JP2988818B2 - Polyolefin-based conductive composite fiber - Google Patents

Polyolefin-based conductive composite fiber

Info

Publication number
JP2988818B2
JP2988818B2 JP31914093A JP31914093A JP2988818B2 JP 2988818 B2 JP2988818 B2 JP 2988818B2 JP 31914093 A JP31914093 A JP 31914093A JP 31914093 A JP31914093 A JP 31914093A JP 2988818 B2 JP2988818 B2 JP 2988818B2
Authority
JP
Japan
Prior art keywords
conductive
component
fiber
polyolefin
composite fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31914093A
Other languages
Japanese (ja)
Other versions
JPH07145513A (en
Inventor
淳 成瀬
英伸 堤
啓二 中西
荘一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP31914093A priority Critical patent/JP2988818B2/en
Publication of JPH07145513A publication Critical patent/JPH07145513A/en
Application granted granted Critical
Publication of JP2988818B2 publication Critical patent/JP2988818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、静電気障害が発生し易
い分野用いられるポリオレフィン不織布に適したポリオ
レフィン系の導電性複合繊維に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyolefin-based conductive conjugate fiber suitable for a polyolefin nonwoven fabric used in a field where static electricity is liable to occur.

【0002】[0002]

【従来の技術】ポリプロピレンなどのポリオレフィンを
素材とする不織布は、耐薬品性,柔軟性,吸油性に優れ
かつ安価であるため、各種表層材,フィルター,油吸着
材などに広く用いられている。しかしながら、該不織布
は本質的に疎水性であるため静電気を生起しやすく、特
に電子機器なカバー材や防塵衣料などに適用される場
合、高い制電性能(帯電防止性能)が要求される。
2. Description of the Related Art Nonwoven fabrics made of a polyolefin such as polypropylene are widely used for various surface materials, filters, oil adsorbents, etc. because of their excellent chemical resistance, flexibility, oil absorption and low cost. However, since the nonwoven fabric is inherently hydrophobic, it easily generates static electricity. In particular, when the nonwoven fabric is applied to electronic equipment such as cover materials and dustproof clothing, high antistatic performance (antistatic performance) is required.

【0003】一般に、不織布の帯電防止には、炭素繊維
(特開平2−41453号公報)や金属繊維(特開昭6
3−315653号公報)またはカーボンブラックなど
の導電粒子を含有した導電性複合繊維などの導電性繊維
を少量混入する方法が行われている。導電性繊維の不織
布は、通常の不織布構成繊維の綿と導電性繊維の綿を混
綿し、カードしてウェブ化し、これをニードルあるいは
熱及び水流などの方法で交絡処理を施して製造される。
しかし、金属繊維や炭素繊維は、捲縮付与ができず、通
常の合成繊維素材との熱接着性にも劣るため、上述の交
絡処理時、ウェブから脱落し易い。このような理由か
ら、捲縮などの通常の合成繊維と同等の加工ができる導
電性複合繊維は、比較的よく用いられている。また、導
電性複合繊維の中でも、図7に示すような繊維軸方向に
おいて導電成分が繊維表面に露出したもの(導電成分露
出型)は、図6のような導電成分を芯、保護成分を鞘と
した芯鞘型に比べ、コロナ放電性すなわち制電制に優れ
るため、より多く用いられている。
In general, carbon fibers (Japanese Patent Application Laid-Open No. 2-41453) and metal fibers (Japanese Patent Application Laid-Open No.
A method of mixing a small amount of conductive fibers such as conductive conjugate fibers containing conductive particles such as carbon black or the like has been used. The non-woven fabric of the conductive fiber is produced by mixing the cotton of the non-woven fabric constituting the non-woven fabric and the cotton of the conductive fiber, forming a card and forming a web, and performing a confounding treatment by a needle or a method such as heat and water flow.
However, metal fibers and carbon fibers cannot be crimped and have poor thermal adhesiveness to ordinary synthetic fiber materials, and thus easily fall off the web during the above-described entanglement treatment. For these reasons, conductive composite fibers that can be processed similarly to ordinary synthetic fibers such as crimps are relatively frequently used. Among conductive conjugate fibers, those having a conductive component exposed on the fiber surface in the fiber axis direction as shown in FIG. 7 (conductive component exposed type) have a conductive component as a core and a protective component as a sheath as shown in FIG. Compared to the core-sheath type, it is more frequently used because of its excellent corona discharge property, that is, antistatic property.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
導電成分露出型の導電性複合繊維では、ポリオレフィン
不織布に適応できない場合があった。特に、不織布の構
成繊維同士の接着および交絡、または不織布の模様付け
として行うエンボス,カレンダー加工などの熱的接着加
工の際、ポリオレフィン素材の導電性複合繊維では、保
護成分との接着性の点から導電成分にもポリオレフィン
を用いるため、保護成分と同様に導電成分も溶融変形や
切断を生じ導電性の著しい低下あるいは消失を招くこと
が多い。また、ポリアミド,ポリエステルなどのポリオ
レフィン以外の素材の導電性複合繊維では、ポリオレフ
ィンとの親和性がないため、上述の熱的接着加工を行っ
ても、その後の加工もしくは製品使用中に、不織布中か
ら導電性繊維が抜け落ちることが多い。このように、ポ
リオレフィンとの接着性に富み、導電成分の融点および
軟化点がポリオレフィンのそれより高く、かつ制電性に
優れたポリオレフィン不織布に適した導電性複合繊維
は、未だ得られていないのが現状である。本発明の目的
は、工業生産が容易でポリオレフィン不織布に適したポ
リオレフィン系の導電性複合繊維を提供することにあ
る。
However, in some cases, the conventional conductive composite fiber of the conductive component exposed type cannot be applied to a polyolefin nonwoven fabric. Especially, in the case of thermal bonding such as embossing and calendering, which are performed for bonding and entanglement of the constituent fibers of the nonwoven fabric, or embossing and calendering of the nonwoven fabric, from the viewpoint of the adhesion to the protective component, the conductive composite fiber of the polyolefin material is used. Since polyolefin is also used as the conductive component, the conductive component, like the protective component, often undergoes melting deformation or cutting, resulting in a significant decrease or loss of conductivity. In addition, conductive conjugate fibers made of materials other than polyolefins such as polyamides and polyesters do not have an affinity with polyolefins. Conductive fibers often fall off. Thus, a conductive conjugate fiber suitable for a polyolefin nonwoven fabric, which is rich in adhesion to polyolefin, has a higher melting point and softening point of the conductive component than that of polyolefin, and has excellent antistatic properties, has not yet been obtained. Is the current situation. An object of the present invention is to provide a polyolefin-based conductive conjugate fiber that is easily produced industrially and is suitable for a polyolefin nonwoven fabric.

