JP3032396B2 - Polyolefin-based conductive composite fiber - Google Patents

Polyolefin-based conductive composite fiber

Info

Publication number
JP3032396B2
JP3032396B2 JP5085351A JP8535193A JP3032396B2 JP 3032396 B2 JP3032396 B2 JP 3032396B2 JP 5085351 A JP5085351 A JP 5085351A JP 8535193 A JP8535193 A JP 8535193A JP 3032396 B2 JP3032396 B2 JP 3032396B2
Authority
JP
Japan
Prior art keywords
conductive
polyolefin
component
weight
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5085351A
Other languages
Japanese (ja)
Other versions
JPH06272113A (en
Inventor
英伸 堤
淳 成瀬
啓二 中西
Original Assignee
鐘紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鐘紡株式会社 filed Critical 鐘紡株式会社
Priority to JP5085351A priority Critical patent/JP3032396B2/en
Publication of JPH06272113A publication Critical patent/JPH06272113A/en
Application granted granted Critical
Publication of JP3032396B2 publication Critical patent/JP3032396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、導電性複合繊維、特に
導電性粒子を含有するポリアミドまたはポリエステル組
成物と変性ポリオレフィンを少なくとも一部溶融混合し
たポリオレフィンからなり、ポリオレフィン不織布に適
したポリオレフィン系の導電性複合繊維に関する。
BACKGROUND OF THE INVENTION The present invention relates to a polyolefin obtained by melting and mixing at least a part of a conductive conjugate fiber, in particular, a polyamide or polyester composition containing conductive particles and a modified polyolefin. The present invention relates to a conductive conjugate fiber.

【0002】[0002]

【従来の技術】長繊維あるいは短繊維からなるポリエチ
レン,ポリプロピレンなどのポリオレフィンを素材とす
る不織布は、コスト的に安価であり、耐薬品性を有する
ため医療・衛生資材,農業用被覆資材,各種フィルター
材,一般包装資材,土木・建築工事用材料などとして広
く使用されている。しかしながら、該不織布は本質的に
疎水性であるために静電気を生起しやすく、特に手術用
ガウン,手術用マスクなどの医療品やフロッピーディス
クのライナーやエンベロープなどのOA機器部材またク
リーンルーム用手袋などの製品に適用する場合、高い制
電性(帯電防止性能)が要求される。
2. Description of the Related Art Nonwoven fabrics made of polyolefins such as polyethylene and polypropylene made of long or short fibers are inexpensive and have chemical resistance, so they are used as medical and sanitary materials, agricultural coating materials, and various filters. Widely used as materials, general packaging materials, civil engineering and building construction materials. However, since the nonwoven fabric is inherently hydrophobic, it tends to generate static electricity. Particularly, medical products such as surgical gowns and surgical masks, OA equipment members such as floppy disk liners and envelopes, and clean room gloves and the like. When applied to products, high antistatic properties (antistatic performance) are required.

【0003】一般に不織布などの繊維製品の帯電防止方
法に関しては、従来から導電性カーボンブラックや導電
性金属化合物を含有せしめた導電性成分と繊維形成性の
保護成分(非導電成分)を複合した導電性複合繊維を製
品へ少量混用する方法があり、優れた制電性の付与がで
きる。このような導電性複合繊維として図1〜図6に示
すような種々の複合構造のものが提案され、使用されて
いるが、図1〜図5に示すような導電性成分が繊維表面
に露出したもの(導電性成分露出型)は、図6のような
導電性成分を芯、保護成分を鞘とした芯鞘型より、コロ
ナ放電性すなわち制電性に優れるため、より多く使用さ
れている。
[0003] In general, regarding a method for preventing static electricity of a fiber product such as a non-woven fabric, a conductive component containing a conductive carbon black or a conductive metal compound and a fiber-forming protective component (non-conductive component) are conventionally combined. There is a method of mixing a small amount of conductive conjugate fiber into a product, and excellent antistatic properties can be imparted. As such conductive composite fibers, those having various composite structures as shown in FIGS. 1 to 6 have been proposed and used. However, conductive components as shown in FIGS. 1 to 5 are exposed on the fiber surface. This type (exposed conductive component) is more frequently used than the core-shell type having a conductive component as a core and a protective component as a sheath as shown in FIG. 6 because of its excellent corona discharge property, that is, antistatic property. .

