JPS6385113A - Electrically conductive conjugate fiber - Google Patents

Electrically conductive conjugate fiber

Info

Publication number
JPS6385113A
JPS6385113A JP22840686A JP22840686A JPS6385113A JP S6385113 A JPS6385113 A JP S6385113A JP 22840686 A JP22840686 A JP 22840686A JP 22840686 A JP22840686 A JP 22840686A JP S6385113 A JPS6385113 A JP S6385113A
Authority
JP
Japan
Prior art keywords
component
conductive
electrically conductive
fine particles
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22840686A
Other languages
Japanese (ja)
Inventor
Masahiro Oshida
押田 正博
Tadashi Konishi
小西 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP22840686A priority Critical patent/JPS6385113A/en
Publication of JPS6385113A publication Critical patent/JPS6385113A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled dyeable conjugate fibers, consisting of a fiber- forming polymer component and polymer component containing an electrically conductive substance consisting of fine copper iodide particles and fine electrically conductive titanium oxide particles subjected to specific treatment, having good color tone without deteriorating electric conductivity. CONSTITUTION:Conjugate fibers obtained by spinning (A) a component consisting of a fiber-forming thermoplastic polymer, e.g. polyethylene terephthalate, etc., as a core part and (B) a component prepared by blending a mixture of fine copper iodide particles with fine electrically conductive titanium oxide particles having surfaces coated with stannic oxide adjusted to <=100OMEGA.cm volume resistivity value as an electrically conductive substance with a thermoplastic polymer, e.g. polyethylene, etc., as a sheath part using a concentric sheath-core conjugate spinning machine. The amount of the electrically conductive substance in the component (B) is preferably 100-340pts.wt. based on 100pts.wt. thermoplastic polymer in the component (B).

Description

【発明の詳細な説明】 く技術分野〉 本発明は導電性III、特に導電性物質として沃化第1
w4微粉末と酸化第2錫で表面をコーティングした酸化
チタン微粒子の混合物を含有する新規な導電性複合繊維
に関する。
[Detailed Description of the Invention] [Technical Field] The present invention is directed to conductivity III, particularly to iodine-1 as a conductive substance.
The present invention relates to a novel conductive composite fiber containing a mixture of W4 fine powder and titanium oxide fine particles whose surface is coated with stannic oxide.

〈従来技術〉 合成IJAM例えばポリエステル系繊維、ポリアミド系
繊維等は導電性が低いため、摩擦により静電気が発生し
易く、かかる合成amよりなる布帛は使用に際して数+
KVにも達する高電位の帯電が認められ、塵埃の付着、
放電に伴う各種の障害が発生する。
<Prior art> Synthetic IJAMs, such as polyester fibers and polyamide fibers, have low conductivity and are likely to generate static electricity due to friction.
High potential charging reaching up to KV was observed, causing dust adhesion,
Various problems occur due to discharge.

かかる問題を解決するため、繊維製品に導電性繊維を混
合することが知られており、導電性繊維として金属繊維
、金属メッキを施したmra、導電性物質を配合したポ
リマードープを塗布した繊維。
In order to solve this problem, it is known to mix conductive fibers into textile products, such as metal fibers, metal-plated MRA, and fibers coated with polymer dope containing conductive substances.

カーボンブラックを配合した繊維等が提案されている。Fibers containing carbon black have been proposed.

しかしなか、ら、これら従来の導電性繊維は、いずれも
重大な欠点を有し、満足できるものではなかった。例え
ば金属繊維は、屈曲回復性がないため、加工時又は使用
時の屈曲により導電性能が低下すること、他繊維との混
合、交編、交織が容易でないこと、更には金属特有の色
調を有すること等多くの欠点を有している。また、金属
メッキをした繊維は、tlilt表面に均一で且つ連続
したメッキ層を形成する必要があるため、繊維表面には
平滑性が要求され、適用できる繊維の種類が大きく制限
されること、メッキ処理は正確に施さなければならず、
製造コストが極めて高くなること、加工時又は使用時に
メッキ層が剥離し易く耐久性が低いこと、更には金属特
有の色調を呈すること等多くの欠点を有している。導電
性物質を配合したポリマードープを塗布した繊維も、製
造コスト。
However, all of these conventional conductive fibers had serious drawbacks and were not satisfactory. For example, metal fibers do not have bending recovery properties, so their conductive performance decreases when they are bent during processing or use, they are not easy to mix with other fibers, inter-knit, or inter-weave, and they also have a color tone unique to metals. It has many drawbacks such as: In addition, since it is necessary to form a uniform and continuous plating layer on the tlilt surface of metal-plated fibers, the fiber surface must be smooth, which greatly limits the types of fibers that can be applied. Processing must be done accurately;
It has many drawbacks, such as extremely high manufacturing costs, low durability as the plating layer easily peels off during processing or use, and a color tone unique to metals. Fibers coated with polymer dope containing conductive substances are also expensive to manufacture.

