JPS5860015A - Preparation of electrically conductive composite fiber - Google Patents
Preparation of electrically conductive composite fiberInfo
- Publication number
- JPS5860015A JPS5860015A JP15861981A JP15861981A JPS5860015A JP S5860015 A JPS5860015 A JP S5860015A JP 15861981 A JP15861981 A JP 15861981A JP 15861981 A JP15861981 A JP 15861981A JP S5860015 A JPS5860015 A JP S5860015A
- Authority
- JP
- Japan
- Prior art keywords
- component
- conductive
- fibers
- melting point
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Multicomponent Fibers (AREA)
Abstract
Description
本発明は導電性III鍾、@に導電性物質とし The present invention uses a conductive material as conductive material.
【酸化嬉
二錫系導電性微肴末を含有する新規な導電性複合lil
錯の製造法に関する。
合成綾線1例えばポリエステル系lIl艙、ボリア曙ド
系繊維等は導電性が低いため、摩@tiより静電気が発
生し轟く、かかる合成−纏よりなる布帛法使用KIIし
て数拾翫マにも達する高電位の帯電が認められ、塵埃の
付着、放電に伴う各種の障害が発生する。
かかる問題を解決するため、線維製品に導電性縁線を混
°合することが知られており、導電性m維として金属繊
織、金属メッキを施した繊維。
導電性物質を配合したポリマードープを塗布した#l艙
、カーボンブラックを配合した縁線等が提案されている
。
しかしながら、これらの従来の導電性繍繕は。
いずれも重大な欠点を有し、満足できるものではなかっ
た0例えば金属繊維は、屈−回復性がないため、使用時
又は加工時の屈−により導電性能が低下すること、他鑵
錯との混合、交編。
交織が容品でないこと、更には金属特有の色調を有する
こと等、多くの欠点を有している。金属メッキを總した
線維は、縁線表mK均一で且つ連続したメッキ層が形成
する必要があるため。
llllI表WKは平滑性が要求され、適用できる綾線
の種aが太き(制限されること、メッキ処場は精確に施
さなければならず、製造コストが極めて高(なること、
使用時又は加工時にメッキ層が剥離し易(耐久性が低い
こと、更には金属特有の色調を呈すること等%多くの欠
点を有している。導電性物質を配合したポリマードープ
を塗布したIII維も、製造コストや剥離等について上
述の金属メッキamと同様の欠点がある。
更にカーボンブラック含有繊織はカーボンブラックの黒
色に着色しており1合成鐵−と混合すると外観が著しく
損なわれるため、その使用分野がw隈されるという致命
的欠点を有する。
本発明看は、上記欠点のない導電性IIIIIImを提
供せんとして鋭意検討した結果、導電性物質として電気
抵抗を低下させた酸化第2錫系導電性物質を使用するこ
とに着目し、#ll影形成性熱可塑性樹脂(ム)成分〕
と酸化第2錫系導電性物質を配合した熱可塑性樹脂〔(
B)成分】とを使用した複合III織を製造せんと試み
たところ、未延伸糸では十分な導電性を示すが、糸強力
をあげるために延伸すると、導電性能が低下し、延伸倍
率をあげるに従って導電性能の低下が著しくなる。この
ため、充分な倍率の延伸ができず糸強力と導電性共に優
れた導電性複合縁線を得ることはできなかった。従って
、 (B)成分中の酸化第2錫系導電性物質を配合する
熱可塑性重合体について検討を重ねた結果、この重合体
として囚成分の融点より40℃以上低い融点を有する熱
可塑性重合体を選択し、延伸後の)成分中の重合体の融
点以上、好ましくは融点より10℃以上高い温度で熱処
理することkより鷺伸時に大幅に低下した導電性能が回
復することを見い出し、本発明を完成させた。
即ち、本発明は#I雑影形成性熱可塑性重合体りなる囚
成分及び酸化第2錫系導電性物質と(2)成分の融点よ
り40℃以上低い融点を有する熱可塑性重合体との混合
物よりなる■成分から形成されてなる導電性複合#J#
を延伸した彼(ll&i!分中の熱可塑性重合体の融点
以上で且つ(2)成分の融点より30℃以上低い温度で
熱処理することを特徴とする導電性複合#I―の製造法
に係るものである。
本発明の導電“性罐維の一部を構成する(3)成分とな
る重合体は、溶融紡糸可能なpII膳形成形成性重合体
ればよい、かかる重合体の具体例としては、ポリエチレ
ンテレフタレートやポリブチレンテレフタレートの如き
ポリエステル、ナイpン6JPナイロン6@の如きボリ
アlド、ポリエチレンやポリプルピレンの如きポリオレ
フィン等又はこれらを主成分とする共重合体若しくは混
合重合体等をあげることができる。また。
かかる(A)成分を構成する重合体には、必要に応じて
任意の添加剤、例えば艶消剤0着色剤、酸化安定剤、染
色向上剤棉を含有させてもよい。
また1本発明の導電性1lIlj&の導電部を構成する
(3)成分は1体積抵抗値を10”Ω・1以下に調整し
た酸化第II導電性微粉末と熱可塑性重合体とからなる
。制電用適に使用される導電織縮には、1kVの直流電
圧に対してt o”O/x、好ましくは1611Ω/c
m以下の電気抵抗が要求されるので、(B)成分の体積
電気抵抗は10”Ω・傷以下が必要となり、ブレンドす
る導電性微粉末自体の体積電気抵抗は101Ω・傷以下
が必要であって、酸化第二錫単独では導電性が不足であ
る。酸化jI意錫の体積抵抗値を10”Ω・1以下に調
整するには、任意の方法が採用される。例えば塩化アン
チモン(III) 、三醗化アンチモンの如き三価ノア
ンチモン化合物を、酸化第:錫に添加し、高温で焼成す
る方法が挙げられる。
このように・体積抵抗値を10’Ω・1以下に調整した
酸化第1錫系導電性黴粉末と共に(l成分な構成する重
合体は、(2)成分の重合体の融点より40℃以上、好
ましくはSO℃以上低い融点を有するもので紡糸塩度に
おいて分解等を生じない熱安定性を有し、且つ溶融押出