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、従来
の導電性成分露出型の導電性複合繊維では、ポリオレフ
ィン不織布用として不適当な場合がある。例えば、不織
布の構成繊維同士の接着、交絡または模様付けとして行
うエンボス、カレンダー加工などの熱的接着加工の際、
ポリオレフィン素材の導電性繊維では、保護成分との接
着性の点から導電性成分の結合材ポリマーにもポリオレ
フィンを用いているため、保護成分同様、導電性成分も
溶融変形や切断を生じ導電性の著しい低下あるいは消失
を招くことが多い。また、ポリアミド,ポリエステルな
どのポリオレフィン以外の導電性繊維では、ポリオレフ
ィンとの親和性がないため、エンボス,カレンダー加工
を施しても、その後の加工もしくは製品使用中に、不織
布中から導電性繊維が抜け落ちることが多い。このよう
に、ポリオレフィンとの接着性に富み、導電性成分の融
点および軟化点がポリオレフィンのそれより高く、かつ
制電性に優れたポリオレフィン不織布に適した導電性複
合繊維は、未だ得られていないのが現状である。本発明
の目的は、工業生産可能なポリオレフィン不織布に適し
たポリオレフィン系の導電性複合繊維を提供することに
ある。
SUMMARY OF THE INVENTION However, conventional conductive composite fibers of the type exposed to a conductive component may not be suitable for use as a polyolefin nonwoven fabric. For example, at the time of thermal bonding such as embossing, calendering, and the like, bonding between the constituent fibers of the nonwoven fabric, interlacing or patterning,
In the case of conductive fibers made of polyolefin material, polyolefin is also used as the binder polymer of the conductive component from the viewpoint of adhesiveness with the protective component. It often leads to significant degradation or loss. Also, conductive fibers other than polyolefins such as polyamides and polyesters have no affinity for polyolefins, so even if embossing or calendering is performed, the conductive fibers fall out of the nonwoven fabric during subsequent processing or product use. Often. As described above, a conductive composite fiber suitable for a polyolefin nonwoven fabric having a high adhesiveness to a polyolefin, a melting point and a softening point of a conductive component higher than that of the polyolefin, and having excellent antistatic properties has not yet been obtained. is the current situation. An object of the present invention is to provide a polyolefin-based conductive conjugate fiber suitable for a polyolefin nonwoven fabric that can be industrially produced.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、導
電性粒子を含有するポリアミドまたはポリエステル組成
物からなる導電性成分と、不飽和カルボン酸またはその
誘導体をグラフト重合した変性ポリオレフィンを少なく
とも一部溶融混合したポリオレフィンからなる保護成分
とを、導電性成分の少なくとも一部が繊維表面に露出す
るように複合してなることを特徴とする導電性複合繊維
である。
That is, the present invention provides at least a part of a conductive component comprising a polyamide or polyester composition containing conductive particles and a modified polyolefin obtained by graft-polymerizing an unsaturated carboxylic acid or a derivative thereof. A conductive conjugate fiber characterized by being compounded with a protective component comprising a melt-mixed polyolefin such that at least a part of the conductive component is exposed on the fiber surface.

【0006】本発明において、導電性成分は、ポリオレ
フィンより融点の高いポリアミドまたはポリエステルに
導電性粒子を常法に従って均一に混合分散したものによ
り構成される。導電性成分に使用されるポリアミド,ポ
リエステルとしては、ナイロン6,ナイロン66,ナイ
ロン10,ナイロン12など、またはこれらを主成分と
する変成ポリアミド共重合体、またポリエチレンテレフ
タレート、ポリブチレンテレフタレート、ポリエチレン
オキシベンゾエートなど、またはこれらを主成分とする
変性ポリエステル共重合体などが挙げられる。なかで
も、ポリオレフィン不織布の熱加工時の導電性成分の溶
融変形,切断を防ぐためには、融点または軟化点が17
0℃以上であることが好ましく、更に200℃以上のも
のが最も好ましい。
[0006] In the present invention, the conductive component is composed of a polyamide or polyester having a melting point higher than that of polyolefin and conductive particles uniformly mixed and dispersed in a conventional manner. As the polyamide or polyester used for the conductive component, nylon 6, nylon 66, nylon 10, nylon 12, or the like, or a modified polyamide copolymer containing these as a main component, polyethylene terephthalate, polybutylene terephthalate, polyethylene oxybenzoate Or a modified polyester copolymer containing these as a main component. Above all, in order to prevent the conductive component from being melted and deformed or cut during the thermal processing of the polyolefin nonwoven fabric, the melting point or softening point must be 17 or less.
The temperature is preferably 0 ° C. or higher, and more preferably 200 ° C. or higher.

