JPH03249212A - Electrically conductive conjugate fiber - Google Patents

Electrically conductive conjugate fiber

Info

Publication number
JPH03249212A
JPH03249212A JP4057490A JP4057490A JPH03249212A JP H03249212 A JPH03249212 A JP H03249212A JP 4057490 A JP4057490 A JP 4057490A JP 4057490 A JP4057490 A JP 4057490A JP H03249212 A JPH03249212 A JP H03249212A
Authority
JP
Japan
Prior art keywords
conductive
particles
layer
metal
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4057490A
Other languages
Japanese (ja)
Other versions
JP2834256B2 (en
Inventor
Masao Matsui
松井 雅男
Hidenobu Tsutsumi
英伸 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP2040574A priority Critical patent/JP2834256B2/en
Publication of JPH03249212A publication Critical patent/JPH03249212A/en
Application granted granted Critical
Publication of JP2834256B2 publication Critical patent/JP2834256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain the subject fiber having excellent electrical conductivity and whiteness by bonding an electrically conductive layer composed of a specific conductive particle and a thermoplastic polymer to a protecting layer composed of a fiber-forming polymer. CONSTITUTION:The objective fiber is composed of (A) an electrically conductive layer composed of (a) electrically conductive particles containing an inorganic compound as a nucleus covered with a metallic layer and having a coating layer of an electrically conductive metallic compound on the surface and (b) a thermoplastic polymer (preferably polyolefin, polyamide, polyester, etc., having a crystallinity of >=70%) and (B) a protecting layer composed of a fiber-forming polymer and bonded to the layer A. The metallic compound to form the coating film is preferably tin oxide, zinc oxide, indium oxide, copper iodide, etc.

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明は新規な導電性繊維に関する。[Detailed description of the invention] (Technical field to which the invention pertains) The present invention relates to novel conductive fibers.

(従来技術の問題点及び本発明の目的)導電性繊維は、
そのコロナ放電によるすぐれた静電気除去作用により、
繊維、各種樹脂、ゴム類などの製品に少量混用して制電
性を与えるために主として用いられる。従来、カーボン
ブラック(炭素粒子)を混合した導電性ポリマーと繊維
形成性ポリマーからなる複合繊維が用いられてきたが、
その複合繊維は色が黒いこと及びHL導電性低く、従っ
て制電能力が不充分という問題点がある。
(Problems with the prior art and objects of the present invention) The conductive fibers are
Due to its excellent static electricity removal effect due to corona discharge,
It is mainly used in small amounts to impart antistatic properties to products such as fibers, various resins, and rubbers. Conventionally, composite fibers made of conductive polymers mixed with carbon black (carbon particles) and fiber-forming polymers have been used.
The composite fiber has problems in that it is black in color and has low HL conductivity, so that its antistatic ability is insufficient.

さらに、金属粒子を混合した導電性ポリマーを用いるこ
とも提案されているが、繊維用の充分に小さい粒子を得
ることが困難である上に、金属微粒子は凝集しやすくポ
リマー中に均一に分散させることが困難であるため、未
だ金属粒子応用の導電性複合繊維は実用化されていない
Furthermore, it has been proposed to use conductive polymers mixed with metal particles, but it is difficult to obtain particles small enough for fibers, and fine metal particles tend to aggregate and cannot be uniformly dispersed in the polymer. Because of this difficulty, conductive composite fibers that use metal particles have not yet been put into practical use.

本発明者らは、金属酸化物(半導体)を応用した導電性
繊維を特公昭61−15284号公報、61−5633
4号公報において提案した。金属酸化物微粒子応用の導
電性繊維は、白色度の高いものを得ることができるとい
う大きな特色を有するが、導電性は炭素粒子や金属粒子
応用型に比べて低く、従って制電性がやや劣るという欠
点がある。
The present inventors have developed conductive fibers using metal oxides (semiconductors) in Japanese Patent Publication No. 61-15284, No. 61-5633.
This was proposed in Publication No. 4. Conductive fibers made using metal oxide fine particles have the great feature of being able to obtain high whiteness, but their conductivity is lower than those made using carbon particles or metal particles, and their antistatic properties are therefore somewhat inferior. There is a drawback.

本発明の目的は、導電性及び/または白皮に優れたもの
を、比較的容品に製造することができる新規な複合繊維
を徒供するにある。
An object of the present invention is to provide a novel composite fiber that can be produced in a relatively compact manner and has excellent conductivity and/or white skin.

(問題解決の手段及び作用) 本発明の導電性複合繊維は、導電性粒子とポリマーの混
合体からなる導を層と繊維形成性ポリマーからなる保護
層とが接合されてなる複合繊維において、導電性粒子が
無機化合物を核とし、その外側に金属層を有しかつ表面
に導電性金属化合物皮膜を有することを特徴とする。
(Means and effects for solving the problem) The conductive conjugate fiber of the present invention is a conjugate fiber formed by bonding a conductive layer made of a mixture of conductive particles and a polymer and a protective layer made of a fiber-forming polymer. The conductive particles have an inorganic compound core, a metal layer on the outside, and a conductive metal compound film on the surface.