剥離等について上述の金属メッキ繊維と同様の欠点があ
る。カーボンブラック含有繊維はカーボンブラックの黒
色に着色しており、合成繊維と混合すると外観が著しく
損われるため、その使用分野が制限されるという致命的
欠点を有する。
It has the same drawbacks as the above-mentioned metal plated fibers, such as peeling. Carbon black-containing fibers are colored black with carbon black, and when mixed with synthetic fibers, the appearance is significantly impaired, which has the fatal drawback of limiting the field of use.

このようなカーボンブラック含有繊維の欠点を改良する
ため、白色の導電性物質を含有させた成分を1成分とす
る導電性複合繊維の研究も行なわれている。特に沃化第
1銅微粒子は白色で良好な導電性を示す。しかしながら
、沃化銅微粒子は熱可塑性重合体中での分散性が悪く、
紡糸のパックフィルターや紡糸孔詰りか多発し、安定し
た紡糸が困難であり、しかも得られる!!雑の導電性能
もカーボンブラック含有繊維に比して大きく劣り、実用
化されていない。
In order to improve the drawbacks of carbon black-containing fibers, research is being conducted on conductive composite fibers containing a white conductive substance as one component. In particular, cuprous iodide fine particles are white and exhibit good electrical conductivity. However, copper iodide fine particles have poor dispersibility in thermoplastic polymers,
Stable spinning is difficult due to frequent clogging of spinning pack filters and spinning holes, and yet it is possible to obtain! ! The electrical conductivity of fibers is also significantly inferior to that of carbon black-containing fibers, so they have not been put to practical use.

一方、三酸化アンチモンを適量ドーピングすることによ
り充分な導電性を発現させた酸化第2錫で表面をコーテ
ィングした導電性酸化チタン微粒子を使用することが提
案されている。しかしながら、かかる導電性酸化チタン
微粒子を用いて得た繊維も、カーボンブラック含有繊維
に比して、その導電性能が大きく劣り、特に高性能を要
求される分野、例えば高レベルクリーンルーム用無匪衣
等には使用できない。
On the other hand, it has been proposed to use conductive titanium oxide fine particles whose surfaces are coated with stannic oxide which has developed sufficient conductivity by doping with an appropriate amount of antimony trioxide. However, fibers obtained using such conductive titanium oxide fine particles also have significantly inferior conductivity compared to carbon black-containing fibers, and are used in fields that require particularly high performance, such as non-slip clothing for high-level clean rooms. cannot be used for

〈発明の構成〉 本発明者らは、このような白色導電物質含有複合繊維の
欠点を改良すべく検討した結果、沃化銅微粒子と導電性
酸化第2錫で表面をコーティングした導電性酸化チタン
微粒子を混合して使用することにより、沃化銅微粒子の
重合体での分散性が飛躍的に向上し、且つ驚くべきこと
にカーボンブラック含有tl紺並の導電性が得られるこ
とを見い出し、本発明に到達したものである。
<Structure of the Invention> As a result of studies to improve the drawbacks of such white conductive material-containing composite fibers, the present inventors have developed a conductive titanium oxide whose surface is coated with copper iodide fine particles and conductive tin oxide. We discovered that by using a mixture of fine particles, the dispersibility of copper iodide fine particles in a polymer was dramatically improved, and surprisingly, conductivity comparable to that of TL navy blue containing carbon black could be obtained. This invention has been achieved.

即ち、本発明は繊維形成性熱可塑性重合体よりなる(A
)成分及び導電性物質と熱可塑性重合体との混合物より
なる<8)成分とから形成された複合繊維であって、(
B)成分中の導電性物質が沃化銅微粒子と体積抵抗値を
100Ωα以下に調整した酸化第2錫で表面をコーティ
ングした導電性酸化チタン微粒子の混合物である導電性
複合繊維に係るものである。
That is, the present invention consists of a fiber-forming thermoplastic polymer (A
) component and <8) component consisting of a mixture of a conductive substance and a thermoplastic polymer, the composite fiber being formed from a component (
B) The conductive substance in the component is a mixture of copper iodide fine particles and conductive titanium oxide fine particles whose surface is coated with stannic oxide whose volume resistivity is adjusted to 100Ωα or less. .