【0007】本発明に使用される導電性粒子としては、
導電性カーボンブラックや銀,ニッケル,銅,鉄あるい
はこれらの合金などの金属粉、また、硫化銅,よう化
銅,硫化亜鉛,硫化カドミウムなどの金属化合物や酸化
錫,酸化亜鉛,酸化銅,亜酸化銅,酸化インジウム,酸
化ジルコニウム,酸化タングステンなどの金属酸化物粒
子が挙げられる。金属酸化物の多くのものは絶縁体に近
い半導体であって本発明の目的に充分な導電性を示さな
いことが多いが、金属酸化物に適当な第2成分(不純
物)を少量、通常50重量%以下、多くの場合25重量
%以下添加するなどの方法により、導電性を強化し、本
発明の目的に充分な導電性を有するものが得られる。こ
のような導電性強化剤としては、酸化錫に対して酸化ア
ンチモン、酸化亜鉛に対してはアルミニウム,インジウ
ム,ゲルマニウム,錫などの金属酸化物が使える。更
に、酸化チタン,酸化亜鉛,酸化マグネシウム,酸化
錫,酸化鉄,酸化珪素,酸化アルミニウムなどの非導電
性無機物粒子の表面に上記導電性金属酸化物または金属
化合物の導電性皮膜を形成した粒子も用いられる。これ
ら導電性粒子の中でも、導電性カーボンブラックやアン
チモンドーピングの導電性酸化錫およびこれをコーティ
ングした酸化チタンは、粒径が小さくて均一な粒子が容
易に得られ、特に好適である。
[0007] The conductive particles used in the present invention include:
Metal powders such as conductive carbon black, silver, nickel, copper, iron and alloys thereof, metal compounds such as copper sulfide, copper iodide, zinc sulfide, cadmium sulfide, tin oxide, zinc oxide, copper oxide, and zinc oxide Examples include metal oxide particles such as copper oxide, indium oxide, zirconium oxide, and tungsten oxide. Although many of the metal oxides are semiconductors close to insulators and often do not exhibit sufficient conductivity for the purpose of the present invention, a small amount of the second component (impurity) suitable for the metal oxide, usually 50 By a method such as addition of not more than 25% by weight, often not more than 25% by weight, conductivity is enhanced, and a material having sufficient conductivity for the purpose of the present invention can be obtained. As such a conductivity enhancer, metal oxides such as antimony oxide for tin oxide and aluminum, indium, germanium, and tin for zinc oxide can be used. Further, non-conductive inorganic particles, such as titanium oxide, zinc oxide, magnesium oxide, tin oxide, iron oxide, silicon oxide, and aluminum oxide, may have a conductive film of the above-described conductive metal oxide or metal compound formed on the surface thereof. Used. Among these conductive particles, conductive carbon black, conductive tin oxide doped with antimony, and titanium oxide coated with the same are particularly preferable because uniform particles having a small particle size can be easily obtained.

【0008】導電性粒子の導電性は、粉末状(50kg
/cm2 加圧下)での比抵抗(体積抵抗率)が104 Ω
cm程度以下、特に102 Ωcm程度以下が好ましく、
101 Ωcm程度以下が最も好ましい。実際に102
10-3Ωcm程度のものが得られ、本発明の目的に好適
に応用することができるが、更に優れた導電性のものは
一層好ましい。
The conductivity of the conductive particles is in the form of a powder (50 kg).
/ Cm 2 under pressure) with a specific resistance (volume resistivity) of 10 4 Ω
cm or less, particularly preferably about 10 2 Ωcm or less,
Most preferably, it is about 10 1 Ωcm or less. Actually 10 2 ~
Those having a conductivity of about 10 −3 Ωcm can be suitably used for the purpose of the present invention, but those having more excellent conductivity are more preferable.