本発明に用いる導電性粒子は、無機化合物の核、金属層
及び金属化合物皮膜の3層構造を有する新しい粒子であ
る。一般に金属粒子は紡糸に適する大きさ、すなわち直
径0.05〜1.5μm、特に0.1〜1μmの大きさ
でかつ均一性の高いものを得ることが極めて困難であり
、今日もそのようなものは実用化されていない。また金
属微粒子は凝集性が高く、ポリマー中に均一に分散する
ことが極めて困難であることは前記の通りである。
The conductive particles used in the present invention are new particles having a three-layer structure of an inorganic compound core, a metal layer, and a metal compound film. In general, it is extremely difficult to obtain metal particles with a size suitable for spinning, that is, a diameter of 0.05 to 1.5 μm, especially 0.1 to 1 μm, and with high uniformity. Things have not been put into practical use. Further, as mentioned above, metal fine particles have a high aggregation property, and it is extremely difficult to uniformly disperse them in a polymer.

無機化合物、例えば酸化チタン、酸化亜鉛5酸化錫、ア
ルミナ、シリカ、ゼオライト、ムライト硫酸バリウム、
炭酸カルシウムなどの粒子では、前記の紡糸に好ましい
大きさのものが得られ、それらの表面に金属層を形成し
て2層構造を有する導電性粒子を製造することができる
。しかし金属層が表面を占める微小粒子は相互親和性及
び凝集性が極めて強く、ポリマーとの均一な混合及び分
散が著しく困難なことが多い、また、熔融混合や溶融紡
糸などにおける高温高圧条件下で容易に相互に焼結して
粗大粒子になる傾向がある。しかし金属層の外側を金属
化合物の皮膜で覆うと、凝集性や焼結性を大幅に改善す
ることができる。この目的に用いる金属化合物は導電性
(導体または半導体)であることが好ましい。半導体で
は導電性を高めるため、例えば電子供与型または電子受
容型などのドーピング剤を少量添加することも好ましい
、ドーピング剤の例としては、酸化錫に対する酸化アン
チモン、酸化亜鉛に対する酸化アルミニウムなどをあげ
ることができる。また、銀や銅の酸化物、よう化銅、硫
化銅などは、それ自体かなりの導電性を示す、更に金属
化合物皮膜が極めて薄ければ導電性の低下は最小限に押
さえられる(トンネル効果も充分期待される)。導電性
の見地からは表面の金属化合物皮膜は薄い方がよいが、
凝集性改善の点からは厚い方がよい。従って金属化合物
皮膜の厚みはO,OO1〜0.2μm、の範囲が好まし
く、0.002〜0.1μmの範囲が特に好ましく、o
、 o o s〜0,05μmの範囲が最も好ましい。
Inorganic compounds such as titanium oxide, zinc oxide, tin pentoxide, alumina, silica, zeolite, mullite barium sulfate,
Particles such as calcium carbonate can be obtained in a size suitable for the above-mentioned spinning, and conductive particles having a two-layer structure can be produced by forming a metal layer on their surfaces. However, microparticles with a metal layer on their surface have extremely strong mutual affinity and cohesiveness, and it is often extremely difficult to mix and disperse them uniformly with polymers. They tend to easily sinter together into coarse particles. However, if the outside of the metal layer is covered with a film of a metal compound, the cohesiveness and sinterability can be significantly improved. Preferably, the metal compound used for this purpose is electrically conductive (conductor or semiconductor). In semiconductors, in order to increase conductivity, it is also preferable to add a small amount of an electron-donating or electron-accepting doping agent. Examples of doping agents include antimony oxide for tin oxide, aluminum oxide for zinc oxide, etc. I can do it. In addition, silver and copper oxides, copper iodide, copper sulfide, etc. themselves exhibit considerable electrical conductivity, and if the metal compound film is extremely thin, the decrease in electrical conductivity can be kept to a minimum (the tunnel effect also occurs). fully expected). From the standpoint of conductivity, the thinner the metal compound film on the surface, the better.
From the point of view of improving cohesion, the thicker the better. Therefore, the thickness of the metal compound film is preferably in the range of 1 to 0.2 μm, particularly preferably in the range of 0.002 to 0.1 μm, and
, o s to 0.05 μm is most preferred.

金属化合物皮膜は、金属層の上に金属化合物を蒸着、イ
オンブレーティング、CVD、化学反応などの方法で形
成することができ、金属層そのものの表面に酸素、よう
素などを反応させて形成することもできる。後者の場合
、金属層と金属化合物の境界は必ずしも明瞭でなく、金
属の含有率が徐々に内部に向かって連続的に増大するよ
うな傾斜材料的構造となることもある。そのような場合
、表面の金属含有率をX%としたとき、金属含有率(%
)が(100x)/2の点を金属層と金属化合物皮膜と
の境界とみなす。
A metal compound film can be formed by depositing a metal compound on a metal layer by vapor deposition, ion blating, CVD, chemical reaction, etc., and is formed by reacting oxygen, iodine, etc. on the surface of the metal layer itself. You can also do that. In the latter case, the boundary between the metal layer and the metal compound is not necessarily clear, and a graded material structure may be formed in which the metal content gradually and continuously increases toward the inside. In such a case, when the metal content on the surface is X%, the metal content (%
The point where ) is (100x)/2 is regarded as the boundary between the metal layer and the metal compound film.