し可能なものであればそれ自体は締艙形威能を有してい
ても有していなくてもよい、(m成分中の重合体の融点
差が40℃に満たない場合は、後述する延伸後の熱処理
に際して、am強度の低下や繍繍間の融着が発生する。
かかる囚成分中の重合体の具体例としては、ポリエステ
ル、ボリアイド。
ポリエーテル、ポリオレフィン轡又はこれらを主成分と
する重合体をあげることができる。
上記(m成分中の重合体と酸化第2錫系導電性物質とを
混合するには、良好に分散できる方法であれば任意に採
用される。酸化第2錫系導電性−質の混合量は、g!求
される導電性mKよって異なるが、(Bl成分の体積電
気抵aを10’Ω・1以下にするためにはSO重量%以
上にする必要がある。一方、酸化第:錫系導電性物質の
混合量をあまりに多くすると、(2)成分のgIlll
及び紡来が困Sになるので、75重量5以下にするのが
適当である。また、(8)成分中にも必1lIK応じて
任意の添加剤、例えば艶消剤9着色剤、酸化安定剤等を
含有させることができる。
上li!囚成分成分成分とによって構成される被合II
II維の形状は、(2)成分が#線軸方向に沿って連続
しさえすればどのようなものでもよい、しかし、(BI
Ji1分が完全K(A)成分によって包まれた芯−鞘型
は、(11威分の一郭が#線表面上に露出した形状に比
べて着干制電性能が劣るため、カーペット用途では問題
な〜が、より厳しい性能を必要とする次層用途には、(
El成分の少なくとも一部が細線表面上に露出した形状
が好ましい。
また囚成分、03)l1分に使用される重合体の組み合
わせは、完全芯−1II11の場合は任意でよいが、一
部表面露出層の場合は剥離を防止する意味から同系統の
重合体を用いるのが好ましい。
またIIIIII横断面における(4)成分と田)成分
の割合は、極めて瓜い範s#cすることができるが、田
1成分の割合があまりに大になると得られる導電性#I
IImの強度が低下するようになるので細線横断面にお
ける(6)成分の占める面積は60%以下が好ましい、
また、この(11成分の下限は、51分がm線軸方向に
沿って連続しさえすればよく、q#に設ける必要はない
が、通常−繍横断面において面積で1%以上、特に3%
以上にするのが好ましい。
かかる複合11I維を製造するには格別の方法。
条件を採用する必要はなく、2成分よ峠なる複合#−を
製造する溶融紡糸方法及び条件を(3)成分に応じて任
意に適用することができる。
本発明にあっては、紡糸して得られた謔維は充分な強度
を得るために延伸する。この延伸方法及び条件について
は任意の方法が適宜採用される。
tIjKも述べたように本発明の導電性複合繊織は、通
常に紡糸、Jg伸した状■では、充分な導電性能を有し
ないが、(Bl成分中の重合体の融点以上、好ましくは
融点より10℃以上^い温度で熱処理することにより必
要導電性能な有するようになる。しかし複合lII艙の
主重合である囚成分の重合体の融点近傍での熱処理は、
amの強度低下や111111間の融着をひき起こすた
め、熱処理温度は囚成分の重合体の融点2より30℃以
上低いことが必要である。延伸後に行なうかかる熱処理
には任意の手段が採用される。また延伸により低下した
導電性能を充分に回復するためkは少なくともX10分
の処理時間が必要であるが、30分以上続けてもその効
果は飽和するのでso5+径度までが適当である。
本発明の導電性鎖線は導電性物質として白炭の高い酸化
第2錫系粉体な使用し、且つ通常の合成III纏を形成
する(2)成分部分を保有しているため、IIIAめて
良好な白炭及び充分な強度を有し、常法によって任意の
色に染色可能であり、その導電性能も加工時や使用時に
低下することがない等従来の導電性−繍の有する欠点を
全て解消し得たものであって、導電性能が要求される何
れの分野においても適用可能である。
以下に実施例をあげて本Jjh明を更に詳述する。
実施例における導電性組成物及び導電性#I織の体積抵
抗値の測定条件は20℃、no%RH。
j kV直流電圧である。また導電性微粉末の体積m
tlr、 I[III 定条件Gt z o℃、 s
o%*H,3vilfi電圧、aooktt/d圧力下
である0重合体の融点の媚定はデュポンSOO型示差熱
分析装置を用いて行なった。
実施例1
ポリエチレン(宇部興鑞kk贋J 3511.融点ti
o℃)100重量部と酸化第3錫系導電性微粉末(平均
籾径Q、4J、体積抵抗値8×100・ca ) 1
s 6重量部とを常圧窒素気流下ZSO℃で30分間溶
融1合して体積抵抗値tsxio’Ω・1の導電性組成
物を得た。
上記導電性組成物を(B)成分とし、ポリプルピレン(
宇部興11kk製S−目SM、融点171℃)を(局成
分としてサイド・バイ・サイド雛紡糸孔(aS■φ)を
1!孔有する紡糸口金な使用し、紡来一度zso℃、紡
糸速度400m/分で4SOデニール、−線機断面にお
ける鉛成分と(2)成分の面積比が4=1で表面の約1
6%がml成分である未駕伸複合j!l繍を得た。この
未延伸複合J11J11の電気抵抗値は7.0XIOマ
Ω/傷であった0次いで、延伸温度120℃で10倍に
延伸した。得られた鴬伸綾線の電気抵抗値は10110
71以上であり、その導電性能は大幅に低下した。この
jlIIIAを140℃で30分間熱処理したところ1
強力250jl、伸度30%、電気抵抗値a、oxto
’Ω/信の導電性線錐が得られた。
比較例1
夷−例1と全く同様にして4倍延伸複合−纏を製造し、
このIImを100℃で30分間熱処理した。得られた
細織の電気抵抗値はL4X10”Ω/al+であり、導
電性繊織としては不合格であった。
実施例2
ボリプジピレ/C乎m興ml kk m &−ロ5M。
融点xyi℃)too重量藝と酸化II2錫系導電性物
質C平均粒径α4A、体積抵抗値8×10Ω・cm )
1 !I 0重量部とを常圧窒素気流下zi。
℃で30分間溶溶融金して体積抵抗値ζ4X10Ω”0
11の導電性組成物を得た。
上記導電性組成物を田)成分とし、固有粘度a@Id・
/Iのポリスチレンプレフタレート(融点265℃)を
圓成分とし、同心の芯−鞘紡糸孔(aS鱈φ)を1!孔
有する紡系口金を使用して(至)成分を芯lIK%(2
)成分を輪部に適用L、紡AILHzso′c、紡糸速
度400.111/分で450デニール、毅鍾横断面に
おけるfん成分と(l成分の面積比が4:1である未凰
伸複合繊錯を得た。この未延伸複合Il維の電気抵抗体
は?、 5 X I G”Ω/1であった0次いで延伸
温度120℃で40倍に延伸した。得られた延伸繊維の