【0009】また、導電性粒子は充分小さい粒径のもの
でなくてはならない。平均粒径が1〜2μmのものも使
用不可能ではないが、通常平均粒径が1μm以下、特に
0.5μm以下、最も好ましくは0.3μm以下のもの
が用いられる。粒径が大きいものは紡糸,延伸の際、糸
切れを起こし易く、製糸困難な場合が多い。
The conductive particles must have a sufficiently small particle size. It is not impossible to use those having an average particle diameter of 1 to 2 μm, but usually those having an average particle diameter of 1 μm or less, particularly 0.5 μm or less, most preferably 0.3 μm or less are used. Those having a large particle diameter are liable to break during spinning and drawing, and in many cases, spinning is difficult.

【0010】導電性粒子のポリアミド,ポリエステルへ
の混合率は、混合するポリマーの性質や結晶性また導電
性粒子の種類,導電性,粒子形状,粒子径などによって
異なるが、多くの場合10〜85重量%程度の範囲内で
あり、特に15〜80重量%が好ましい。10重量%未
満では、導電性が発現しないことが多い。一方、85重
量%を越えると粒子をポリマーに均一に分散することが
困難となり、仮に多大の努力で分散し得ても、ポリマー
の流動性が低下し、紡糸に支障を来すので好ましくな
い。導電性成分の比抵抗は107 Ωcm未満であること
が必要であり、104 Ωcm以下が好ましく、102 Ω
cm以下が特に好ましい。
The mixing ratio of the conductive particles to the polyamide or polyester varies depending on the properties and crystallinity of the polymer to be mixed, the type of the conductive particles, the conductivity, the particle shape, the particle size, and the like. % By weight, and particularly preferably from 15 to 80% by weight. If the amount is less than 10% by weight, conductivity often does not appear. On the other hand, if the content exceeds 85% by weight, it becomes difficult to uniformly disperse the particles in the polymer, and even if the particles can be dispersed with great effort, the fluidity of the polymer is lowered and spinning is hindered. The specific resistance of the conductive component needs to be less than 10 7 Ωcm, preferably 10 4 Ωcm or less, and more preferably 10 2 Ωcm.
cm or less is particularly preferred.

【0011】本発明では、複合繊維の保護成分は、変性
ポリオレフィンを少なくとも一部溶融混合した繊維形成
性のポリオレフィンから構成される。該変性ポリオレフ
ィンは、ポリエチレン,ポリプロピレン,ポリブテン−
1などのポリオレフィンに不飽和カルボン酸またはその
誘導体をグラフト重合したものである。不飽和カルボン
酸またはその誘導体としては、アクリル酸,マレイン
酸,フマル酸,テトラヒドロフタル酸,イタコン酸,シ
トラコン酸,クロトン酸,イソクロトン酸などの不飽和
カルボン酸,またはその誘導体、例えば酸ハライド,ア
ミド,イミド,無水物,エステルなどが挙げられ、具体
的には、無水マレイン酸,マレイン酸モノメチル,マレ
イン酸ジメチル,マレイン酸クロライド,無水シトラコ
ン酸,シトラコン酸クロライドなどが例示される。特
に、不飽和ジカルボン酸またはその無水物が好適であ
る。
In the present invention, the protective component of the conjugate fiber is composed of a fiber-forming polyolefin obtained by melt-mixing at least a part of the modified polyolefin. The modified polyolefin is polyethylene, polypropylene, polybutene-
An unsaturated carboxylic acid or a derivative thereof is graft-polymerized on a polyolefin such as 1. Examples of unsaturated carboxylic acids or derivatives thereof include unsaturated carboxylic acids such as acrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, and derivatives thereof, such as acid halides and amides. And imides, anhydrides, esters and the like, and specific examples thereof include maleic anhydride, monomethyl maleate, dimethyl maleate, maleic chloride, citraconic anhydride, citraconic chloride and the like. In particular, unsaturated dicarboxylic acids or anhydrides thereof are preferred.

【0012】保護成分中に占める不飽和カルボン酸また
はその誘導体の総量は、ポリオレフィンに対して通常
0.1〜10重量%、好ましくは0.5〜7重量%、最
も好ましくは1〜5重量%である。総量が0.1重量%
未満では、導電性成分を形成するポリアミド,ポリエス
テルとの接着性が悪くなり、紡糸,延伸の際、導電性成
分と保護成分の剥離を生じ、製糸が困難である。一方、
総量が10重量%以上では、熱安定性或いは保護成分と
しての可紡性が低下することがあり好ましくない。
The total amount of the unsaturated carboxylic acid or its derivative in the protective component is usually 0.1 to 10% by weight, preferably 0.5 to 7% by weight, most preferably 1 to 5% by weight based on the polyolefin. It is. Total weight is 0.1% by weight
If it is less than 30, the adhesion to the polyamide or polyester forming the conductive component is deteriorated, and the conductive component and the protective component are peeled off during spinning and drawing, making it difficult to form a yarn. on the other hand,
If the total amount is 10% by weight or more, heat stability or spinnability as a protective component may be undesirably reduced.