従来、無機粒子の表面に導電性金属化合物皮膜を形成し
た導電性粒子を応用した導電性複合繊維は周知である(
特公昭61−15184号公報など)。しかし、そのよ
うな2層構造の粒子は、本発明に用いる内部に金属層を
有する3層構造粒子に比較して本質的に導電性が劣る。
Conventionally, conductive composite fibers that utilize conductive particles with a conductive metal compound film formed on the surface of inorganic particles are well known (
(Special Publication No. 61-15184, etc.). However, such particles with a two-layer structure are inherently inferior in electrical conductivity compared to particles with a three-layer structure having an internal metal layer used in the present invention.

本発明に用いる3層構造粒子においては、電流は表面の
金属化合物皮膜を垂直に(最も短い距離)通過して、金
属層に達し、粒子の反対側では逆に金属層から金属皮膜
を垂直に通過して隣の粒子へと流れる。従って、3層構
造粒子においては、電流が表面の金属化合物を通る距離
は最小限となり、電流通路の大部分は金属となるため、
金属粒子に近い導電性が得られる。上記、従来の2層構
造粒子では粒子の(圧縮時の)比抵抗はI−10Ωm程
度が実用上到達できる限度であったが、本発明に用いる
3層構造の粒子では1Ωm以下で、しかも比較的粒径が
揃っており、凝集性の低い実用の高いものが得られる。
In the three-layer structure particles used in the present invention, the current passes vertically (the shortest distance) through the metal compound film on the surface to reach the metal layer, and conversely, the current passes vertically from the metal layer to the metal film on the other side of the particle. It passes through and flows to the next particle. Therefore, in three-layer structure particles, the distance that the current passes through the metal compound on the surface is minimal, and most of the current path is through the metal, so
Conductivity close to that of metal particles can be obtained. As mentioned above, with the conventional two-layer structure particles, the specific resistance of the particles (when compressed) was about I-10 Ωm, which was the limit that could be practically achieved, but with the three-layer structure particles used in the present invention, it was less than 1 Ωm, and compared to The target particle size is uniform, and a product with low agglomeration and high practicality can be obtained.

金属化合物皮膜を形成する化合物としては、錫亜鉛、銅
、銀、インジウム、ジルコニウムなどの導電性(半導体
を含む)金属酸化物及びよう化銅硫化銅などの導電性化
合物などがあげられる。特に酸化錫5酸化亜鉛、#化イ
ンジウム、よう化銅などは無色、白色または着色度の少
ないものを得ることができ、本発明の目的に好ましい、
またドーピング荊を添加して導電性を高めたものは特に
好ましい。
Examples of the compound forming the metal compound film include conductive (including semiconductor) metal oxides such as tin-zinc, copper, silver, indium, and zirconium, and conductive compounds such as copper iodide and copper sulfide. In particular, tin oxide, zinc pentoxide, indium # oxide, copper iodide, etc. are preferable for the purpose of the present invention because they can be colorless, white, or have a low degree of coloring.
Particularly preferred are those in which doping is added to improve conductivity.

導電性粒子は熱可塑性ポリマーと混合されて複合繊維の
導電層を形成する。本発明に用いる熱可塑性ポリマーは
特に限定されないが、例えばポリアミド、ポリエステル
、ポリウレタン、ポリオレフィン、ポリエーテル、ポリ
アクリル系、ポリビニル系、ポリイミド系、ポリサルフ
ァイド系のポリマーなどが有用である。特に結晶化度が
高い(50%以上、特に70%以上)ポリオレフィン。
The conductive particles are mixed with a thermoplastic polymer to form the conductive layer of the composite fiber. The thermoplastic polymer used in the present invention is not particularly limited, but useful examples include polyamide, polyester, polyurethane, polyolefin, polyether, polyacrylic, polyvinyl, polyimide, and polysulfide polymers. Polyolefins with particularly high crystallinity (50% or more, especially 70% or more).