本発明の繊維の(A)成分を構成する熱可塑性重合体は
繊維形成性のものであれば任意であり、特にナイロン−
6、ナイロン−6,6、ナイロン−12等のポリアミド
、ポリエチレンテレフタレート。
The thermoplastic polymer constituting component (A) of the fiber of the present invention may be any fiber-forming polymer, particularly nylon-
6. Polyamide such as nylon-6,6, nylon-12, polyethylene terephthalate.

ポリブチレンテレフタレート等のポリエステル、ポリエ
チレン、ポリプロピレン等のポリオレフィン、アクリル
系重合体、ポリウレタン及びそれらの変性物が好適であ
る。
Preferred are polyesters such as polybutylene terephthalate, polyolefins such as polyethylene and polypropylene, acrylic polymers, polyurethanes, and modified products thereof.

かかる(A)成分には必要に応じて任意の添加剤、例え
ば艶消剤1着色剤、酸化安定剤、染色性向上剤等を含有
させてもよい。
Component (A) may contain optional additives, such as a matting agent, a coloring agent, an oxidation stabilizer, and a dyeability improver, as required.

本発明の導電性繊維の導電部を構成する([3)成分は
、沃化銅微粒子及び体積抵抗値を1000・α以下に調
整した酸化第二錫で表面をコーティングした導電性酸化
チタン微粒子と熱可塑性重合体とからなる。
The component ([3) constituting the conductive portion of the conductive fiber of the present invention is copper iodide fine particles and conductive titanium oxide fine particles whose surfaces are coated with stannic oxide whose volume resistivity is adjusted to 1000·α or less. It consists of a thermoplastic polymer.

酸化第二錫の体積抵抗値を1000・cm以下に調整す
るのは、特開昭57−21517号公報で開示されてい
る如く、例えば三酸化アンチモンの如き三価のアンチモ
ン化合物を、酸化第二錫に添加し、高温で焼成する方法
が好適に採用される。
To adjust the volume resistivity of tin oxide to 1000 cm or less, for example, a trivalent antimony compound such as antimony trioxide is mixed with di A method of adding it to tin and firing it at a high temperature is preferably adopted.

(B)成分中の沃化銅微粒子と酸化第2錫で表面をコー
ティングした導電性酸化チタン微粒子の相対比率につい
ては特に制限はなくどちらが主成分であってもかまわな
い。しかしながら、沃化銅微粒子と上記導電性酸化チタ
ン微粒子との導電性能における相乗効果を充分に発揮さ
せるには、両者とも少なくとも5重量%以上含まれるよ
うにするのが好ましい。即ち沃化銅微粒子:導電性酸化
チタン微粒子の重ω割合が5二95〜95: 5にする
のが好ましい。
There is no particular restriction on the relative ratio of copper iodide fine particles and conductive titanium oxide fine particles whose surfaces are coated with tin oxide in component (B), and either one may be the main component. However, in order to fully exhibit the synergistic effect of the copper iodide fine particles and the conductive titanium oxide fine particles in the conductive performance, it is preferable that the content of both is at least 5% by weight or more. That is, it is preferable that the weight ω ratio of copper iodide fine particles to conductive titanium oxide fine particles is 5295 to 95:5.

また、(B)成分中の熱可塑性重合体としてはポリエチ
レン、ポリプロピレン、ポリスチレン、ポリブタジェン
、ポリイソプレン、ナイロン−6、ナイロン−6,6、
ポリエチレンテレフタレート、ポリブチレンテレフタレ
ート等を主たる対象とするが、これ等の一部を共重合成
分で置きかえたものでもよく、また熱可塑性樹脂であれ
ば目的に応じ上記以外の樹脂を使用してもよく、更に必
要に応じてそれ等の2種以上を混合したものであっても
良い。
In addition, as the thermoplastic polymer in component (B), polyethylene, polypropylene, polystyrene, polybutadiene, polyisoprene, nylon-6, nylon-6,6,
The main targets are polyethylene terephthalate, polybutylene terephthalate, etc., but some of these may be replaced with copolymerized components, and thermoplastic resins other than those listed above may be used depending on the purpose. Furthermore, if necessary, a mixture of two or more of them may be used.

