive metal oxides are present in the combined matrix, conductivity cannot be observed if they are simply uniformly dispersed. The heat received during spinning, drawing, heat treatment, etc. causes a highly crystallized orientation phenomenon in the cold-flowing polymer, and as a result, the conductive metal oxide is thrown out of the cold-flowing polymer and phased out. As a result of the separation, the metal oxides aggregate and rearrange, forming a chain structure that develops a conductive function for the first time. However, when the fibers obtained in this manner are subjected to bending and abrasion, the electrical resistance value increases and the conductivity becomes poor. The present inventors conducted various analyzes on this phenomenon and found that it is caused by low interfacial adhesion between the highly crystallized low-temperature fluid polymer layer in the core and the polymer layer in the sheath. That is, it has been found that if the interfacial adhesion is poor, the core and sheath easily peel off during bending wear, and the chain structure of the metal oxide present in the core is destroyed. As a result of extensive research into technology to improve the interfacial adhesion between the core and sheath, we have found that flexural durability is improved by adding an organic acid to a mixed system of metal oxide and low-temperature fluid high-crystalline polymer. It was very successful. That is, by blending an organic acid in the core, when the low-temperature fluid polymer undergoes high crystal orientation, not only the conductive metal compound but also the organic acid is phase separated, and the core system is A bleed-out phenomenon occurs in which the released organic acid diffuses and permeates into the inner layer of the sheath. the result,
The interfacial adhesion between the core layer and the inner surface layer of the sheath has been dramatically improved, and the electrical resistance value of the conductive fiber after bending abrasion is 10 9
The inventors have discovered that it is possible to obtain a fabric that is maintained at less than Ω/cm and is free from clinging and dust adhesion, and has thus arrived at the present invention. That is, the present invention provides a composite fiber comprising a sheath made of a fiber-forming polymer and a core made of a low-temperature fluid highly crystalline polymer in which conductive metal oxide fine powder is dispersed, The conductive fiber is made by diffusing and permeating an organic acid blended into the core so that the organic acid is present in the inner layer in contact with the core. The conductive fiber of the present invention is produced by blending an organic acid into a conductive composition consisting of a low-temperature fluid highly crystalline polymer and a finely powdered conductive metal oxide, and forming a core of the conductive composition. The fiber-forming polymer is melt-spun to form a composite fiber so that the fiber-forming polymer constitutes the sheath, and if necessary, it is produced by stretching and heat treatment. By blending an organic acid into the core component in this way, spinning and
As shown in Figure 1, organic acids are absorbed by the heat received during processes such as stretching and heat treatment, as well as during processes such as scouring and dyeing, which are carried out after fabrication. and come into existence. The presence of organic acids in the inner layer of the sheath can be easily identified in an electron micrograph of the fiber cross section magnified approximately 2000 times. The polymer constituting the sheath portion of the conductive fiber of the present invention may be a thermoplastic polymer having fiber-forming ability. For example, polyethylene terephthalate,
Examples include nylon-6, nylon-6,6, polypropylene, and the like. The low-temperature flowable highly crystalline polymer may be any thermoplastic polymer that has a flow temperature lower than the flow temperature of the fiber-forming polymer constituting the sheath and is highly crystalline, and specifically, polyethylene. ,polypropylene,
The main targets are polystyrene, polybutidiene, polyisoprene, Niton-6, nylon-6,6, polyethylene terephthalate, polypylene terephthalate, etc., but some of these may be replaced with copolymerized components, and low-temperature Depending on the purpose, materials other than those listed above may be used as long as they are fluid and highly crystalline.
It may be a mixture of more than one species. As the conductive metal oxide in the present invention, stannic oxide and zinc oxide are particularly preferred. The stannic oxide mentioned here also includes stannic oxide containing a small amount of antimony compound, and conductive metal composites obtained by coating the surface of titanium oxide particles with stannic oxide containing a small amount of antimony compound. It will be done. Zinc oxide also includes conductive zinc oxide in which small amounts of aluminum oxide, lithium oxide, indium oxide, etc. are dissolved. These are usually treated as fine powders. The organic acid to be blended in advance into the low-temperature-fluid highly crystalline polymer of the core is preferably an organic carboxylic acid or an organic sulfonic acid having 4 or more carbon atoms, particularly an organic acid having 24 carbon atoms.
Preferably. Organic residues that bind to carboxyl groups and sulfonic acid groups include alkyl groups,
Those having an alkylene group, aryl group, alkylaryl group, or aralkyl group are preferable, and as long as these groups are groups other than carboxyl or sulfonic acid groups, they may have any substituent. . Specific examples of such organic carboxylic acids include n-caproic acid, n-heptanoic acid, benzoic acid, n-caprylic acid, phenyl acid, toluic acid, n-nonanoic acid, and stearic acid. Specific examples of organic sulfonic acids include n-pentanesulfonic acid, benzenesulfonic acid, dodecylbenzenesulfonic acid, and the like. These organic carboxylic acids,