【0013】また、導電性成分,保護成分には、さらに
分散剤(ワックス類,ポリアルキレンオキシド類,各種
界面活性剤,有機電解質など)、着色剤、熱安定剤(酸
化防止剤,紫外線吸収剤など)、流動性改善剤その他の
添加剤を加えることができる。
The conductive component and the protective component further include a dispersant (waxes, polyalkylene oxides, various surfactants, organic electrolytes, etc.), a coloring agent, a heat stabilizer (an antioxidant, an ultraviolet absorber). Etc.), flowability improvers and other additives can be added.

【0014】本発明の複合繊維の横断面形状は円形でも
非円形でもよく特に限定されないが、導電性成分と保護
成分の複合形態は重要である。即ち複合繊維の横断面形
状において、導電性成分の少なくとも一部が繊維表面に
露出していることが肝要である。図1〜図5は本発明に
用いることができる複合構造の例を示す複合繊維の横断
面図である。図において1は導電性成分を、2は保護成
分を示す。図1は3層型の例、図2は放射型の例、図3
は鍵穴型の例、図4は多重化した鍵穴型の例、図5は並
列(サイドバイサイド)型の例である。導電性成分を繊
維表面に露出させることにより制電性能(帯電防止性)
に優れた導電性繊維が得られる。導電性成分の複合比率
(断面積占有率)については、導電性粒子を多量に混合
した導電性成分は曳糸性(紡糸性)や強伸度などに劣る
傾向があるため、通常50%以下であり、好ましくは3
0%以下、より好ましくは2〜20%である。
The cross-sectional shape of the composite fiber of the present invention may be circular or non-circular, and is not particularly limited, but the composite form of the conductive component and the protective component is important. That is, in the cross-sectional shape of the conjugate fiber, it is important that at least a part of the conductive component is exposed on the fiber surface. 1 to 5 are cross-sectional views of a composite fiber showing an example of a composite structure that can be used in the present invention. In the figure, 1 indicates a conductive component and 2 indicates a protective component. 1 is an example of a three-layer type, FIG. 2 is an example of a radial type, FIG.
4 shows an example of a keyhole type, FIG. 4 shows an example of a multiplexed keyhole type, and FIG. 5 shows an example of a parallel (side-by-side) type. Antistatic performance (antistatic property) by exposing conductive component to fiber surface
An excellent conductive fiber can be obtained. Regarding the compounding ratio (cross-sectional area occupancy) of the conductive component, the conductive component containing a large amount of conductive particles tends to have poor spinnability (spinnability) and high elongation. And preferably 3
0% or less, more preferably 2 to 20%.

【0015】[0015]

【実施例】以下、実施例によって本発明を具体的に説明
する。
The present invention will be specifically described below with reference to examples.

【0016】実施例1 分子量14000のナイロン6に導電性カーボンブラッ
クを35重量%混合分散した導電性重合体組成物をCP
1とする。メルトフローレート値(試験法 ASTM
D1238)35g/10分、融点150℃のポリプロ
ピレンに導電性カーボンブラックを35重量%混合分散
した導電性重合体組成物をCP2とする。また、無水マ
レイン酸を5重量%グラフト重合したメルトフローレー
ト値が17g/10分、融点163℃の変性ポリプロピ
レンをP1とする。分子量16000のナイロン6をP
2とする。メルトフローレート値が23g/10分、融
点150℃のポリプロピレンをP3とする。
Example 1 A conductive polymer composition obtained by mixing and dispersing 35% by weight of conductive carbon black in nylon 6 having a molecular weight of 14000 was prepared by using CP.
Let it be 1. Melt flow rate value (Test method ASTM
D1238) A conductive polymer composition obtained by mixing and dispersing 35% by weight of conductive carbon black in polypropylene having a melting point of 150 ° C. and a melting point of 35 g / 10 minutes is referred to as CP2. A modified polypropylene having a melt flow rate of 17 g / 10 min and a melting point of 163 ° C. obtained by graft polymerization of maleic anhydride at 5% by weight is designated as P1. Nylon 6 with a molecular weight of 16000
Let it be 2. A polypropylene having a melt flow rate of 23 g / 10 minutes and a melting point of 150 ° C. is designated as P3.