上記(B)成分中の重合体と導電性微粒子とを混合する
には良好に分散できる方法であれば任意に採用される二
導電性微粒子の混合量は、要求される導電性能によって
異なるが、制電用途の導電性繊維としては、IKVの直
流電圧に対して10′2Ω/Cr1l以下、特にカーボ
ンブラック含有1!1維並にするには107Ω/ cm
以下の電気抵抗が要求されので、(B)成分の体積電気
抵抗は紡糸後の延伸における導電性低下を考慮すると1
03Ω・cm以下が必要になる。このため(B)成分中
の重合体の1.0倍重伍以上にする必要がある。一方、
導電性微粒子の混合量をあまりに多くすると(B)成分
の調整及び紡糸が困難になるので、くB)成分中の重合
体の3.4倍重口以下にするのが適当である。
To mix the polymer in component (B) and the conductive fine particles, any method can be used as long as it can be well dispersed. The amount of the biconductive fine particles to be mixed varies depending on the required conductive performance, but For conductive fibers for antistatic purposes, the resistance to IKV DC voltage is 10'2 Ω/Cr1l or less, especially 107 Ω/cm to make carbon black-containing 1!1 fibers.
Since the following electric resistance is required, the volume electric resistance of component (B) is 1 when considering the decrease in conductivity during stretching after spinning.
0.03Ω・cm or less is required. For this reason, it is necessary to make the polymer at least 1.0 times heavier than the polymer in component (B). on the other hand,
If the amount of conductive fine particles mixed is too large, it will be difficult to adjust and spin component (B), so it is appropriate to adjust the amount to 3.4 times the weight of the polymer in component B) or less.

また、(B)成分中にも、必要に応じて任意の添加剤、
例えば艶消剤9着色剤、酸化安定剤等を含有させること
ができる。
In addition, optional additives may be added to component (B) as needed.
For example, a matting agent, a coloring agent, an oxidation stabilizer, etc. can be included.

上記(A)成分と(B)成分とによって構成される複合
繊維の形状は、サイド・パイ・サイド型、芯−鞘型のい
ずれでもよく、又導電性成分である(B)成分の断面形
状は任意で、あらゆる形のものが可能である。また(B
)成分の数も1個以上任意の数を選択できる。
The shape of the composite fiber composed of the above components (A) and (B) may be either side-pie-side type or core-sheath type, and the cross-sectional shape of the (B) component, which is the conductive component. is arbitrary and can take any form. Also (B
) The number of components can also be selected from one or more.

m雑横断面における(A)成分と(B)成分の割合は、
広い範囲にすることができるが、(B)成分の割合があ
まりに大になると得られる導電性繊維の強度が低下する
ようになるので、繊維横断面における(B)成分の占め
る面積は50%以下が好ましい。また(B)成分の下限
は、(B)成分がjmlfi軸方向に沿って連続しさえ
すればよく、特に設ける必要はないが、通常繊維横断面
において面積で1%以上、特に3%以上にするのが好ま
しい。
The ratio of the (A) component and (B) component in the m rough cross section is:
Although the range can be wide, if the ratio of component (B) becomes too large, the strength of the resulting conductive fiber will decrease, so the area occupied by component (B) in the cross section of the fiber is 50% or less. is preferred. In addition, the lower limit of component (B) is not particularly necessary as long as component (B) is continuous along the jmlfi axis direction, but it is usually 1% or more in terms of area in the fiber cross section, especially 3% or more. It is preferable to do so.

かかる複合繊維を製造するには、特別の方法や条件を採
用する必要はなく、2成分よりなる複合繊維を製造する
紡糸方法及び条件を(A)成分に応じて任意に適用する
ことができる。また、紡糸後の!I維は必要に応じて延
伸される。
To produce such a composite fiber, it is not necessary to employ any special method or conditions, and the spinning method and conditions for producing a composite fiber consisting of two components can be arbitrarily applied depending on the component (A). Also, after spinning! The I fibers are drawn as necessary.

〈発明の作用〉 本発明の導電性複合t[は、導電性微粒子として沃化銅
と体積抵抗値を1000・cm以下に調整した酸化第2
錫で表面をコーティングした導電性酸化チタンを併用す
ることにより、白色系導電性微粒子の欠点であるカーボ
ンに比較しての導電性の低さを解消したものである。
<Operation of the invention> The conductive composite t[ of the present invention is made of copper iodide as conductive fine particles and secondary oxide with a volume resistivity adjusted to 1000 cm or less.
By using conductive titanium oxide whose surface is coated with tin, the drawback of white conductive fine particles, which is that they have low conductivity compared to carbon, is overcome.

〈発明の効果〉 本発明の導電性複合繊維は極めて良好な色調を有し、常
法によって任意の色に染色可能であり、その導電性能も
従来のカーボン含有tiHilt並の高いものであり、
且つその導電性能は加工時や使用時に低下することがな
い等、従来の導電性繊維の有する欠点を全て解消し得た
ものであって、導電性能が要求される何れの分野におい
ても適用可能である。
<Effects of the Invention> The conductive composite fiber of the present invention has an extremely good color tone and can be dyed into any color by a conventional method, and its conductive performance is as high as that of conventional carbon-containing tiHilt.
In addition, its conductive performance does not deteriorate during processing or use, which eliminates all the drawbacks of conventional conductive fibers, and it can be applied to any field that requires conductive performance. be.

〈実施例〉 以下に実施例をあげて本発明を更に詳述する。<Example> The present invention will be explained in further detail by giving examples below.

実施例における導電性繊維の断面電気抵抗の測定条件は
20℃、30%RH,IKV直流電圧である。
The conditions for measuring the cross-sectional electrical resistance of conductive fibers in Examples are 20° C., 30% RH, and IKV DC voltage.

実施例 ポリエチレン100部に、沃化銅微粒子(I産金属@製
)及び′4電性酸化チタン微粒子W−1(三菱金属瞥1
酸化チタン粒子の表面に酸化アンチモンをドーピングし
た酸化スズ(体積抵抗値50Ω・cIR)をコーティン
グしたもの)の表1に示す量を混@機で充分加熱混合し
て得た導電性重合体組成物を芯部とし、艶消剤としての
酸化チタン2.5重足%含有するポリエチレンテレフタ
レートを鞘部として同心型芯鞘複合raNを溶融紡糸し
、100℃で4倍に延伸後、160℃で熱固定して複合
!lHを得た。このamのI!維維新断面おける芯部:
鞘部の面積比は1:6であり、1M構成は30デニール
/3フイラメントであった。得られた繊維の断面電気抵
抗値を表1にあわせて示す。
Example 100 parts of polyethylene were mixed with copper iodide fine particles (manufactured by Isankinzoku@) and '4-electrode titanium oxide fine particles W-1 (Mitsubishi Metals Beta 1).
A conductive polymer composition obtained by sufficiently heating and mixing in a mixing machine the amounts shown in Table 1 of titanium oxide particles doped with antimony oxide and coated with tin oxide (volume resistance value 50 Ω cIR). A concentric core-sheath composite RAN was melt-spun with RAN as a core and polyethylene terephthalate containing 2.5% titanium oxide as a matting agent as a sheath, stretched 4 times at 100℃, and heated at 160℃ Fixed and combined! lH was obtained. This am I! Core part in Meiji Restoration cross section:
The sheath area ratio was 1:6 and the 1M configuration was 30 denier/3 filaments. The cross-sectional electrical resistance values of the obtained fibers are also shown in Table 1.

表  1 本発明によるなる好ましい実験N013〜7は、従来の
導電性酸化チタンのみよりなる実験No、1に比べて複
合繊維の断面電気抵抗が1ケタ低くなっており、また沃
化鋼のみよりなる実験N009は沃化鋼の分散性が悪く
紡糸不可能であったが、導電性酸化チタンの添加により
紡糸可能になり、且つ高性能の導電性が発現している。
Table 1 In preferred experiments No. 013 to 7 according to the present invention, the cross-sectional electrical resistance of the composite fiber was one order of magnitude lower than in Experiment No. 1, which was made only of conventional conductive titanium oxide, and was made only of iodized steel. In Experiment No. 009, spinning was impossible due to poor dispersibility of the iodized steel, but the addition of conductive titanium oxide made spinning possible, and high-performance conductivity was exhibited.

実験NO12及び8はいずれも沃化鋼又は導電性酸化チ
タンの添加用が充分でないためその効果が充分でないも
°のである。
In both experiments No. 12 and No. 8, the addition of iodized steel or conductive titanium oxide was not sufficient, so the effect was not sufficient.