Organic sulfonic acids may be used alone or in appropriate combinations. In order to incorporate the above organic acid into a low-temperature fluid polymer, the thermal properties of the organic acids such as organic carboxylic acids and organic sulfonic acids should be taken into consideration.(1) Low-temperature fluid polymer, conductive metal oxide, and organic acid (2) A method in which a conductive metal oxide is previously treated with an organic acid and then melt-mixed with a low-temperature fluid polymer may be selected as appropriate. For example, it is undesirable to attempt to obtain a conductive composition by directly melt-mixing a low-boiling organic acid such as n-heptanoic acid with a conductive metal oxide into a relatively high-melting low-temperature fluid polymer. In such a case, it is preferable to treat the conductive metal oxide with n-heptanoic acid in advance and then melt-mix it with the low-temperature fluid polymer. On the other hand, even when n-heptanoic acid is used as an organic acid, if the low-temperature fluid polymer used has a relatively melting point, such as polyethylene, the conductive metal oxide and n-heptanoic acid can be directly added to polyethylene. There is no problem in melting and mixing. As a method of pre-treating a conductive metal oxide with an organic acid, the desired conductive metal oxide powder is inhaled and dispersed in a solution obtained by dissolving an organic acid in an organic solvent, stirred for several hours, and then treated with an organic acid. A very simple method is used in which the solvent and powder are separated by filtration. When pre-treating a conductive metal oxide with an organic acid, it is sufficient to simply add and disperse the conductive metal oxide in an organic solvent solution of an organic acid and stir it at room temperature for several hours as described above, but it is also possible to treat the conductive metal oxide in a shorter time. For this purpose, heating and stirring is effective. The organic solvent used here is not particularly limited as long as it dissolves the organic carboxylic acid and/or organic sulfonic acid compound that is the organic acid. Furthermore, when a large amount of organic acid is used in this treatment, the excess organic acid may be washed and removed after filtration. The amount of organic acid used is preferably kept to a necessary and sufficient minimum amount, and is generally preferably in the range of 0.1 to 3 parts by weight per 100 parts by weight of the conductive metal oxide powder. If the amount of the organic acid is less than 0.1 part by weight, the interfacial adhesion between the conductive layer core and sheath portion will not be sufficiently improved, and a sufficient effect of improving bending resistance will not be obtained. If the amount exceeds 3 parts by weight, it is not preferable because it becomes difficult to filter the dispersion into an organic solvent after treatment, or it becomes necessary to wash and remove excess organic acid after filtration.
Furthermore, when an organic acid and a conductive metal oxide are directly melt-mixed with a low-temperature fluid polymer, it is not preferable to add an excessive amount of the organic acid because this will impair the physical properties of the low-temperature fluid polymer. (f) Effects of the Invention The conductive fiber of the present invention has significantly improved bending abrasion resistance, and can be extremely effectively applied to any form such as yarn or fabric. Further, the white conductive fiber of the present invention showed no change in electrical resistance even after post-treatment such as washing, cleaning, and steaming. (g) Examples The present invention will be specifically explained below using examples. Measurement method (1) Flexural abrasion test method: 3 filaments of conductive fibers were sewn onto a 100% polyester plain weave at 0.5cm intervals, set in a universal abrasion tester, and subjected to a tensile load of 220g.
Bending and abrasion were repeated 0 to 1200 times without presser load (20°C x 50% RH). (2) Electrical resistance value (Rs) measurement method Ag doutite (conductive resin paint, manufactured by Fujikura Industries) was attached to the cross section of a conductive fiber whose ends were precisely cut to 2.0 cm in the cross-sectional direction on an insulating polyethylene terephthalate film. ,20℃×30%
Under RH, a DC voltage of 1 KV was applied and the electrical resistance value was measured (unit: Ω/cm). Example 1 1 kg of conductive powder with an average particle size of 0.2μ and a non-resistance of 10Ω・cm, which is made by coating the surface of titanium oxide fine particles with conductive tin oxide containing a small amount of antimony trioxide.
3 toluene was added to 20 g of stearic acid, and the mixture was heated under reflux for 5 hours with vigorous stirring. After the mixture was allowed to stand overnight, most of the toluene was removed by decantation, and the powder was filtered, thoroughly washed with toluene, and dried. 250 parts by weight of the powder thus obtained, liquid paraffin
20 parts by weight and melt index 75 (JIS K6760
-1971) was placed in a kneader, heated to 175°C, and mixed for 5 hours. The specific resistance of the obtained conductive composition was 1×10 2 Ω・
It was cm. By melt spinning, a core-sheath type composite fiber (core-sheath ratio = 1/6) having this conductive composition as a core and polyethylene terephthalate as a sheath was produced.
A conductive multifilament of 100 denier and 12 single filaments was obtained by stretching twice. Table 1 shows the results of investigating the relationship between the number of times of bending and abrasion of this conductive composite fiber and the electrical resistance value. Also,
Figure 1 shows a cross-sectional photograph magnified 2000 times using a scanning electron microscope. From the photograph, it can be seen that stearic acid, an organic acid, bleeds out from the inner layer of the sheath and forms a third layer. It is thought that this third layer improves the interfacial adhesion between the sheath and the core and improves the bending abrasion durability of the conductive material. Comparative Example A conductive composite fiber having a polyethylene terephthalate sheath was obtained in the same manner as in Example 1, except that zinc stearate was used instead of the stearic acid used in Example 1. This fiber was subjected to a bending test using the same method as in Example 1 to examine the relationship between the number of bends and the electrical resistance value, and the results shown in Table 1 were obtained. In the cross-sectional scanning electron micrograph, the third layer due to the bleed-out phenomenon as shown in Figure 1 is not observed, indicating that the interfacial adhesion between the core and sheath is poor and peeling occurs, resulting in a bend in the electrical resistance value. It has poor abrasion durability and is far below the practical level of conductivity.