ポリエーテル、ポリアミド、ポリエステル、ポリビニル
系などが導電性の見地より好ましい。導電性粒子の混合
率は、熔融紡糸、乾式紡糸、湿式紡糸などの紡糸工程で
充分な流動性を示し、かつ得られる複合w4雑の1電性
が充分高い範囲とすべきである。複合繊維の導電層の比
抵抗は10’ Ωcm以下が必要であり、102Ωcm
以下が好ましく1Ωcm以下が最も好ましい。本発明に
よって1Ωcm以下のものも得られることは前述の通り
である。このような導電性を得るに必要な導電性粒子の
混合率は、粒子の大きさ(直径)やポリマーの結晶性に
よって異なるが、多くの場合50〜80%、特に60〜
75%程度である。
Polyether, polyamide, polyester, polyvinyl, etc. are preferred from the viewpoint of electrical conductivity. The mixing ratio of the conductive particles should be within a range that exhibits sufficient fluidity in spinning processes such as melt spinning, dry spinning, and wet spinning, and that the resulting composite W4 miscellaneous has sufficiently high monoelectricity. The specific resistance of the conductive layer of the composite fiber must be 10' Ωcm or less, and 102 Ωcm
It is preferably 1 Ωcm or less, and most preferably 1 Ωcm or less. As mentioned above, the present invention can also provide a resistance of 1 Ωcm or less. The mixing ratio of conductive particles necessary to obtain such conductivity varies depending on the size (diameter) of the particles and the crystallinity of the polymer, but in most cases it is 50-80%, especially 60-80%.
It is about 75%.

導電層と保護層の複合構造及び複合比率は任意である。The composite structure and composite ratio of the conductive layer and the protective layer are arbitrary.

複合比率は多くの場合50150〜1/99の範囲、特
に75/25〜2/9Bの範囲が好ましい、複合構造は
並列(サイドバイサイド)型、芯鞘型、放射型、多重型
、多層型など任意であるが、導電層が表面に露出したも
のの方が制電性に優れる。しかし露出した導電層は一般
に摩擦によって対手を損傷することがあるので、その露
出面積をできるだけ小さくすることが好ましい。
The composite ratio is preferably in the range of 50150 to 1/99 in most cases, particularly preferably in the range of 75/25 to 2/9B.The composite structure may be arbitrary, such as parallel (side-by-side) type, core-sheath type, radial type, multiple type, or multilayer type. However, the one with the conductive layer exposed on the surface has better antistatic properties. However, since the exposed conductive layer can generally damage the opposing hand due to friction, it is preferable to minimize the exposed area.

第1図は本発明に用いる3層構造導電粒子の断面図であ
る9図において、lは無機化合物の核であり、2は金属
層であり、3は導電性金属化合物皮膜である0粒子の直
径D1は0.05〜1.5μm、特に0.1〜1μmが
好ましい。核の直径D2はDlの0.2〜0.95倍程
度、特に0.3〜0.9倍程度が好ましい。金属層の厚
み(或いは最大厚み)TIは0.005〜0.2 p 
m、特に0.01〜0.18〜程度が好ましい。金属化
合物皮膜の厚みT2は0. OOI 〜0.2 p m
、特に0.002〜0.018mの範囲が好ましい。
Figure 1 is a cross-sectional view of three-layer conductive particles used in the present invention. In Figure 9, l is the core of the inorganic compound, 2 is the metal layer, and 3 is the conductive metal compound film. The diameter D1 is preferably 0.05 to 1.5 μm, particularly 0.1 to 1 μm. The diameter D2 of the nucleus is preferably about 0.2 to 0.95 times, particularly about 0.3 to 0.9 times, Dl. The thickness (or maximum thickness) of the metal layer TI is 0.005 to 0.2 p
m, particularly preferably about 0.01 to 0.18. The thickness T2 of the metal compound film is 0. OOI ~0.2pm
A range of 0.002 to 0.018 m is particularly preferred.

第2図〜第11図は、本発明に用いることができる複合
構造の例を示す複合繊維の横断面図である。図において
4は導電層を、5は保護層を示す。
FIGS. 2 to 11 are cross-sectional views of composite fibers showing examples of composite structures that can be used in the present invention. In the figure, 4 indicates a conductive layer, and 5 indicates a protective layer.

第2図は並列型の例、第3図は多重化した並列型の例、
第4図は3層型の例、第5図は放射型の例、第6図は芯
鞘型の例、第7図は第6図と逆の芯鞘型の例、第8図は
多芯型の例、第9図は多重芯鞘型の例、第10図は鍵穴
型の例、第11図は多重化した鍵穴型の例、第12図は
多層型の例である。
Figure 2 is an example of parallel type, Figure 3 is an example of multiplexed parallel type,
Figure 4 is an example of a three-layer type, Figure 5 is an example of a radial type, Figure 6 is an example of a core-sheath type, Figure 7 is an example of a core-sheath type which is the opposite of Figure 6, and Figure 8 is an example of a multilayer type. FIG. 9 shows an example of a core type, FIG. 9 shows an example of a multiple core/sheath type, FIG. 10 shows an example of a keyhole type, FIG. 11 shows an example of a multiplexed keyhole type, and FIG. 12 shows an example of a multilayer type.

図において円形断面の例を示したが、非円形例えば楕円
形、三角形、星形その他合成繊維におけるあらゆる断面
形状を応用できる。
Although the figure shows an example of a circular cross-section, any cross-sectional shape of synthetic fibers such as non-circular, oval, triangular, star-shaped, etc. can be applied.