電気抵抗値は10IfΩ/a1以上であった。このII
Jllを1110℃で30分間熱処理したところ強力z
ssJI、伸度25%伸度2挺
比較例!
実11gHzと全く同様にして4倍延伸複合amを製造
し,この#鉾を140℃で30分間熱処琴したが,得ら
れた繊維の電気抵抗値は1 ollΩ/傷以上であった
。
特許出願人 帝人株式会社[Novel conductive composite lil containing tin oxide-based conductive powder
Concerning the manufacturing method of complexes. Synthetic twill wire 1 For example, polyester-based fibers, boria-based fibers, etc. have low conductivity, so static electricity is generated and roars. A high potential charge is observed, which can lead to dust adhesion and various problems associated with discharge. In order to solve this problem, it is known to mix conductive edge wires into textile products, and conductive m-fibers include metal fibers and metal-plated fibers. #1 boats coated with a polymer dope containing a conductive substance, edge lines coated with carbon black, etc. have been proposed. However, these conventional conductive embroideries. All of them had serious drawbacks and were not satisfactory.For example, metal fibers do not have flexural recovery properties, so their conductive performance deteriorates due to flexing during use or processing. Mixed, interlaced. It has many disadvantages, such as that the mixed weave is not good quality and furthermore, it has a color tone peculiar to metal. For fibers coated with metal plating, it is necessary to form a uniform and continuous plating layer on the edge line mK. llllI table WK requires smoothness, the type of twill wire that can be applied is thick (limited), plating must be done precisely, and the manufacturing cost is extremely high (
It has many drawbacks, such as the plating layer being easy to peel off during use or processing (low durability, and even exhibiting a color characteristic of metals). Fibers also have the same disadvantages as metal plating am mentioned above in terms of manufacturing cost, peeling, etc.Furthermore, carbon black-containing fibers are colored black with carbon black, and when mixed with synthetic iron, the appearance will be significantly impaired. However, it has a fatal drawback that its field of use is limited.As a result of intensive study to provide conductive IIIM without the above-mentioned drawbacks, the present inventors have found that oxidized nitride, which has lower electrical resistance, is used as a conductive material. Focusing on the use of tin-based conductive substances, #II shadow-forming thermoplastic resin (mu) component]
A thermoplastic resin containing a tin oxide-based conductive substance [(