【表】 実施例 2 少量の三酸化アンチモンを含む酸化第二錫から
なる導電性金属粉体250重量部とメルトフローイ
ンデツクス1.0(ASTM D1238−65T)のポリプ
ロピレン50重量部をニーダーに仕込み200℃で30
分間溶融混合した後、ドデシルベンゼンスルホン
酸2重量部、流動パラフイン50重量部、イルガノ
ツクス1010 0.5重量部を加え更に4時間混練し
た。 こうして得た導電性組成物の比抵抗は6.0×102
Ω・cmであつた。溶融紡糸により、この導電性組
成物を芯とし、ポリエチレンテレフタレートを鞘
とする芯鞘型複合繊維(芯鞘比=1/5)を作
り、4倍に延伸して100デニール単糸数12の導電
性マルチフイラメントを得た。 この導電性複合繊維を160℃×1分の乾熱処理
し、屈曲摩耗回数と電気抵抗値の関係を調べた結
果を第2表に示した。
[Table] Example 2 250 parts by weight of conductive metal powder made of stannic oxide containing a small amount of antimony trioxide and 50 parts by weight of polypropylene with a melt flow index of 1.0 (ASTM D1238-65T) were placed in a kneader and heated to 200°C. at 30
After melt-mixing for a minute, 2 parts by weight of dodecylbenzenesulfonic acid, 50 parts by weight of liquid paraffin, and 0.5 parts by weight of Irganox 1010 were added and kneaded for a further 4 hours. The specific resistance of the conductive composition thus obtained was 6.0×10 2
It was Ω・cm. By melt-spinning, a core-sheath type composite fiber (core-sheath ratio = 1/5) with this conductive composition as a core and polyethylene terephthalate as a sheath was made, and it was drawn 4 times to produce a conductive fiber with a 100-denier single yarn count of 12. Obtained multifilament. This conductive composite fiber was subjected to dry heat treatment at 160° C. for 1 minute, and the relationship between the number of bending abrasion times and the electrical resistance value was investigated. The results are shown in Table 2.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の導電性繊維の断面の走査型電
顕による2000倍の拡大写真である。
FIG. 1 is a 2000x enlarged photograph of the cross section of the conductive fiber of the present invention taken with a scanning electron microscope.