複合繊維は通常の溶融、乾式、湿式その他あらゆる紡糸
方法が適応される。例えば熔融または熔解された導電成
分と保護成分とを紡糸口金内で複合して紡出し、禮取り
、必要に応して延伸、熱処理などを行う、高速で紡糸す
る方法や紡糸、延伸を同時に行う方法なども有用である
。また導電層ポリマーを例えばポリオレフィンなどの低
融点かつ高結晶性のものとし、保護層ポリマーを高融点
のものとし、両者の融点の間の温度で延伸または/及び
熱処理をすることにより、得られる繊維の導電性を高く
保つことが可能である。
Composite fibers can be spun by conventional melting, dry, wet, and other spinning methods. For example, a method of melting or spinning a molten conductive component and a protective component in a spinneret, removing the material, and subjecting it to stretching, heat treatment, etc. if necessary, or spinning at high speed, or spinning and stretching at the same time. Methods are also useful. In addition, the conductive layer polymer is made of a low melting point and highly crystalline material such as polyolefin, the protective layer polymer is made of a high melting point material, and fibers obtained by stretching and/or heat treatment at a temperature between the melting points of both. It is possible to maintain high conductivity.

以下、本発明の好適な実施態様を整理して記しておく。Hereinafter, preferred embodiments of the present invention will be summarized and described.

(2)  導電性粒子の金属化合物皮膜が、金属酸化物
、金属硫化物及び金属よう化物の群から選ばれたもので
ある特許請求の範囲記載の複合繊維。
(2) The composite fiber according to the claims, wherein the metal compound coating of the conductive particles is selected from the group of metal oxides, metal sulfides, and metal iodides.

(3)  導電性粒子の金属層が、銀、金、銅、ニッケ
ル、クロム、インジウムの群から選ばれた1種または2
種以上の金属からなる特許請求の範囲記載の複合繊維。
(3) The metal layer of the conductive particles is one or two selected from the group of silver, gold, copper, nickel, chromium, and indium.
A conjugate fiber according to the claims, which is composed of at least one metal.

(4)  導電性粒子の平均直径が0.05〜1.5μ
m、金属層の平均厚みが0.005〜0.2μm、金属
化合物皮膜の平均厚みが0. OO1〜0.2μmの範
囲である特許請求の範囲第1項記載の複合繊維。
(4) The average diameter of the conductive particles is 0.05 to 1.5μ
m, the average thickness of the metal layer is 0.005 to 0.2 μm, and the average thickness of the metal compound film is 0. The composite fiber according to claim 1, wherein the OO is in the range of 1 to 0.2 μm.

+5)  導電性粒子の比抵抗が102Ω・cm以下で
ある特許請求の範囲記載の複合繊維。
+5) The composite fiber according to the claims, wherein the conductive particles have a specific resistance of 10 2 Ω·cm or less.

(6)  繊維形成性ポリマーが、ポリアミド、ポリエ
ステル、ポリオレフィン、ポリアクリル系、ポリビニル
系、ポリエーテル系、ポリイミド系及びポリサルファイ
ドの群より選ばれた1種または2種以上のポリマーであ
る特許請求の範囲記載の複合繊維。
(6) Claims in which the fiber-forming polymer is one or more polymers selected from the group of polyamides, polyesters, polyolefins, polyacrylics, polyvinyls, polyethers, polyimides, and polysulfides. Composite fibers as described.

(7)  導電層を形成する熱可塑性ポリマーが、ポリ
アミド、ポリエステル、ポリオレフィン、ポリエーテル
、ポリアクリル系、ポリビニル系、ポリイミド系及びポ
リサルファイド系の群より選ばれた1種または2種以上
のポリマーである特許請求の範囲記載の複合繊維。
(7) The thermoplastic polymer forming the conductive layer is one or more polymers selected from the group of polyamide, polyester, polyolefin, polyether, polyacrylic, polyvinyl, polyimide, and polysulfide. Composite fiber according to the claims.

(実施例) 実施例1 直径0.2μmの酸化チタン粒子の表面にイオンブレー
ティング法によって厚さ約0.02μmの銀の層を形成
し、さらにその上に、ドーピング剤として7重量%の酸
化アンチモンを含む酸化錫を同しくイオンブレーティン
グ法により厚さ約0、008μmで被覆し導電性粒子P
1を得た。粒子PLをEPMAで観察したところ粒子の
表面には銀、酸化錫層が均一に形成されていた。また、
圧縮時(30kg/cm”)の粉末の比抵抗は0、01
2Ωcmであり、平均直径は0.27μmであった・ 粒子P175部、分子量的30000の高密度ポリエチ
レン(融点125℃、結晶化度90%)23部、ステア
リン酸マグネシウム2部を溶融混合して導電性ポリマー
CPIを得た。cpiを導電成分とし、分子量2200
0のナイロン6を保護成分とし、両者を第7図のような
芯鞘型に溶融複合紡糸した。速度600m/分で紡糸し
、冷却、オイリング後、150℃で3.1倍に延伸して
20デニール/3フイラメントの導電糸CYIを得た。
(Example) Example 1 A silver layer with a thickness of about 0.02 μm was formed on the surface of titanium oxide particles with a diameter of 0.2 μm by an ion-blating method, and on top of that, 7% by weight of oxide was added as a doping agent. Conductive particles P are coated with tin oxide containing antimony using the same ion blating method to a thickness of about 0,008 μm.
I got 1. When particles PL were observed using EPMA, it was found that silver and tin oxide layers were uniformly formed on the surfaces of the particles. Also,
The specific resistance of the powder when compressed (30 kg/cm”) is 0.01
2 Ωcm, and the average diameter was 0.27 μm. 175 parts of particle P, 23 parts of high-density polyethylene with a molecular weight of 30,000 (melting point 125°C, crystallinity 90%), and 2 parts of magnesium stearate were melt-mixed to make a conductive material. Polymer CPI was obtained. cpi as the conductive component, molecular weight 2200
Using 0 nylon 6 as a protective component, both were melt-spun into a core-sheath type as shown in FIG. After spinning at a speed of 600 m/min, cooling and oiling, the resultant was stretched 3.1 times at 150° C. to obtain a 20 denier/3 filament conductive yarn CYI.