Claims (3)

【特許請求の範囲】[Claims] (1)繊維形成性熱可塑性重合体よりなる(A)成分及
び導電性物質と熱可塑性重合体との混合物よりなる(B
)成分とから形成された複合繊維であつて、(B)成分
中の導電性物質が沃化銅微粒子と体積抵抗値を100Ω
・cm以下に調整した酸化第2錫で表面をコーティング
した導電性酸化チタン微粒子の混合物である導電性複合
繊維。
(1) Component (A) consisting of a fiber-forming thermoplastic polymer and component (B) consisting of a mixture of a conductive substance and a thermoplastic polymer.
) component, wherein the conductive substance in component (B) has a volume resistivity of 100Ω with copper iodide fine particles.
・A conductive composite fiber that is a mixture of conductive titanium oxide fine particles whose surface is coated with stannic oxide adjusted to a size of less than cm.
(2)(B)成分中の導電性物質の量が、(B)成分中
の熱可塑性重合体100重量部に対して100〜340
重量部である特許請求の範囲第1項記載の導電性複合繊
維。
(2) The amount of the conductive substance in component (B) is 100 to 340 parts by weight based on 100 parts by weight of the thermoplastic polymer in component (B).
The conductive composite fiber according to claim 1, which is in parts by weight.
(3)導電性物質中の沃化銅微粒子:導電性酸化チタン
微粒子の重量割合が5:95〜95:5である特許請求
の範囲第1項又は第2項記載の導電性複合繊維。
(3) The conductive composite fiber according to claim 1 or 2, wherein the weight ratio of copper iodide fine particles to conductive titanium oxide fine particles in the conductive substance is 5:95 to 95:5.
JP22840686A 1986-09-29 1986-09-29 Electrically conductive conjugate fiber Pending JPS6385113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22840686A JPS6385113A (en) 1986-09-29 1986-09-29 Electrically conductive conjugate fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22840686A JPS6385113A (en) 1986-09-29 1986-09-29 Electrically conductive conjugate fiber

Publications (1)

Publication Number Publication Date
JPS6385113A true JPS6385113A (en) 1988-04-15

Family

ID=16875965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22840686A Pending JPS6385113A (en) 1986-09-29 1986-09-29 Electrically conductive conjugate fiber

Country Status (1)

Country Link
JP (1) JPS6385113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249212A (en) * 1990-02-20 1991-11-07 Kanebo Ltd Electrically conductive conjugate fiber
US7854972B2 (en) 2003-10-29 2010-12-21 Yugen Kaisha Shinjudo Ornament and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249212A (en) * 1990-02-20 1991-11-07 Kanebo Ltd Electrically conductive conjugate fiber
US7854972B2 (en) 2003-10-29 2010-12-21 Yugen Kaisha Shinjudo Ornament and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPS6346170B2 (en)
JPS5839175B2 (en) Antistatic synthetic polymer composition
JPS6385113A (en) Electrically conductive conjugate fiber
JPH01292116A (en) Electrically conductive fiber and production thereof
JP2005194650A (en) Conductive conjugate fiber
JPH01111015A (en) Electrically conductive composite fiber
JP2854221B2 (en) Conductive composite fiber
JPS5860015A (en) Preparation of electrically conductive composite fiber
JPS6253416A (en) Electrically conductive fiber and production thereof
JPS61102474A (en) Production of conductive composite fiber
JPS58149329A (en) Production of electroconductive conjugated fiber
JPS6385112A (en) Electrically conductive conjugate fiber
JPS60224813A (en) Antistatic conjugated fiber
JP3113054B2 (en) Conductive composite fiber
JP2004044035A (en) Conductive conjugate fiber
JPS63288215A (en) Electrically conductive conjugate fiber
JPS6392724A (en) Composite fiber having excellent heat-resistance, chemical resistance and antistaticity
JPH01183520A (en) Electrically conductive fiber
JPH02259109A (en) Electroconductive conjugate fiber
JPS5818445A (en) Anti-static carpet
JPS58115118A (en) Electrically conductive composite fiber
JPH02259106A (en) Conductive conjugate fiber
JPH01306616A (en) Electro-conductive conjugate fiber
JP3046509B2 (en) Conductive composite fiber
RU2001164C1 (en) Conducting filament