Claims (1)

【特許請求の範囲】 1 繊維形成性重合体よりなる鞘部と、導電性金
属酸化物微粉末を分散させた低温流動性高結晶性
重合体よりなる芯部とから構成された複合繊維で
あつて、該芯部に配合せしめた有機酸を拡散・浸
透させて該芯部と接する鞘部の内面層部分に該有
機酸を存在させてなることを特徴とする導電性繊
維。 2 有機酸が炭素数4以上の有機カルボン酸及び
有機スルホン酸より選ばれた少なくとも1種の有
機酸である特許請求の範囲第1項記載の導電性繊
維。
[Scope of Claims] 1 A composite fiber composed of a sheath made of a fiber-forming polymer and a core made of a low-temperature fluid highly crystalline polymer in which conductive metal oxide fine powder is dispersed. A conductive fiber characterized in that an organic acid blended in the core is diffused and permeated so that the organic acid is present in the inner layer of the sheath that contacts the core. 2. The conductive fiber according to claim 1, wherein the organic acid is at least one organic acid selected from organic carboxylic acids and organic sulfonic acids having 4 or more carbon atoms.
JP23350785A 1985-10-21 1985-10-21 Electrically conductive fiber Granted JPS6297918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23350785A JPS6297918A (en) 1985-10-21 1985-10-21 Electrically conductive fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23350785A JPS6297918A (en) 1985-10-21 1985-10-21 Electrically conductive fiber

Publications (2)

Publication Number Publication Date
JPS6297918A JPS6297918A (en) 1987-05-07
JPH0357967B2 true JPH0357967B2 (en) 1991-09-04

Family

ID=16956111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23350785A Granted JPS6297918A (en) 1985-10-21 1985-10-21 Electrically conductive fiber

Country Status (1)

Country Link
JP (1) JPS6297918A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504032Y2 (en) * 1991-03-06 1996-07-03 株式会社松井色素化学工業所 Thermochromic composite fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711213A (en) * 1980-06-19 1982-01-20 Kanebo Synthetic Fibers Ltd Electrically conductive conjugate fiber and its production
JPS5860015A (en) * 1981-10-07 1983-04-09 Teijin Ltd Preparation of electrically conductive composite fiber
JPS58149311A (en) * 1982-02-25 1983-09-05 Toyo Ink Mfg Co Ltd Colorant for spun-dyed polyester fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711213A (en) * 1980-06-19 1982-01-20 Kanebo Synthetic Fibers Ltd Electrically conductive conjugate fiber and its production
JPS5860015A (en) * 1981-10-07 1983-04-09 Teijin Ltd Preparation of electrically conductive composite fiber
JPS58149311A (en) * 1982-02-25 1983-09-05 Toyo Ink Mfg Co Ltd Colorant for spun-dyed polyester fiber

Also Published As

Publication number Publication date
JPS6297918A (en) 1987-05-07

Similar Documents

Publication Publication Date Title
DE60016136T2 (en) Electrically conductive composite fiber
JPS5839175B2 (en) Antistatic synthetic polymer composition
JPH0357967B2 (en)
JPH03182546A (en) Polyester composition and fiber
JPH01292116A (en) Electrically conductive fiber and production thereof
JPS61102474A (en) Production of conductive composite fiber
JPH031338B2 (en)
JPH0643644B2 (en) Antifouling polyester monofilament
JPS6392724A (en) Composite fiber having excellent heat-resistance, chemical resistance and antistaticity
JPS58201828A (en) Electrically condutive polymer composition
JPS6253416A (en) Electrically conductive fiber and production thereof
JPS61113824A (en) Electrically conductive composite fiber
JP2778981B2 (en) Conductive composite fiber and method for producing the same
JPS63288216A (en) Antistatic polyester fiber
JPH02289118A (en) Electrically conductive white conjugate fiber
JPS6211086B2 (en)
JP2599785B2 (en) Conductive composite fiber
JP2856798B2 (en) Conductive fiber
JP2925372B2 (en) Flame-retardant antibacterial fiber and method for producing the same
JPH04361613A (en) Conjugate fiber
JP5420196B2 (en) Acrylic synthetic fiber and method for producing the same
JPH01111015A (en) Electrically conductive composite fiber
JP4763451B2 (en) Conductive composite fiber
JP3046509B2 (en) Conductive composite fiber
JP2813368B2 (en) Antistatic composite fiber