CYIの導電層の比抵抗は0.76Ωcmとなり、10
Ωcm以下の優れた導電性を示した。
The specific resistance of the conductive layer of CYI is 0.76 Ωcm, which is 10
It showed excellent conductivity of Ωcm or less.

比較例 直径0.2 p mの酸化チタン粒子の表面にイオンブ
レーティング法によって厚さ約0,05μmの銀皮膜を
形成しSt性粒子P2を得た。同様にして酸化アンチモ
ンを7重量%含む酸化錫を厚さ約0.02μmで被覆し
導電性粒子P3を得た0粒子P2,3をEPMAにより
観察したところ粒子の表面には銀及び酸化錫の皮膜が均
一に形成されていた。また、粒子P2.P3の圧縮時<
30kg/cm”)の粉末比抵抗は各々0.02.5.
8Ωcmであり、平均粒径は0,29.0.26 /7
 mであった。
Comparative Example A silver film having a thickness of about 0.05 μm was formed on the surface of titanium oxide particles having a diameter of 0.2 μm by an ion blasting method to obtain St particles P2. Conductive particles P3 were similarly coated with tin oxide containing 7% by weight of antimony oxide to a thickness of approximately 0.02 μm. When particles P2 and 3 were observed using EPMA, the surfaces of the particles contained silver and tin oxide. The film was formed uniformly. Moreover, particle P2. When compressing P3
30kg/cm") powder specific resistance is 0.02.5.
8Ωcm, and the average particle size is 0.29.0.26/7
It was m.

粒子P2、P3を用い実施例1と同様な方法で、溶融混
合して導電性ポリマーCP2(粒子P2は800重量%
含)、CF2 (粒子P3は755重量%含)を製造し
、更に実施例1と同一方法で溶融複合紡糸を行った。ポ
リマーCP2を用いた場合、紡糸口金のフィルターやオ
リフィス孔が穴詰まりし紡糸不可能であった。これは、
粒子P2の表層が銀でコーティングされているため、混
線・紡糸のような高温高圧下で粒子が凝集、焼結し粗大
化したことによる。ポリマーCP3を用いて得た複合繊
維の未延伸糸は更に150℃で3.1倍に延伸して20
デニール/3フイラメントの導電糸CY3とした。CY
3の導電層の比抵抗は2.7X10’Ωcmとなり、糸
CYIより導電性に劣っていた。
Particles P2 and P3 were melt-mixed in the same manner as in Example 1 to form conductive polymer CP2 (particle P2 was 800% by weight).
(containing), CF2 (particle P3 containing 755% by weight) was produced, and melt composite spinning was further performed in the same manner as in Example 1. When polymer CP2 was used, the filter and orifice of the spinneret were clogged, making spinning impossible. this is,
This is because the surface layer of the particles P2 is coated with silver, so the particles agglomerate and sinter under high temperature and high pressure conditions such as cross-firing and spinning, resulting in coarsening. The undrawn composite fiber yarn obtained using polymer CP3 was further drawn 3.1 times at 150°C to
The conductive yarn CY3 was made of denier/3 filament. C.Y.
The specific resistance of the conductive layer of No. 3 was 2.7×10′Ωcm, which was inferior to the CYI yarn in conductivity.

実施例2 直径0.25μmの酸化チタン粒子の表面にイオンブレ
ーティング法によって厚さ約0,02μmの銅の皮膜を
形成し、更にその上に、酸化アルミニウム5重量%含む
酸化亜鉛を同しくイオンブレーティング法によって厚さ
約0.007μmで被覆し導電性粒子P4を得た。Rf
t性粒子P4をEPMAにより観察したところ粒子の表
面には銅、酸化亜鉛層が均一に形成されていた。また、
圧縮時(30kg/cm”)の粉末の比抵抗は0.07
Ωcm、平均直径は0.31μmであった。
Example 2 A copper film with a thickness of about 0.02 μm was formed on the surface of titanium oxide particles with a diameter of 0.25 μm by an ion-blating method, and on top of that, zinc oxide containing 5% by weight of aluminum oxide was also ionized. The conductive particles P4 were coated with a thickness of about 0.007 μm by a brating method. Rf
When the t-type particles P4 were observed by EPMA, copper and zinc oxide layers were uniformly formed on the surfaces of the particles. Also,
The specific resistance of the powder when compressed (30 kg/cm”) is 0.07
Ωcm, and the average diameter was 0.31 μm.