【0017】CP1,CP2を導電性成分、P1,P
2,P3を保護成分とし、表1に示すような複合構造で
溶融紡糸した。両成分の複合比(体積比)を1:10と
し、紡糸温度270℃で、径0.25mmのオリフィス
から紡出し、冷却オイリングしながら700m/分の速
度で巻取る。次いで、85℃の延伸ローラー上で2.4
倍に延伸し、120℃の熱プレート上で熱処理して巻取
り、72デニール/24フィラメントを得た。さらに、
これらフィラメントを約100,000デニールに合糸
し、スタッファー型捲縮加工機により約15個/25m
mのクリンプをかけ、51mm長にカットし、ステープ
ルY1〜Y4を得た。ステープルY1〜Y4の単糸1c
mあたりの電気抵抗値を表1に示すが、いずれも107
Ω/cmオーダーの良好な導電性能を有していた。
CP1 and CP2 are conductive components, and P1 and P2
2, P3 was used as a protective component and melt-spun in a composite structure as shown in Table 1. The composite ratio (volume ratio) of both components is set to 1:10, and the mixture is spun from an orifice having a diameter of 0.25 mm at a spinning temperature of 270 ° C. and wound at a speed of 700 m / min while cooling oiling. Then, on a stretching roller at 85 ° C., 2.4.
The film was stretched twice, heat-treated on a hot plate at 120 ° C., and wound to obtain 72 denier / 24 filaments. further,
These filaments are plied to about 100,000 denier, and about 15 filaments / 25m are processed by a stuffer type crimping machine.
m, and cut into 51 mm lengths to obtain staples Y1 to Y4. Single yarn 1c of staples Y1 to Y4
shows an electric resistance per m in Table 1, both 10 7
It had good conductive performance on the order of Ω / cm.

【0018】次いでステープルY1〜Y4を別途作成し
た単糸1.5デニール、15個/25mmクリンプ、5
1mmカット長のポリプロピレン(メルトフローレート
値23g/10分)ステープルに混率10重量%で混綿
し目付50g/m2 ウエブを作成、さらにこれらのウエ
ブを温度140℃のローラー、線圧30kg/cmで格
子模様にエンボス加工を施し不織布化した。これら不織
布の表面抵抗率を測定した結果を表1に示す。Y1の不
織布の表面抵抗率は2.3×107 Ωで導電性に優れて
いたが、Y2,Y3,Y4の不織布では、いずれも10
10〜1011Ωオーダーで導電性に劣っていた。Y2の不
織布は、その表面をネル布で擦ると導電性繊維が数多く
抜けた。また、Y4の不織布の表面を走査型電子顕微鏡
で観察したところ、導電性繊維の導電性成分が変形また
は切断されていた。
Next, staples Y1 to Y4 were separately prepared, 1.5 denier single yarn, 15 staples / 25 mm crimp,
A 1 mm cut length polypropylene (melt flow rate value: 23 g / 10 min) staple was blended at a blending ratio of 10% by weight to produce a basis weight of 50 g / m 2 web. The lattice pattern was embossed to make a nonwoven fabric. Table 1 shows the results of measuring the surface resistivity of these nonwoven fabrics. The surface resistivity of the nonwoven fabric of Y1 was 2.3 × 10 7 Ω, which was excellent in conductivity, but the nonwoven fabric of Y2, Y3, and Y4 had a surface resistivity of 10 × 10 7 Ω.
The conductivity was poor in the order of 10 to 10 11 Ω. When the surface of the nonwoven fabric of Y2 was rubbed with a flannel cloth, many conductive fibers were removed. When the surface of the nonwoven fabric of Y4 was observed with a scanning electron microscope, the conductive component of the conductive fiber was deformed or cut.