When we tried to manufacture a composite III weave using component B), we found that undrawn yarn showed sufficient conductivity, but when stretched to increase yarn strength, the conductivity decreased and the stretching ratio was increased. Accordingly, the conductive performance deteriorates significantly. For this reason, it was not possible to draw at a sufficient magnification, and it was not possible to obtain a conductive composite edge line that was excellent in both yarn strength and conductivity. Therefore, as a result of repeated studies on the thermoplastic polymer in which the stannic oxide-based conductive substance in component (B) is blended, it was found that this polymer is a thermoplastic polymer having a melting point 40°C or more lower than the melting point of the prisoner component. It has been discovered that conductive performance, which had been significantly reduced during stretching, can be recovered by selecting and heat-treating at a temperature higher than the melting point of the polymer in the component (after stretching), preferably at least 10°C higher than the melting point, and the present invention. completed. That is, the present invention provides a mixture of a #I shadow-forming thermoplastic polymer component, a stannic oxide-based conductive substance, and a thermoplastic polymer having a melting point 40° C. or more lower than the melting point of component (2). Conductive composite #J# formed from the following components:
A process for producing conductive composite #I, which is characterized by heat treatment at a temperature higher than the melting point of the thermoplastic polymer and 30°C or lower lower than the melting point of the component (2). The polymer serving as component (3) constituting a part of the conductive can fiber of the present invention may be a pII-forming polymer that can be melt-spun. Specific examples of such a polymer include: refers to polyesters such as polyethylene terephthalate and polybutylene terephthalate, bolyalides such as Nylon 6JP Nylon 6@, polyolefins such as polyethylene and polypropylene, and copolymers or mixed polymers containing these as main components. In addition, the polymer constituting component (A) may contain optional additives, such as a matting agent, a coloring agent, an oxidation stabilizer, and a dyeing improver, as required. In addition, component (3) constituting the conductive part of the conductive part of the present invention is composed of a conductive fine powder of II oxide whose volume resistivity is adjusted to 10"Ω·1 or less and a thermoplastic polymer. For conductive weave used in electrical applications, to”O/x, preferably 1611Ω/c for a DC voltage of 1kV.
Since an electrical resistance of less than m is required, the volume electrical resistance of component (B) must be less than 10"Ω/flaw, and the volume electrical resistance of the conductive fine powder itself to be blended must be less than 101 ohm/flaw. Therefore, conductivity is insufficient when using stannic oxide alone. Any method can be used to adjust the volume resistivity of tin oxide to 10"Ω·1 or less. For example, there is a method in which a trivalent antimony