【課題を解決するための手段】すなわち、本発明は、導
電粒子を含有するポリアミドまたはポリエステルからな
る導電成分Aと、不飽和カルボン酸またはその誘導体を
グラフト重合した変性ポリオレフィンからなる接着成分
B、および繊維形成性ポリオレフィンからなる保護成分
Cとからなる3成分複合繊維であって、A成分とC成分
の間にB成分が介在し、かつA成分の少なくとも一部が
繊維表面に露出してなることを特徴とする導電性複合繊
維である。
That is, the present invention provides a conductive component A comprising a polyamide or polyester containing conductive particles, an adhesive component B comprising a modified polyolefin obtained by graft-polymerizing an unsaturated carboxylic acid or a derivative thereof, and A three-component conjugate fiber comprising a protective component C comprising a fiber-forming polyolefin, wherein a B component is interposed between the A component and the C component, and at least a part of the A component is exposed on the fiber surface. The conductive composite fiber is characterized by the following.

【0005】本発明における導電成分Aは、ポリオレフ
ィンより融点や軟化点が高く、変性ポリオレフィンと接
着させ易い熱可塑性ポリマーと導電性粒子を常法に従っ
て均一に混合したものにより構成される。このような熱
可塑性ポリマーとしては、ナイロン6,ナイロン66,
ナイロン10,ナイロン12などまたはこれらを主成分
とするポリアミド共重合体などのポリアミド、またはポ
リエチレンテレフタレート,ポリブチレンテレフタレー
ト,ポリエチレンオキシベンゾエートなどまたはこれら
を主成分とするポリエステル共重合体などのポリエステ
ルが挙げられる。これらは、不飽和カルボン酸またはそ
の誘導体をグラフトしたポリオレフィンとの接着が容易
であり好ましい。なかでも、ポリオレフィン不織布の熱
加工時の導電性成分の溶融変形、切断を防ぐ上で、融点
または軟化点が170℃以上、特に200℃以上のもの
が最も好ましい。
The conductive component A in the present invention is composed of a thermoplastic polymer having a higher melting point and softening point than that of the polyolefin, and easily mixed with a modified polyolefin, and a conductive particle uniformly mixed according to a conventional method. Such thermoplastic polymers include nylon 6, nylon 66,
Polyamides such as nylon 10, nylon 12, etc. or polyamide copolymers containing these as main components, or polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene oxybenzoate or polyester copolymers containing these as main components are exemplified. . These are preferred because they easily adhere to a polyolefin grafted with an unsaturated carboxylic acid or a derivative thereof. Among them, those having a melting point or softening point of 170 ° C. or more, particularly 200 ° C. or more, are most preferable for preventing melting and deformation of the conductive component at the time of thermal processing of the polyolefin nonwoven fabric.

【0006】導電粒子には、導電性カーボンブラックや
銀,ニッケル,銅,鉄あるいはこれらの合金などの金属
粉,また硫化銅,よう化銅,硫化亜鉛,硫化カドミウム
などの金属化合物やアンチモン,インジウムをドーピン
グした酸化錫,アルミニウム,インジウム,ゲルマニウ
ム,錫などをドーピングした酸化亜鉛など第2成分(不
純物)を少量、通常50%以下、多くの場合25%以下
ドーピングした導電性金属酸化物粒子が挙げられる。更
に、酸化チタン,酸化亜鉛,酸化マグネシウム,酸化
錫,酸化鉄,酸化珪素,酸化アルミニウムなどの非導電
性無機物粒子の表面に上記金属化合物や導電性金属酸化
物の導電性皮膜を形成した粒子も用いられる。これら導
電粒子の中でも、導電性カーボンブラックやアンチモン
をドーピングした導電性酸化錫およびこれをコーティン
グした酸化チタンは、粒径が小さくて均一な粒子が容易
に得られ、特に好適である。
The conductive particles include metal powders such as conductive carbon black, silver, nickel, copper, iron and alloys thereof, metal compounds such as copper sulfide, copper iodide, zinc sulfide and cadmium sulfide, and antimony and indium. Conductive metal oxide particles doped with a small amount of a second component (impurity) such as tin oxide, aluminum, indium, germanium, and tin oxide doped with zinc, usually 50% or less, and often 25% or less. Can be In addition, non-conductive inorganic particles such as titanium oxide, zinc oxide, magnesium oxide, tin oxide, iron oxide, silicon oxide, and aluminum oxide may also be formed by forming a conductive film of the above metal compound or conductive metal oxide on the surface of the particles. Used. Among these conductive particles, conductive tin oxide doped with conductive carbon black or antimony and titanium oxide coated with the same are particularly preferable because uniform particles having a small particle size can be easily obtained.

【0007】導電粒子の導電性は、粉末状(50Kg/
cm2 加圧下)での比抵抗(体積抵抗率)が104 Ωc
m程度以下、特に102 Ωcm程度以下が好ましく、1
1Ωcm程度以下が最も好ましい。実際に102 〜1
-3Ωcm程度のものが得られ、本発明の目的に好適に
適用することができるが、更に優れた導電性のものは一
層好ましい。また、導電粒子は充分小さい粒径のもので
なくてはならない。平均粒径が1〜2μmのものも使用
不可能ではないが、粗大粒子が核となり、紡糸,延伸時
の糸切れを誘発する場合が多い。このため、通常平均粒
径が1μm以下、特に0.5μm以下、最も好ましくは
0.3μm以下のものを用いる。
The conductivity of the conductive particles is in the form of powder (50 kg /
resistivity in cm 2 pressure) (volume resistivity) of 10 4 .omega.c
m or less, particularly preferably about 10 2 Ωcm or less.
0 about 1 [Omega] cm or less is most preferred. Actually 10 2 -1
Those having a conductivity of about 0 -3 Ωcm can be suitably used for the purpose of the present invention, but those having more excellent conductivity are more preferable. In addition, the conductive particles must have a sufficiently small particle size. Although those having an average particle size of 1 to 2 μm are not unusable, coarse particles serve as nuclei and often cause yarn breakage during spinning and stretching. For this reason, those having an average particle size of usually 1 μm or less, particularly 0.5 μm or less, most preferably 0.3 μm or less are used.

【0008】導電粒子のポリアミドまたはポリエステル
への混合率は、混合するポリマーの性質や結晶性また導
電粒子の種類、導電性,粒子形状粒子径などによって異
なるが、多くの場合10〜85重量%程度の範囲内であ
り、特に15〜80重量%が好ましい。10重量%未満
では、導電性が発現しないことが多く。一方、85重量
%を越えると粒子をポリマーに均一に分散することが困
難となり、仮に多大の努力で分散し得ても、ポリマーの
流動性が低下し、紡糸に支障を来すので好ましくない。
導電成分Aの比抵抗は107 Ωcm未満であることが必
要であり、104 Ωcm以下が好ましく、102 Ωcm
以下が特に好ましい。
The mixing ratio of the conductive particles to the polyamide or polyester varies depending on the properties and crystallinity of the polymer to be mixed, the type of the conductive particles, the conductivity, the particle shape and the particle size, but in many cases about 10 to 85% by weight. And particularly preferably 15 to 80% by weight. If the amount is less than 10% by weight, conductivity often does not appear. On the other hand, if the content exceeds 85% by weight, it becomes difficult to uniformly disperse the particles in the polymer, and even if the particles can be dispersed with great effort, the fluidity of the polymer is lowered and spinning is hindered.
The specific resistance of the conductive component A needs to be less than 10 7 Ωcm, preferably 10 4 Ωcm or less, and more preferably 10 2 Ωcm.
The following are particularly preferred.

【0009】本発明の複合繊維の保護成分Cは、ポリエ
チレン,ポリプロピレン,ポリブーテン−1など、およ
びこれらの共重合体のうち溶融紡糸可能であればあらゆ
るポリオレフィンが使用可能である。
As the protective component C of the conjugate fiber of the present invention, polyethylene, polypropylene, polybutene-1, and the like, and any of these copolymers can be used if they can be melt-spun.

【0010】本発明では、導電成分と保護成分との接着
材(接着成分)として変性ポリオレフィンを両性分間に
介在させることが肝要である。変性ポリオレフィンとし
ては、ポリエチレン,ポリプロピレン,ポリブテン−1
などのポリオレフィンに不飽和カルボン酸またはその誘
導体をグラフト重合したものが例示される。不飽和カル
ボン酸またはその誘導体としては、アクリル酸,マレイ
ン酸,フマル酸,テトラヒドロフタル酸,イタコン酸,
シロラコン酸,クロトン酸,イソクロトン酸などの不飽
和カルボン酸,またはその誘導体、例えば酸ハライド,
アミド,イミド,無水物,エステルなどが挙げられ、具
体的には、無水マレイン酸,マレイン酸モノメチル,マ
レイン酸ジメチルマレイン酸クロライド,無水シトラコ
ン酸,シトラコン酸クロライドなどが例示される。特
に、不飽和ジカルボン酸またはその無水物が好適であ
る。
In the present invention, it is important that a modified polyolefin is interposed between the amphoteric components as an adhesive (adhesive component) between the conductive component and the protective component. As the modified polyolefin, polyethylene, polypropylene, polybutene-1
Examples thereof include those obtained by graft-polymerizing an unsaturated carboxylic acid or a derivative thereof to a polyolefin such as the above. Examples of unsaturated carboxylic acids or derivatives thereof include acrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid,
Unsaturated carboxylic acids such as silaraconic acid, crotonic acid and isocrotonic acid, or derivatives thereof such as acid halides,
Examples include amides, imides, anhydrides, and esters. Specific examples include maleic anhydride, monomethyl maleate, dimethyl maleic acid chloride, citraconic anhydride, and citraconic acid chloride. In particular, unsaturated dicarboxylic acids or anhydrides thereof are preferred.

【0011】変性ポリオレフィン中に占める不飽和カル
ボン酸またはその誘導体の量(変性量)は、ポリオレフ
ィンに対して通常0.1〜10重量%、好ましくは0.
5〜7重量%、最も好ましくは1〜5重量%である。変
性量が0.1重量%未満では、導電成分を形成するポリ
アミド,ポリエステルとの接着性が悪くなり、紡糸,延
伸の際、導電成分と保護成分の剥離を生じ、製糸が困難
である。一方、変性量が10重量%以上では、熱安定性
が悪くなり、複合紡糸が困難となることが多く好ましく
ない。
The amount (modified amount) of the unsaturated carboxylic acid or its derivative in the modified polyolefin is usually 0.1 to 10% by weight, preferably 0.1 to 10% by weight, based on the polyolefin.
It is 5 to 7% by weight, most preferably 1 to 5% by weight. If the amount of modification is less than 0.1% by weight, the adhesion to the polyamide or polyester forming the conductive component will be poor, and the conductive component and the protective component will peel off during spinning and stretching, making it difficult to form a yarn. On the other hand, when the amount of modification is 10% by weight or more, the thermal stability is deteriorated, and the composite spinning is often difficult, which is not preferable.

【0012】また、導電成分,保護成分および接着成分
には、必要に応じて分散剤(ワックス類,ポリアルキレ
ンオキシド類,各種界面活性剤,有機電解質など)、着
色剤,熱安定剤(酸化防止剤,紫外線吸収剤など)流動
性改善剤その他の添加剤を加えることができる。
The conductive component, the protective component, and the adhesive component may include a dispersant (waxes, polyalkylene oxides, various surfactants, organic electrolytes, etc.), a coloring agent, and a heat stabilizer (antioxidant) as necessary. Agents, ultraviolet absorbers, etc.), flowability improvers and other additives.

【0013】本発明の複合繊維の横断面(輪郭)は円形
でもよく、非円形でもよく特に限定されないが、導電成
分A、接着成分Bおよび保護成分Cの複合形態が重要で
ある。すなわち複合繊維の横断面形状において接着成分
Bは導電成分Aと保護成分Cの間に介在し、かつ繊維軸
方向において導電成分Aの少なくとも一部が繊維表面に
露出していることが肝要である。図1〜図5は本発明に
用いることができる複合構造の例を示す複合繊維の横断
面図である。図においてAは導電成分を、Cは保護成
分、Bは接着成分である。図1,図2は放射型の例、図
3は鍵穴型の例、図4は多重化した鍵穴型の例、図5は
並列(サイドバイサイド)型の例である。導電成分を繊
維表面に露出させることにより制電性能(帯電防止性)
に優れた導電性複合繊維が得られる。また、元来接着し
ない導電成分と保護成分の間に両者と接着する接着成分
を介在させることにより、製糸が可能となる。
The cross section (contour) of the conjugate fiber of the present invention may be circular or non-circular, and is not particularly limited, but the composite form of the conductive component A, the adhesive component B and the protective component C is important. That is, in the cross-sectional shape of the composite fiber, it is important that the adhesive component B is interposed between the conductive component A and the protective component C, and that at least a part of the conductive component A is exposed on the fiber surface in the fiber axis direction. . 1 to 5 are cross-sectional views of a composite fiber showing an example of a composite structure that can be used in the present invention. In the figure, A is a conductive component, C is a protective component, and B is an adhesive component. 1 and 2 are examples of a radiation type, FIG. 3 is an example of a keyhole type, FIG. 4 is an example of a multiplexed keyhole type, and FIG. 5 is an example of a parallel (side-by-side) type. Antistatic performance (antistatic property) by exposing conductive component to fiber surface
An electrically conductive composite fiber excellent in quality can be obtained. Further, by interposing an adhesive component that adheres to both the conductive component and the protective component that originally do not adhere to each other, it is possible to form a yarn.

【0014】導電成分の複合比率(断面積占有率)につ
いては、導電粒子を多量に混合した導電成分は曳糸性
(紡糸性)や強伸度などに劣る傾向があるため、通常5
0%以下が好ましく、特に30%以下、より好ましくは
20%以下が好適である。接着成分の複合比率は繊維の
単糸繊度により異なるが、繊維横断面での接着成分の厚
みLが、通常0.3μm以上、好ましくは0.5〜5μ
mが好ましい。厚みLが薄過ぎると、厚み斑により導電
成分と保護成分の間に接着成分がない箇所が多くなり、
導電成分と保護成分の剥離を招き易く、製糸化が不安定
となる場合が多い。逆に、厚みLが大きいと、比較的高
価な変性ポリオレフィンの繊維中の構成比率が高くなり
コスト的に不利であり、また、変性ポリオレフィンに繊
維形成能がない場合、製糸できない。
With respect to the composite ratio (cross-sectional area occupancy) of the conductive component, a conductive component containing a large amount of conductive particles tends to have poor spinnability (spinnability) and high elongation.
It is preferably 0% or less, particularly preferably 30% or less, more preferably 20% or less. Although the composite ratio of the adhesive component varies depending on the single-fiber fineness of the fiber, the thickness L of the adhesive component in the fiber cross section is usually 0.3 μm or more, preferably 0.5 to 5 μm.
m is preferred. If the thickness L is too thin, there are many places where there is no adhesive component between the conductive component and the protective component due to uneven thickness,
Separation of the conductive component and the protective component is likely to occur, and in many cases, spinning becomes unstable. Conversely, if the thickness L is large, the composition ratio of the relatively expensive modified polyolefin in the fiber becomes high, which is disadvantageous in terms of cost. In addition, if the modified polyolefin has no fiber forming ability, yarn cannot be formed.

【0015】[0015]

【実施例】以下、実施例によって本発明を具体的に説明
する。
The present invention will be specifically described below with reference to examples.

【0016】[0016]

【実施例1】分子量14000のナイロン6に導電性カ
−ボンブラックを35重量%混合分散した導電性コンパ
ウンドをCPIとする。メルトフローレート値(以下、
試験法はASTM D1238)35g/10min、
融点152℃のポリプロピレンに導電性カーボンブラッ
クを35重量%混合分散した導電性コンパウンドをCP
2とする。また、無水マレイン酸を2重量%グラフト重
合したメルトフロ−レ−ト値が17g/10min、融
点163℃の変性ポリプロピレンをAP1とする。分子
量16000のナイロン6をP1とする。メルトフロー
レート値が23g/10min、融点152℃のポリプ
ロピレンをP2とする。CP1,CP2を導電成分A、
AP1を接着成分B、P1,P2を保護成分Cとし、溶
融したこれら3成分または2成分を紡糸口金パック内で
表1に示す複合構造、複合比率に複合し、温度270
℃,径0.25mmのオリフィスから紡出し、冷却オイ
リングしながら700m/minの速度で巻取り170
デニール/24フィラメントの未延伸糸UDY1〜UD
Y6を得た。
EXAMPLE 1 A conductive compound obtained by mixing and dispersing 35% by weight of conductive carbon black in nylon 6 having a molecular weight of 14,000 is referred to as CPI. Melt flow rate value (hereinafter,
The test method is ASTM D1238) 35 g / 10 min,
Conductive compound obtained by mixing and dispersing 35% by weight of conductive carbon black in polypropylene having a melting point of 152 ° C.
Let it be 2. A modified polypropylene having a melt flow rate of 17 g / 10 min and a melting point of 163 ° C. obtained by graft-polymerizing 2% by weight of maleic anhydride is referred to as AP1. Nylon 6 having a molecular weight of 16000 is designated as P1. A polypropylene having a melt flow rate of 23 g / 10 min and a melting point of 152 ° C. is designated as P2. CP1, CP2 is a conductive component A,
AP1 was used as an adhesive component B, P1 and P2 were used as protective components C, and these three or two components were compounded in a spinneret pack into a composite structure and a composite ratio shown in Table 1, and the temperature was 270.
Spinning from an orifice with a diameter of 0.25 mm and cooling at a speed of 700 m / min while cooling oiling 170
Denier / 24 filament undrawn yarn UDY1 to UD
Y6 was obtained.

【0017】[0017]

【表1】 [Table 1]

【0018】次に、未延伸糸UDY1〜UDY6を85
℃の延伸ローラー上で2.36倍に延伸し、120℃の
熱プレート上で熱処理して巻取り、72デニール/24
フィラメントの延伸糸DY1〜DY6を得た。DY5
は、捲取糸のコップ内の所々に白化している箇所があっ
た。この繊維を電子顕微鏡で観察したところ、接着成分
の厚みは、0〜約0.1μmで変動しており、白色部分
では導電成分と保護成分との間が剥離していた。一方、
同様にDY1を観察したが、接着成分の厚みは約0.8
μmで安定しており、導電成分と保護成分間は十分接着
していた。また、DY6は未延伸糸ボビンからの糸の引
出し時、導電成分の脱落物が飛散したり、捲取った糸中
に毛羽,タルミが多く、延伸が極めて困難であった。
Next, 85% of the undrawn yarns UDY1 to UDY6 are
The film is stretched 2.36 times on a stretching roller at 120 ° C., heat-treated on a hot plate at 120 ° C. and wound up, and 72 denier / 24
Filament drawn yarns DY1 to DY6 were obtained. DY5
In some cases, white spots appeared in the cup of the wound yarn. When this fiber was observed with an electron microscope, the thickness of the adhesive component varied from 0 to about 0.1 μm, and the conductive component and the protective component were separated in the white portion. on the other hand,
Similarly, DY1 was observed, but the thickness of the adhesive component was about 0.8.
It was stable at μm, and the conductive component and the protective component were sufficiently bonded. In the case of DY6, when the yarn was pulled out from the undrawn yarn bobbin, the fallout of the conductive component was scattered, and the wound yarn had a lot of fluff and thickness, and it was extremely difficult to draw.

【0019】次いで、上記延伸糸DY1〜DY4を約1
0万デニールに合糸し、スタッファー型捲縮加工機によ
り約15個/25mmクリンプをかけ、51mm長にカ
ットし、ステープルY1〜Y4を得た。ステープルY1
〜Y4の電気抵抗値は、3.3×107 、2.7×10
7 、5.9×107 、1.4×107 Ω/cmであり、
いずれも良好な導電性能を有していた。ステ−プルY1
〜Y4を別途作成した単糸1.5デニ−ル15個/25
mmクリンプ、51mmカット長のポリプロピレン(メ
ルトフローレート値 23g/10min)ステープル
綿と混率10重量%で混綿、カードし、目付50g/m
2 ウエブを作成、さらにこれらのウエブを温度160℃
のローラー、綿圧30Kg/cmで格子模様(5mm
角)にエンボス加工を施し不織布F1〜F4を作成し
た。これら不織布の温湿度20℃、23%RH条件下で
の表面抵抗率の測定結果を表2に示す。
Next, the above drawn yarns DY1 to DY4 are
The staples Y1 to Y4 were obtained by knitting the yarns to a denier of 100,000, crimping them by a stuffer-type crimping machine at about 15 pieces / 25 mm, and cutting them to a length of 51 mm. Staple Y1
The electric resistance value of Y4 is 3.3 × 10 7 , 2.7 × 10
7 , 5.9 × 10 7 , 1.4 × 10 7 Ω / cm,
All had good conductive performance. Staple Y1
~ Y4, 15 single yarn 1.5 denier separately prepared / 25
mm crimp, 51mm cut length polypropylene (melt flow rate value 23g / 10min) staple cotton, blended at 10% by weight, carded, and weighed 50g / m
Two webs were prepared, and these webs were heated to 160 ° C.
Roller pattern, cotton pressure 30Kg / cm, grid pattern (5mm
The corners) were embossed to produce nonwoven fabrics F1 to F4. Table 2 shows the measurement results of the surface resistivity of these nonwoven fabrics under the conditions of temperature and humidity of 20 ° C. and 23% RH.

【0020】[0020]

【表2】 [Table 2]

【0021】不織布F1の表面抵抗率は2.3×107
Ωで導電性に優れているが、F2〜F4の不織布では、
いずれも1010Ω以上で導電性に劣っていた。不織布F
3は、その表面をネル布で擦ると導電性繊維が数多く抜
けた。また、不織布F2の表面を走査型電子顕微鏡で観
察したところ、導電性複合繊維の導電成分が切断され液
滴状に変形していた。
The surface resistivity of the nonwoven fabric F1 is 2.3 × 10 7
Ω is excellent in conductivity, but in the nonwoven fabric of F2 to F4,
In each case, the conductivity was inferior at 10 10 Ω or more. Non-woven fabric F
For No. 3, a large number of conductive fibers came off when the surface was rubbed with flannel cloth. When the surface of the nonwoven fabric F2 was observed with a scanning electron microscope, the conductive component of the conductive conjugate fiber was cut and deformed into a droplet.

【0022】[0022]

【実施例2】分子量15000、融点257℃のポリエ
チレンテレフタレートに、表面に酸化すずの皮膜15%
を有する酸化チタン粒子に対して1.5%の酸化アンチ
モンを混合焼成して得られた淡灰青色の平均粒径0.2
5μm、比抵抗4.0Ωcmの導電粒子を65重量%混
合、分散させた導電性コンパウンドをCP3とする。C
P3を導電成分A,実施例1のAP1を接着成分B、P
2を保護成分Cとして、複合比率A/B/C=10/1
5/75で図3に示すようなサイドバイサイド型に複合
し、紡糸温度を280℃とした以外は実施例1と同一条
件でステープルY7を作成した。Y7の電気抵抗値は
3.2×107 Ω/cmで良好な導電性を有していた。
Y7を実施例1のポリプロピレン綿に混合率10%で混
綿、カードし、ウェブを作成した。次いでこのウェブを
160℃のローラーで線圧30Kg/cmで格子形状に
エンボス加工し不織布を作成した。この不織布の表面抵
抗率は5.4×108 Ωで導電性に優れていた。
Example 2 Polyethylene terephthalate having a molecular weight of 15000 and a melting point of 257 ° C., and a tin oxide film on the surface of 15%
And 1.5% antimony oxide mixed and fired with titanium oxide particles having
A conductive compound obtained by mixing and dispersing 65% by weight of conductive particles of 5 μm and specific resistance of 4.0 Ωcm is referred to as CP3. C
P3 is a conductive component A, AP1 of Example 1 is an adhesive component B, P
2 as a protective component C, a composite ratio A / B / C = 10/1
A staple Y7 was prepared under the same conditions as in Example 1 except that the composite was formed into a side-by-side type as shown in FIG. Y7 had a good electrical conductivity of 3.2 × 10 7 Ω / cm.
Y7 was mixed with the polypropylene cotton of Example 1 at a mixing ratio of 10% and carded to prepare a web. Next, this web was embossed into a lattice shape at a linear pressure of 30 Kg / cm with a roller at 160 ° C. to produce a nonwoven fabric. The surface resistivity of this nonwoven fabric was 5.4 × 10 8 Ω, which was excellent in conductivity.

【0023】[0023]

【発明の効果】本発明によれば、制電性能に優れ、ポリ
オレフィンとの接着性に富むポリオレフィン系導電性複
合繊維が容易に製造できる。ここで得られる複合繊維
は、通常の合成および天然繊維と同様な取扱いができ、
連続フィラメントまたはステープル状で、捲縮しない状
態または捲縮した状態で、ポリオレフィン素材の不織布
に公知の方法で混合でき、製品への制電性付与が可能と
なる。もちろん、ポリオレフィン以外の他の素材の繊維
製品にも混用でき、繊維製品への混用率は通常0.1〜
5重量%程度、目的によっては5〜100重量%や0.
1重量%未満の混率が適応される場合もある。
According to the present invention, a polyolefin-based conductive conjugate fiber having excellent antistatic performance and excellent adhesion to polyolefin can be easily produced. The conjugate fiber obtained here can be handled in the same manner as ordinary synthetic and natural fibers,
In a continuous filament or staple form, in a non-crimped state or in a crimped state, it can be mixed with a nonwoven fabric of a polyolefin material by a known method, and antistatic properties can be imparted to a product. Of course, it can be mixed with fiber products of other materials other than polyolefin, and the mixing ratio to fiber products is usually 0.1 to
About 5% by weight, 5 to 100% by weight or 0.1% depending on the purpose.
In some cases, an incorporation ratio of less than 1% by weight is applied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の導電性複合繊維の複合構造の具体例で
ある。
FIG. 1 is a specific example of a composite structure of a conductive composite fiber of the present invention.

【図2】本発明の導電性複合繊維の複合構造の具体例で
ある。
FIG. 2 is a specific example of a composite structure of the conductive composite fiber of the present invention.

【図3】本発明の導電性複合繊維の複合構造の具体例で
ある。
FIG. 3 is a specific example of a composite structure of the conductive composite fiber of the present invention.

【図4】本発明の導電性複合繊維の複合構造の具体例で
ある。
FIG. 4 is a specific example of a composite structure of the conductive composite fiber of the present invention.

【図5】本発明の導電性複合繊維の複合構造の具体例で
ある。
FIG. 5 is a specific example of a composite structure of the conductive composite fiber of the present invention.

【図6】本発明の優位性を示すのに用いた2成分導電性
複合繊維の複合構造の比較例である。
FIG. 6 is a comparative example of a composite structure of a two-component conductive composite fiber used to show the superiority of the present invention.

【図7】本発明の優位性を示すのに用いた2成分導電性
複合繊維の複合構造の比較例である。
FIG. 7 is a comparative example of a composite structure of a two-component conductive composite fiber used to show the superiority of the present invention.

【符号の説明】[Explanation of symbols]

A 導電性複合繊維の導電成分 B 導電性複合繊維の導電成分 C 導電性複合繊維の導電成分 A Conductive component of conductive composite fiber B Conductive component of conductive composite fiber C Conductive component of conductive composite fiber

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−2808(JP,A) 特開 昭57−191324(JP,A) 特開 平6−272113(JP,A) 特開 昭62−21819(JP,A) (58)調査した分野(Int.Cl.6,DB名) D01F 8/00 - 8/16 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-2808 (JP, A) JP-A-57-191324 (JP, A) JP-A-6-272113 (JP, A) JP-A 62-1982 21819 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) D01F 8/00-8/16

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電粒子を含有する熱可塑性のポリアミ
ドまたはポリエステルからなる導電成分Aと、不飽和カ
ルボン酸またはその誘導体をグラフト重合した変性ポリ
オレフィンからなる接着成分B、および繊維形成ポリオ
レフィンからなる保護成分Cとからなる3成分系複合繊
維であって、A成分とC成分の間に厚さ0.3μm以上
のB成分が介在しかつA成分の少なくとも一部が繊維表
面に露出してなることを特徴とする導電性複合繊維。
1. A conductive component A comprising a thermoplastic polyamide or polyester containing conductive particles, an adhesive component B comprising a modified polyolefin obtained by graft polymerization of an unsaturated carboxylic acid or a derivative thereof, and a protective component comprising a fiber-forming polyolefin. A ternary composite fiber comprising C, wherein a B component having a thickness of 0.3 μm or more is interposed between the A component and the C component, and at least a part of the A component is exposed on the fiber surface. Characteristic conductive composite fiber.
【請求項2】 B成分の不飽和カルボン酸またはその誘
導体のグラフト重合量がポリオレフィンに対して0.1
〜10重量%である請求項1記載の導電性複合繊維。
2. The graft polymerization amount of the unsaturated carboxylic acid or its derivative as the component B is 0.1 to 0.1 with respect to the polyolefin.
The conductive conjugate fiber according to claim 1, wherein the amount is 10 to 10% by weight.
【請求項3】 不飽和カルボン酸またはその誘導体が、
不飽和ジカルボン酸またはその無水物である請求項1記
載の導電性複合繊維。
3. An unsaturated carboxylic acid or a derivative thereof,
The conductive conjugate fiber according to claim 1, which is an unsaturated dicarboxylic acid or an anhydride thereof.
JP31914093A 1993-11-24 1993-11-24 Polyolefin-based conductive composite fiber Expired - Fee Related JP2988818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31914093A JP2988818B2 (en) 1993-11-24 1993-11-24 Polyolefin-based conductive composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31914093A JP2988818B2 (en) 1993-11-24 1993-11-24 Polyolefin-based conductive composite fiber

Publications (2)

Publication Number Publication Date
JPH07145513A JPH07145513A (en) 1995-06-06
JP2988818B2 true JP2988818B2 (en) 1999-12-13

Family

ID=18106898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31914093A Expired - Fee Related JP2988818B2 (en) 1993-11-24 1993-11-24 Polyolefin-based conductive composite fiber

Country Status (1)

Country Link
JP (1) JP2988818B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571318B2 (en) * 2001-01-23 2010-10-27 ダイワボウホールディングス株式会社 Conductive network
JP5741225B2 (en) * 2011-06-01 2015-07-01 Jnc株式会社 Heat-fusible composite fiber and non-woven fabric using the same

Also Published As

Publication number Publication date
JPH07145513A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
CA1158816A (en) Conductive composite filaments and methods for producing said composite filaments
AU613735B2 (en) Melt-bondable fibers for use in nonwoven web
US20030039815A1 (en) Nonwoven blend with electret fiber
JP3917524B2 (en) Fiber composite and use thereof
JP2988818B2 (en) Polyolefin-based conductive composite fiber
JPH0364603B2 (en)
JP3129602B2 (en) Polyolefin-based conductive composite fiber
JPH01292116A (en) Electrically conductive fiber and production thereof
JP3032396B2 (en) Polyolefin-based conductive composite fiber
JPS61174469A (en) Production of conductive composite fiber
JP2778981B2 (en) Conductive composite fiber and method for producing the same
JPH0122365B2 (en)
JP2006097145A (en) Fiber composite material and use thereof
JP3161018B2 (en) Thermal adhesive fiber sheet and method for producing the same
JPS5860015A (en) Preparation of electrically conductive composite fiber
JPH03241010A (en) Electrically conductive conjugate fiber
JPS61113824A (en) Electrically conductive composite fiber
JPH042808A (en) Electrically conductive conjugate fiber
JP4763451B2 (en) Conductive composite fiber
JP3133633B2 (en) Conductive composite fiber
JP2599785B2 (en) Conductive composite fiber
JPH07133510A (en) Electrically-conductive conjugate yarn
JP3113054B2 (en) Conductive composite fiber
JP3046509B2 (en) Conductive composite fiber
JP3238535B2 (en) Conductive composite fiber

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091008

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20111008

LAPS Cancellation because of no payment of annual fees