粒子P4を実施例1のポリエチレンに75重量%で混合
し、導電性ポリマーCP4を得た。ポリマーCPIとC
F4を導電成分とし、分子量22000のナイロン6を
保護成分とし、両者を導電成分が繊維表面に掻く一部露
出した鍵穴型構造に複合比率(導電成分/保護成分の体
積比率)1/10で溶融複合し、直径0.25 m m
、278℃のオリフィスから紡出し、オイリング後60
0m/分で捲取り、150℃で3.2倍に延伸し20デ
ニール/3フイラメントのalii&cY4.CY5を
得た。糸CY4.CY5の導電層の比抵抗はそれぞれ0
.76.1.02Ωcmであった。
Particles P4 were mixed with the polyethylene of Example 1 at 75% by weight to obtain conductive polymer CP4. Polymer CPI and C
F4 is the conductive component, nylon 6 with a molecular weight of 22,000 is the protective component, and both are melted at a composite ratio (conductive component/protective component volume ratio) of 1/10 to form a partially exposed keyhole-shaped structure where the conductive component scratches the fiber surface. Combined, diameter 0.25 mm
, spun from an orifice at 278°C, 60°C after oiling.
It was wound at 0 m/min and stretched 3.2 times at 150°C to form a 20 denier/3 filament alii&cY4. Obtained CY5. Thread CY4. The specific resistance of the conductive layer of CY5 is 0.
.. It was 76.1.02 Ωcm.

糸CY1.CY3.CY4.CY5をそれぞれナイロン
6の延伸糸(2600デニール/144フイラメント)
と合糸して巻縮加工し、合糸したものを4コースに1本
用い他の3コースはナイロン6巻縮加工糸(2600デ
ニール/144フイラメント)を用いてタフティドカー
ベント(ル−プパイル)を製造した。得られたカーペッ
トの上を革靴で歩行(25℃、20%RH)したときの
人体の帯電圧を測定したところ表1の通りであった。な
お、比較のためナンロン6巻縮糸のみからなるカーペッ
ト上を歩行したときの人体帯電圧を併記する。
Thread CY1. CY3. CY4. CY5 and nylon 6 drawn yarn (2600 denier/144 filament)
The combined yarn is used for one of the four courses, and the other three courses are made of tufted carbent (loop pile) using nylon 6-wrap yarn (2600 denier/144 filament). ) was manufactured. Table 1 shows the electrostatic potential of the human body measured when walking on the obtained carpet with leather shoes (25° C., 20% RH). For comparison, the voltage charged on the human body when walking on a carpet made of only Nanlon 6-wrap yarn is also shown.

第 表 糸CYI、CY4.CY5共に人体帯電圧はナイロン6
のみに比べ低く、制電性に優れるものであった。CY3
の制電性能不足は、導電性がcyl、CY4.CY5よ
り劣るためである。またCYlがCY4.CY5より制
電性に劣る理由は、導電層が繊維表面に露出していない
ため、コロナ放電を生起しに<<、帯電荷の拡散、消失
がすみやかに行われないためである。
The first thread CYI, CY4. The human body charge voltage for both CY5 and Nylon 6
The antistatic property was lower than that of the antistatic property. CY3
The lack of antistatic performance is due to the conductivity of cyl, CY4. This is because it is inferior to CY5. Also, CYl is CY4. The reason why the antistatic property is inferior to that of CY5 is that since the conductive layer is not exposed on the fiber surface, corona discharge may occur and the charge cannot be diffused or dissipated quickly.

実施例3 実施例1の導電性ポリマーCPIを導電成分とし、分子
量的18.000のポリエチレンテレフタレートを保護
成分として複合比率1/9で第7図のような横断面に複
合し、直径0.25mm。
Example 3 The conductive polymer CPI of Example 1 was used as a conductive component and polyethylene terephthalate with a molecular weight of 18.000 was used as a protective component at a composite ratio of 1/9 to form a cross section as shown in Figure 7, with a diameter of 0.25 mm. .

278℃のオリフィスから紡出しオイリングして150
0m/minの速度で捲取り、150℃で3.3倍に延
伸し30デニール/3フイラメントの延伸糸CY6を得
た。糸CY6の比抵抗は0.82Ωcmとなり良好な導
電性を示した。
Spun from an orifice at 278°C and oiled at 150°C.
The yarn was wound up at a speed of 0 m/min and stretched 3.3 times at 150° C. to obtain a drawn yarn CY6 of 30 denier/3 filaments. The specific resistance of the yarn CY6 was 0.82 Ωcm, indicating good conductivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる3層構造導電粒子の断面図であ
り、第2図〜第12図は本発明複合繊維の横断面の具体
例である。図中1は無機化合物の核、2は金属層、3は
導電性金属化合物膜、また4は導電層、5は保護層を示
す。
FIG. 1 is a cross-sectional view of a three-layer structure conductive particle used in the present invention, and FIGS. 2 to 12 are specific examples of cross-sections of the composite fiber of the present invention. In the figure, 1 indicates a core of an inorganic compound, 2 a metal layer, 3 a conductive metal compound film, 4 a conductive layer, and 5 a protective layer.