compound such as antimony (III) chloride or antimony trioxide is added to tin oxide and fired at a high temperature. In this way, along with the stannous oxide-based conductive mold powder whose volume resistivity is adjusted to 10'Ω. , preferably has a melting point lower than SO°C, has thermal stability that does not cause decomposition etc. at the spinning salinity, and is melt extrudable, so that it itself has a tightening ability. (If the melting point difference between the polymers in the m component is less than 40°C, a decrease in am strength and fusion between embroideries will occur during the heat treatment after stretching, which will be described later). Specific examples of the polymer in such a component include polyester, polyamide, polyether, polyolefin, or a polymer containing these as main components. Any method can be used to mix the tin-based conductive material as long as it can be dispersed well.The amount of the tin oxide-based conductive material to be mixed varies depending on the required conductivity mK. However, (in order to make the volume electrical resistivity a of the Bl component 10'Ω·1 or less, it is necessary to increase the SO weight % or more. On the other hand, if the amount of tin oxide-based conductive material mixed is too large, (2) Ingredients
Also, since spinning becomes difficult, it is appropriate to set the weight to 75 and 5 or less. In addition, optional additives such as a matting agent, a coloring agent, an oxidation stabilizer, etc. can also be included in the component (8), depending on the requirements. Upper li! Conjunction II composed of prisoner component component component component
The shape of the II fiber may be any shape as long as (2) the component is continuous along the # wire axis direction; however, (BI
The core-sheath type, in which 1 minute of Ji is completely wrapped by the K(A) component, has inferior anti-static performance when drying compared to the shape where a section of 11 minutes of Ji is exposed on the surface of the # wire, so it is not suitable for carpet applications. For next-layer applications that require more demanding performance,
A shape in which at least a portion of the El component is exposed on the surface of the thin wire is preferred. In addition, the combination of polymers used for the 03) l1 component may be arbitrary in the case of complete core-1II11, but in the case of a partially exposed layer, the same type of polymer may be used to prevent peeling. It is preferable to use In addition, the ratio of component (4) and component (1) in the III cross section can be within an extremely high range, but if the ratio of component (1) becomes too large, the resulting conductivity #I
Since the strength of IIm decreases, the area occupied by component (6) in the cross section of the thin wire is preferably 60% or less.