【0019】 [0019]

【0020】実施例2 分子量15000、融点257℃のポリエチレンテレフ
タレートに、表面に酸化すずの皮膜15%を有する酸化
チタン粒子に対して1.5%の酸化アンチモンを混合焼
成して得られた淡灰青色の平均粒径0.25μm、比抵
抗4.0Ωcmの導電性粉末を65重量%混合、分散さ
せた導電性成分をCP3とする。CP3を導電性成分、
P1を保護成分として、複合比率1/10で図5に示す
ようなサイドバイサイド型に複合し、紡糸温度を290
℃とした以外は実施例1と同一条件でステープルY5を
作成した。Y5の電気抵抗値は3.2×107 Ω/cm
で良好な導電性を有していた。Y5を実施例1の前記ポ
リプロピレンステープルに混合率10重量%で混綿し、
140℃のローラーで線圧30kgで格子形状にエンボ
ス加工し不織布を作成した。この不織布の表面抵抗率は
5.4×108 Ωで導電性に優れていた。
Example 2 Light gray blue color obtained by mixing and firing 1.5% antimony oxide to titanium oxide particles having a 15% tin oxide film on polyethylene terephthalate having a molecular weight of 15000 and a melting point of 257 ° C. The conductive component obtained by mixing and dispersing 65% by weight of a conductive powder having an average particle size of 0.25 μm and a specific resistance of 4.0 Ωcm is referred to as CP3. CP3 is a conductive component,
P1 was used as a protective component and compounded at a compounding ratio of 1/10 into a side-by-side type as shown in FIG.
A staple Y5 was prepared under the same conditions as in Example 1 except that the temperature was changed to ° C. The electric resistance value of Y5 is 3.2 × 10 7 Ω / cm.
And had good conductivity. Y5 was mixed with the polypropylene staple of Example 1 at a mixing ratio of 10% by weight,
A nonwoven fabric was prepared by embossing into a lattice shape at a linear pressure of 30 kg with a roller at 140 ° C. The surface resistivity of this nonwoven fabric was 5.4 × 10 8 Ω, which was excellent in conductivity.

【0021】[0021]

【発明の効果】本発明のオレフィン系導電性複合繊維は
制電性能に優れ、ポリオレフィンとの接着性に富み、更
に容易に製造できる。しかも通常の合成繊維と同様な取
扱いができ、連続フィラメントまたはステープル状で、
捲縮しない状態または捲縮した状態で、ポリオレフィン
素材の不織布に公知の方法で混合でき、繊維製品への制
電性付与が可能となる。もちろん、ポリオレフィン以外
の他の素材の繊維製品にも混用でき、繊維製品への混用
率は通常0.1〜5重量%程度、目的によっては5〜1
00重量%や0.1重量%未満の混率が適応される場合
もある。
The olefin-based conductive conjugate fiber of the present invention is excellent in antistatic performance, has excellent adhesion to polyolefin, and can be produced more easily. Moreover, it can be handled in the same way as ordinary synthetic fibers, and is in the form of continuous filaments or staples.
In a non-crimped state or in a crimped state, it can be mixed with a nonwoven fabric of a polyolefin material by a known method, and antistatic properties can be imparted to a fiber product. Of course, it can be mixed with fiber products of materials other than polyolefin, and the mixing ratio to fiber products is usually about 0.1 to 5% by weight, and depending on the purpose, it is 5 to 1% by weight.
In some cases, a mixing ratio of less than 00% by weight or 0.1% by weight is applied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の導電性複合繊維の複合構造の具体例で
ある。
FIG. 1 is a specific example of a composite structure of a conductive composite fiber of the present invention.

【図2】本発明の導電性複合繊維の複合構造の具体例で
ある。
FIG. 2 is a specific example of a composite structure of the conductive composite fiber of the present invention.

【図3】本発明の導電性複合繊維の複合構造の具体例で
ある。
FIG. 3 is a specific example of a composite structure of the conductive composite fiber of the present invention.

【図4】本発明の導電性複合繊維の複合構造の具体例で
ある。
FIG. 4 is a specific example of a composite structure of the conductive composite fiber of the present invention.

【図5】本発明の導電性複合繊維の複合構造の具体例で
ある。
FIG. 5 is a specific example of a composite structure of the conductive composite fiber of the present invention.

【図6】本発明の優位性を示すのに用いた導電性複合繊
維の複合構造の比較例である。
FIG. 6 is a comparative example of a composite structure of a conductive composite fiber used to show the superiority of the present invention.