Claims (1)

【特許請求の範囲】[Claims]  導電性粒子と熱可塑性ポリマーからなる導電層と繊維
形成性ポリマーからなる保護層とが接合されてなる複合
繊維において、導電性粒子が無機化合物を核とし、その
外側に金属層を有しかつ表面に導電性金属化合物皮膜を
有することを特徴とする導電性複合繊維。
In a composite fiber in which a conductive layer made of conductive particles and a thermoplastic polymer is bonded to a protective layer made of a fiber-forming polymer, the conductive particles have an inorganic compound as a core, a metal layer on the outside, and a surface. A conductive composite fiber characterized by having a conductive metal compound film.
JP2040574A 1990-02-20 1990-02-20 Conductive composite fiber Expired - Lifetime JP2834256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2040574A JP2834256B2 (en) 1990-02-20 1990-02-20 Conductive composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2040574A JP2834256B2 (en) 1990-02-20 1990-02-20 Conductive composite fiber

Publications (2)

Publication Number Publication Date
JPH03249212A true JPH03249212A (en) 1991-11-07
JP2834256B2 JP2834256B2 (en) 1998-12-09

Family

ID=12584255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040574A Expired - Lifetime JP2834256B2 (en) 1990-02-20 1990-02-20 Conductive composite fiber

Country Status (1)

Country Link
JP (1) JP2834256B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209449A (en) * 1995-02-07 1996-08-13 Mosho Tei Method for opening of conjugate fiber
KR100362032B1 (en) * 2001-05-07 2002-11-23 주식회사 코오롱 A mixed yarn with fine denier having dope dyeing component
CN104451926A (en) * 2014-12-23 2015-03-25 常熟市云燕化纤有限公司 Composite antibacterial fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921722A (en) * 1982-07-28 1984-02-03 Unitika Ltd Preparation of electrically-conductive filament
JPS6385113A (en) * 1986-09-29 1988-04-15 Teijin Ltd Electrically conductive conjugate fiber
JPS63270860A (en) * 1987-04-24 1988-11-08 東洋紡績株式会社 Production of conductive composite fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921722A (en) * 1982-07-28 1984-02-03 Unitika Ltd Preparation of electrically-conductive filament
JPS6385113A (en) * 1986-09-29 1988-04-15 Teijin Ltd Electrically conductive conjugate fiber
JPS63270860A (en) * 1987-04-24 1988-11-08 東洋紡績株式会社 Production of conductive composite fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209449A (en) * 1995-02-07 1996-08-13 Mosho Tei Method for opening of conjugate fiber
KR100362032B1 (en) * 2001-05-07 2002-11-23 주식회사 코오롱 A mixed yarn with fine denier having dope dyeing component
CN104451926A (en) * 2014-12-23 2015-03-25 常熟市云燕化纤有限公司 Composite antibacterial fiber

Also Published As

Publication number Publication date
JP2834256B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
US4743505A (en) Electroconductive composite fiber and process for preparation thereof
JP4975442B2 (en) Multicomponent fiber containing polyarylene sulfide component
US3958066A (en) Conductive synthetic fibers
DE10249585B4 (en) Conductive, stain resistant core-sheath fiber with high chemical resistance, process for its preparation and use
JPS61132624A (en) Conjugated fiber of high conductivity
PL179319B1 (en) Method of making electrically conductive ribbons
JPH0345705A (en) Antistatic core-skin filament
JPH03249212A (en) Electrically conductive conjugate fiber
JPH0364603B2 (en)
EP1468130B1 (en) Modified polyolefin fibres
JPH0122365B2 (en)
JPS61174469A (en) Production of conductive composite fiber
KR900008725B1 (en) Conductive composite filaments and fibrous articles containing the same
JPS60224813A (en) Antistatic conjugated fiber
JPS6229526B2 (en)
JP3046509B2 (en) Conductive composite fiber
JPS5860015A (en) Preparation of electrically conductive composite fiber
JPH0551811A (en) Conductive conjugate fiber
JPH042808A (en) Electrically conductive conjugate fiber
JP2988818B2 (en) Polyolefin-based conductive composite fiber
JP3113054B2 (en) Conductive composite fiber
JPH02289108A (en) Electroconductive conjugate fiber
JPH03241010A (en) Electrically conductive conjugate fiber
JP3129602B2 (en) Polyolefin-based conductive composite fiber
RU2001164C1 (en) Conducting filament

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101002

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101002

Year of fee payment: 12