In addition, the lower limit of this (11 components) is that 51 minutes only need to be continuous along the m-line axis direction, and there is no need to provide it at q#, but it is usually 1% or more in terms of area in the embroidery cross section, especially 3%
It is preferable to do the above. A special method for producing such composite 11I fibers. It is not necessary to adopt these conditions, and the melt spinning method and conditions for producing composite #- consisting of two components can be arbitrarily applied depending on the component (3). In the present invention, the spun fibers are stretched to obtain sufficient strength. Any method and conditions for this stretching may be used as appropriate. As mentioned in tIjK, the conductive composite fiber of the present invention does not have sufficient conductive performance when normally spun and stretched by Jg. The necessary electrical conductivity can be achieved by heat treatment at a temperature of 10°C or higher.However, heat treatment near the melting point of the polymer component, which is the main polymerization of Composite III,
In order to cause a decrease in the strength of am and fusion between 111111, the heat treatment temperature needs to be 30° C. or more lower than the melting point 2 of the polymer as the prisoner component. Any means may be employed for such heat treatment after stretching. In addition, in order to sufficiently recover the conductive performance degraded by stretching, k requires a processing time of at least X10 minutes, but the effect is saturated even if it continues for more than 30 minutes, so a diameter of up to so5+ is appropriate. The conductive chain line of the present invention uses a highly white charcoal-based stannic oxide powder as the conductive substance, and has the (2) component part that forms the usual synthetic III matrix, so it has excellent IIIA properties. It has white charcoal and sufficient strength, can be dyed in any color by conventional methods, and its conductive performance does not deteriorate during processing or use, eliminating all the drawbacks of conventional conductive embroidery. It can be applied to any field where conductive performance is required. The present invention will be further explained in detail with reference to Examples below. The measurement conditions for the volume resistivity of the conductive composition and conductive #I fabric in Examples were 20° C. and no% RH. j kV DC voltage. Also, the volume m of conductive fine powder
tlr, I[III Constant conditions Gt z o℃, s
The melting point of the 0 polymer under o%*H, 3 vilfi voltage, and aooktt/d pressure was determined using a DuPont SOO differential thermal analyzer. Example 1 Polyethylene (Ube Kozui KK Fake J 3511. Melting point ti
o℃) 100 parts by weight and tertiary tin oxide-based conductive fine powder (average rice grain diameter Q, 4J, volume resistivity 8×100・ca) 1
s and 6 parts by weight were melted and combined for 30 minutes at ZSO° C. under a nitrogen stream at normal pressure to obtain a conductive composition having a volume resistivity of tsxio'Ω·1. The above conductive composition is used as component (B), polypropylene (
S-mesh SM manufactured by Ubeko 11kk, melting point 171°C) was used (with a spinneret having 1 side-by-side spinning hole (aS φ) as a local component, and once spun at zso°C and spinning speed. 4SO denier at 400 m/min, the area ratio of the lead component and (2) component in the cross section of the wire machine is 4 = 1, and the surface area is approximately 1
6% of the ml component is a non-woven composite j! I got embroidery. The electrical resistance value of this unstretched composite J11J11 was 7.0×IOΩ/wound.Then, it was stretched 10 times at a stretching temperature of 120°C. The electrical resistance value of the obtained Tsumugi Shinaya wire is 10110
71 or higher, and its conductive performance was significantly reduced. When this jlIIIA was heat-treated at 140°C for 30 minutes, 1
Strength 250jl, elongation 30%, electrical resistance value a, oxto
A conductive wire cone of 'Ω/thin was obtained. Comparative Example 1 A 4-fold stretched composite fabric was produced in exactly the same manner as in Example 1,
This IIm was heat treated at 100° C. for 30 minutes. The electrical resistance value of the obtained fine woven fabric was L4X10''Ω/al+, and it was rejected as a conductive textile. ) too heavy weight and oxide II2 tin-based conductive material C average particle size α4A, volume resistivity 8×10Ω・cm)
1! 0 parts by weight of I under a nitrogen stream at normal pressure. Melt gold at ℃ for 30 minutes to obtain volume resistivity ζ4×10Ω”0
No. 11 conductive compositions were obtained. The above conductive composition is used as a component, and the intrinsic viscosity is a@Id・
/I polystyrene prephthalate (melting point 265°C) is used as the round component, and one concentric core-sheath spinning hole (aS cod φ) is prepared. Using a spinning nozzle with holes, spin the ingredients into the core lIK% (2
) component was applied to the limbus L, spinning AILHzso'c, spinning speed 400.111/min, 450 denier, and a composite material with an area ratio of f component and (l component of 4:1) in the cross section of the A fiber complex was obtained.The electric resistance of this undrawn composite Il fiber was 5×I G”Ω/1.Then, it was drawn 40 times at a drawing temperature of 120°C. The resistance value was 10IfΩ/a1 or more.
When Jll was heat treated at 1110℃ for 30 minutes, it became strong.
ssJI, 25% elongation comparison example! A 4-fold stretched composite am was produced in exactly the same manner as the actual 11 gHz sample, and this #hoko was heat treated at 140°C for 30 minutes, and the electrical resistance value of the obtained fiber was 1 ollΩ/flaw or more. Patent applicant Teijin Ltd.
Claims (1)
化第2錫系導電性物質と(2)成分の融点より4・℃以
上低い一点を有する熱可履性重合体との拠金−よりなる
(6)成分から形成されてなる導電性複合−鎗を蔦伸し
た後CB成分中の島可厘性重合体の一点以上で且つ圓威
分の融点より30℃以上低い温度でS魁珊すること七轡
黴とする導電性複合繊維の製造法。 偉lll1&処瑠時間が少な(とも10分である特許請
求の範11項記載の導電性複合m錨の製造法。 ― 導電極被合s1mの横1ftHKおける湧成分の占
める面積割合が1〜sit%である特許請求の範囲第1
項又は112項記載の導電性複合繊維の製造法。 (4@成分中の酸化第2−系導電性物質の配合量がSO
〜7 i vt%である特許請求の範囲第1項〜第3項
のいずれか1項記載の導電性複合繊維の製造法。[Scope of Claims] (Component (1) consisting of an embroidery-forming thermoplastic polymer, a stannic oxide-based conductive substance, and a thermoplastic material having one point lower than the melting point of component (2) by 4°C or more. A conductive composite formed from the component (6) consisting of a conductive composite formed from the component (6), which is formed at one or more points of the flexible polymer in the CB component and at least 30°C lower than the melting point of the component (6) after being stretched. A method for producing a conductive composite fiber in which the conductive composite fiber is molded by heating at a temperature.A method for producing a conductive composite anchor according to claim 11, wherein the manufacturing time is short (both 10 minutes). - Claim 1, in which the area ratio occupied by the spring component in 1 ft HK horizontally of the conductive electrode covering s 1 m is 1 to sit%.
A method for producing a conductive composite fiber according to item 1 or item 112. (4@ The amount of the oxidized secondary conductive substance in the ingredients is SO
The method for producing a conductive composite fiber according to any one of claims 1 to 3, wherein the content is 7 i vt%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15861981A JPS5860015A (en) | 1981-10-07 | 1981-10-07 | Preparation of electrically conductive composite fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15861981A JPS5860015A (en) | 1981-10-07 | 1981-10-07 | Preparation of electrically conductive composite fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5860015A true JPS5860015A (en) | 1983-04-09 |
Family
ID=15675663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15861981A Pending JPS5860015A (en) | 1981-10-07 | 1981-10-07 | Preparation of electrically conductive composite fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5860015A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6290316A (en) * | 1985-10-14 | 1987-04-24 | Teijin Ltd | Production of electrically conductive fiber |
JPS6297918A (en) * | 1985-10-21 | 1987-05-07 | Teijin Ltd | Electrically conductive fiber |
WO1998014647A1 (en) * | 1996-09-30 | 1998-04-09 | Hoechst Celanese Corporation | Electrically conductive heterofil |
JP2009114554A (en) * | 2007-11-01 | 2009-05-28 | Toei Sangyo Kk | Electroconductive fiber and electroconductive brush using the same |
-
1981
- 1981-10-07 JP JP15861981A patent/JPS5860015A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6290316A (en) * | 1985-10-14 | 1987-04-24 | Teijin Ltd | Production of electrically conductive fiber |
JPS6297918A (en) * | 1985-10-21 | 1987-05-07 | Teijin Ltd | Electrically conductive fiber |
JPH0357967B2 (en) * | 1985-10-21 | 1991-09-04 | Teijin Ltd | |
WO1998014647A1 (en) * | 1996-09-30 | 1998-04-09 | Hoechst Celanese Corporation | Electrically conductive heterofil |
US5916506A (en) * | 1996-09-30 | 1999-06-29 | Hoechst Celanese Corp | Electrically conductive heterofil |
US6242094B1 (en) | 1996-09-30 | 2001-06-05 | Arteva North America S.A.R.L. | Electrically conductive heterofil |
JP2009114554A (en) * | 2007-11-01 | 2009-05-28 | Toei Sangyo Kk | Electroconductive fiber and electroconductive brush using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5916506A (en) | Electrically conductive heterofil | |
US3958066A (en) | Conductive synthetic fibers | |
CA1158816A (en) | Conductive composite filaments and methods for producing said composite filaments | |
EP1413653B1 (en) | Conductive, soil-resistant core-sheath fibre with high resistance to chemicals, its production process and use | |
US5213892A (en) | Antistatic core-sheath filament | |
JPS5860015A (en) | Preparation of electrically conductive composite fiber | |
JP2005194650A (en) | Conductive conjugate fiber | |
JPS60444B2 (en) | conductive fiber | |
JPH0122365B2 (en) | ||
JPS61201008A (en) | Production of electrically conductive monofilament | |
JPS58149329A (en) | Production of electroconductive conjugated fiber | |
JP2721599B2 (en) | Composite fiber | |
JPS6385114A (en) | Electrically conductive yarn and production thereof | |
RU2001164C1 (en) | Conducting filament | |
JPS6392724A (en) | Composite fiber having excellent heat-resistance, chemical resistance and antistaticity | |
JP2633067B2 (en) | Conductive composite fiber | |
JPS5921722A (en) | Preparation of electrically-conductive filament | |
JP2004044035A (en) | Conductive conjugate fiber | |
JPS58109622A (en) | Electrically conductive composite fiber | |
JPS62299516A (en) | Antistatic polyester conjugated fiber | |
JPS6250569B2 (en) | ||
JPS6385113A (en) | Electrically conductive conjugate fiber | |
JPH02242916A (en) | Electroconductive conjugate yarn | |
JPS6229526B2 (en) | ||
JP4763451B2 (en) | Conductive composite fiber |