【符号の説明】[Explanation of symbols]

1 導電性複合繊維の導電性成分 2 導電性複合繊維の保護成分(非導電性成分) 1 Conductive component of conductive composite fiber 2 Protective component of conductive composite fiber (non-conductive component)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性粒子を含有するポリアミドまたは
ポリエステル組成物からなる導電性成分と、不飽和カル
ボン酸またはその誘導体をグラフト重合した変性ポリオ
レフィンを少なくとも一部溶融混合したポリオレフィン
からなる保護成分とを、導電性成分の少なくとも一部が
繊維表面に露出するように複合してなることを特徴とす
る導電性複合繊維。
1. A conductive component comprising a polyamide or polyester composition containing conductive particles, and a protective component comprising a polyolefin obtained by melt-mixing at least a part of a modified polyolefin obtained by graft polymerization of an unsaturated carboxylic acid or a derivative thereof. A conductive composite fiber, wherein at least a part of the conductive component is composited so as to be exposed on the fiber surface.
【請求項2】 保護成分中の不飽和カルボン酸またはそ
の誘導体の総量が、ポリオレフィンに対して0.1〜1
0重量%である請求項1記載の導電性複合繊維。
2. The total amount of the unsaturated carboxylic acid or its derivative in the protective component is 0.1 to 1 with respect to the polyolefin.
The conductive conjugate fiber according to claim 1, which is 0% by weight.
【請求項3】 不飽和カルボン酸またはその誘導体が、
不飽和ジカルボン酸またはその無水物である請求項1記
載の導電性複合繊維。
3. An unsaturated carboxylic acid or a derivative thereof,
The conductive conjugate fiber according to claim 1, which is an unsaturated dicarboxylic acid or an anhydride thereof.
JP5085351A 1993-03-19 1993-03-19 Polyolefin-based conductive composite fiber Expired - Fee Related JP3032396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5085351A JP3032396B2 (en) 1993-03-19 1993-03-19 Polyolefin-based conductive composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5085351A JP3032396B2 (en) 1993-03-19 1993-03-19 Polyolefin-based conductive composite fiber

Publications (2)

Publication Number Publication Date
JPH06272113A JPH06272113A (en) 1994-09-27
JP3032396B2 true JP3032396B2 (en) 2000-04-17

Family

ID=13856270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5085351A Expired - Fee Related JP3032396B2 (en) 1993-03-19 1993-03-19 Polyolefin-based conductive composite fiber

Country Status (1)

Country Link
JP (1) JP3032396B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101894006B1 (en) * 2016-04-20 2018-08-31 주식회사 오파테크 Smart braille learning device and braille learning method using the same
KR101956303B1 (en) * 2018-02-08 2019-03-08 주식회사 오파테크 Smart braille learning device and braille learning method using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161050A (en) * 2014-02-28 2015-09-07 株式会社クラレ conductive composite fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101894006B1 (en) * 2016-04-20 2018-08-31 주식회사 오파테크 Smart braille learning device and braille learning method using the same
KR101956303B1 (en) * 2018-02-08 2019-03-08 주식회사 오파테크 Smart braille learning device and braille learning method using the same

Also Published As

Publication number Publication date
JPH06272113A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
CA1158816A (en) Conductive composite filaments and methods for producing said composite filaments
JP3032396B2 (en) Polyolefin-based conductive composite fiber
JP2988818B2 (en) Polyolefin-based conductive composite fiber
JP2004225214A (en) Electroconductive conjugated fiber
JPH01292116A (en) Electrically conductive fiber and production thereof
JPS6156334B2 (en)
JP5504048B2 (en) Conductive composite fiber
JP3129602B2 (en) Polyolefin-based conductive composite fiber
JP2005194650A (en) Conductive conjugate fiber
JPS61113824A (en) Electrically conductive composite fiber
JP2778981B2 (en) Conductive composite fiber and method for producing the same
JP2633067B2 (en) Conductive composite fiber
JPS5860015A (en) Preparation of electrically conductive composite fiber
JPS61201015A (en) Thermally bondable conjugated yarn
JPS5994618A (en) Electrically conductive composite fiber
JP3635152B2 (en) Conductive composite fiber
JP3113054B2 (en) Conductive composite fiber
JP3238535B2 (en) Conductive composite fiber
JP3133633B2 (en) Conductive composite fiber
JPH042808A (en) Electrically conductive conjugate fiber
JP2856798B2 (en) Conductive fiber
JP2599785B2 (en) Conductive composite fiber
JPH03241010A (en) Electrically conductive conjugate fiber
JPH07133510A (en) Electrically-conductive conjugate yarn
JPS61132626A (en) Conjugated fiber of high conductivity

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees