JP3129602B2 - Polyolefin-based conductive composite fiber - Google Patents

Polyolefin-based conductive composite fiber

Info

Publication number
JP3129602B2
JP3129602B2 JP06123190A JP12319094A JP3129602B2 JP 3129602 B2 JP3129602 B2 JP 3129602B2 JP 06123190 A JP06123190 A JP 06123190A JP 12319094 A JP12319094 A JP 12319094A JP 3129602 B2 JP3129602 B2 JP 3129602B2
Authority
JP
Japan
Prior art keywords
conductive
fiber
polyolefin
component
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06123190A
Other languages
Japanese (ja)
Other versions
JPH07310234A (en
Inventor
淳 成瀬
英伸 堤
啓二 中西
荘一 村上
Original Assignee
鐘紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鐘紡株式会社 filed Critical 鐘紡株式会社
Priority to JP06123190A priority Critical patent/JP3129602B2/en
Publication of JPH07310234A publication Critical patent/JPH07310234A/en
Application granted granted Critical
Publication of JP3129602B2 publication Critical patent/JP3129602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、静電気による障害が発
生し易い分野に用いられるポリオレフィン不織布に適し
たポリオレフィン系の導電性複合繊維に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyolefin-based conductive conjugate fiber suitable for a polyolefin nonwoven fabric used in a field in which troubles are easily caused by static electricity.

【0002】[0002]

【従来の技術】ポリプロピレンなどのポリオレフィンを
素材とする不織布は、耐薬品性,柔軟性,吸油性に優れ
かつ安価であるため、各種表層材,フィルター,油吸着
材などに広く用いられている。しかしながら、該不織布
は本質的に疎水性であるため静電気を生起しやすく、特
に電子機器のカバー材や防塵衣料などに適用される場
合、高い制電性能(帯電防止性能)が要求される。
2. Description of the Related Art Nonwoven fabrics made of a polyolefin such as polypropylene are widely used for various surface materials, filters, oil adsorbents, etc. because of their excellent chemical resistance, flexibility, oil absorption and low cost. However, since the nonwoven fabric is inherently hydrophobic, it tends to generate static electricity, and particularly when applied to a cover material of electronic equipment or dustproof clothing, high antistatic performance (antistatic performance) is required.

【0003】一般に、不織布の帯電を防止するために、
炭素繊維(特開平2−41453号公報)や金属繊維
(特開昭63−315653号公報)またはカーボンブ
ラックなどの導電粒子を含有した導電性複合繊維などの
導電性繊維を少量混入する方法が行われている。導電性
繊維混合不織布は、通常の不織布構成繊維の綿と導電性
繊維の綿を混綿し、カードしてウェブ化し、これをニー
ドルあるいは熱及び水流などの方法で交絡処理を施して
製造される。しかし、金属繊維や炭素繊維は、捲縮付与
ができず、通常の合成繊維素材との熱接着性にも劣るた
め、上述の交絡処理時、ウェブから脱落し易い。このよ
うな理由から、捲縮などの通常の合成繊維と同等の加工
ができる導電性複合繊維は、比較的よく用いられてい
る。また、導電性複合繊維の中でも、繊維軸方向に連続
して導電成分が繊維表面に露出したもの(導電成分露出
型)は、導電成分を芯,保護成分を鞘とした芯鞘型に比
べ、コロナ放電性すなわち制電性に優れるため、より多
く用いられている。
Generally, in order to prevent the non-woven fabric from being charged,
A method of mixing a small amount of conductive fibers such as carbon fibers (Japanese Patent Application Laid-Open No. 2-41453), metal fibers (Japanese Patent Application Laid-Open No. 63-315653), or conductive composite fibers containing conductive particles such as carbon black has been practiced. Have been done. The conductive fiber-mixed nonwoven fabric is produced by mixing ordinary nonwoven fabric fiber cotton and conductive fiber cotton, forming a card and forming a web, and performing a confounding treatment with a needle or a method such as heat and water flow. However, metal fibers and carbon fibers cannot be crimped and have poor thermal adhesiveness to ordinary synthetic fiber materials, and thus easily fall off the web during the above-described entanglement treatment. For these reasons, conductive composite fibers that can be processed similarly to ordinary synthetic fibers such as crimps are relatively frequently used. Further, among the conductive conjugate fibers, those in which the conductive component is continuously exposed in the fiber axis direction on the fiber surface (conductive component exposed type) are compared with the core-sheath type in which the conductive component is a core and the protective component is a sheath. It is used more frequently because of its excellent corona discharge property, that is, excellent antistatic property.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
導電成分露出型の導電性複合繊維では、ポリオレフィン
不織布に適応できない場合があった。特に、不織布の構
成繊維同士の接着および交絡、または不織布の模様付け
として行うエンボス,カレンダー加工などの上述の熱的
接着加工の際、ポリオレフィン素材の導電性複合繊維で
は、保護成分との接着性の点から導電成分にもポリオレ
フィンを用いているため、保護成分のみならず導電成分
をも溶融変形や切断を起こし導電性の著しい低下あるい
は消失を招くことが多い。また、ポリアミド,ポリエス
テルなどのポリオレフィン以外の素材の導電性複合繊維
では、ポリオレフィンとの親和性がないため、上述の熱
的接着加工を行っても、その後の加工もしくは製品使用
中に、不織布中から導電性繊維が抜け落ちることが多
い。このように、ポリオレフィンとの接着性に富み、導
電成分の融点および軟化点がポリオレフィンのそれより
高く、かつ制電性に優れたポリオレフィン不織布に適し
た導電性複合繊維は、未だ得られていないのが現状であ
る。本発明の目的は、工業生産可能なポリオレフィン不
織布に適したポリオレフィン系の導電性複合繊維を提供
することにある。
However, in some cases, the conventional conductive composite fiber of the conductive component exposed type cannot be applied to a polyolefin nonwoven fabric. In particular, in the above-mentioned thermal bonding process such as embossing and calendering performed for bonding and entanglement of the constituent fibers of the nonwoven fabric or as a patterning of the nonwoven fabric, the conductive composite fiber of the polyolefin material has an adhesive property with the protective component. In view of this, since polyolefin is used as the conductive component, not only the protective component but also the conductive component may be melt-deformed or cut, often causing a significant decrease or loss of conductivity. In addition, conductive conjugate fibers made of materials other than polyolefins such as polyamides and polyesters do not have an affinity with polyolefins. Conductive fibers often fall off. As described above, a conductive composite fiber suitable for a polyolefin nonwoven fabric having a high adhesiveness with a polyolefin, a melting point and a softening point of a conductive component higher than that of the polyolefin, and having excellent antistatic properties has not yet been obtained. Is the current situation. An object of the present invention is to provide a polyolefin-based conductive conjugate fiber suitable for a polyolefin nonwoven fabric that can be industrially produced.

【0005】[0005]

【課題を解決するための手段】すなわち本発明は、熱可
塑性ポリマー(P1)に導電性粒子を分散した比抵抗1
7 Ωcm未満の導電性組成物(CP)50〜90体積
%と繊維形成性ポリオレフィン(P2)10〜50体積
%との混合物Aと、非導電性の繊維形成性ポリオレフィ
ンBとが接合され、かつA成分の少なくとも一部が繊維
軸方向において繊維表面に露出するように複合してなる
ことを特徴とする導電性複合繊維である。
That is, the present invention relates to a specific resistance of a thermoplastic polymer (P1) in which conductive particles are dispersed.
A mixture A of 50 to 90% by volume of the conductive composition (CP) of less than 0 7 Ωcm and 10 to 50% by volume of the fiber-forming polyolefin (P2) is joined to the non-conductive fiber-forming polyolefin B, The conductive conjugate fiber is characterized in that at least a part of the component A is conjugated so as to be exposed on the fiber surface in the fiber axis direction.

【0006】本発明における導電性組成物(CP)は、
導電性粒子を分散した熱可塑性ポリマーからなる。該熱
可塑性ポリマー(P1)には、上記のポリオレフィン不
織布の熱的加工により溶融変形,切断されないこと、す
なわち、ポリオレフィンより融点や軟化点が高いことが
要求され、特に融点または軟化点が170℃以上、好ま
しくは200℃以上のものであれば特に限定されるもの
ではない。このような熱可塑性ポリマーとしては、ナイ
ロン6,ナイロン66,ナイロン10,ナイロン12な
どまたはこれらを主成分とする変成ポリアミド共重合体
などのポリアミド、またポリエチレンテレフタレート,
ポリブチレンテレフタレート,ポリエチレンオキシベン
ゾエードなどまたはこれらを主成分とする変形ポリエス
テル共重合体などのポリエステルなど公知のものが使用
できる。
The conductive composition (CP) according to the present invention comprises:
It is made of a thermoplastic polymer in which conductive particles are dispersed. The thermoplastic polymer (P1) is required not to be melted and deformed or cut by thermal processing of the above-mentioned nonwoven fabric of polyolefin, that is, to have a higher melting point and softening point than that of polyolefin. The temperature is preferably 200 ° C. or higher, and is not particularly limited. Examples of such thermoplastic polymers include polyamides such as nylon 6, nylon 66, nylon 10, nylon 12, and the like, and modified polyamide copolymers containing these as a main component, polyethylene terephthalate, and the like.
Known materials such as polyesters such as polybutylene terephthalate, polyethylene oxybenzoate, and modified polyester copolymers containing these as a main component can be used.

【0007】導電性粒子には、導電性カーボンブラック
や銀,ニッケル,銅,鉄あるいはこれらの合金などの金
属粉、また硫化銅,沃化銅,硫化亜鉛,硫化カドミウム
などの金属化合物や、アンチモンあるいはインジウムを
ドーピングした酸化錫,アルミニウム,インジウム,ゲ
ルマニウムあるいは錫などをドーピングした酸化亜鉛な
ど第2成分(不純物)の少量、通常50%以下、多くの
場合25%以下ドーピングした導電性金属酸化物粒子が
挙げられる。更に、酸化チタン,酸化亜鉛,酸化マグネ
シウム,酸化錫,酸化鉄,酸化珪素,酸化アルミニウム
などの非導電性無機物粒子の表面に上記金属化合物や導
電性金属酸化物の導電性皮膜を形成した粒子も用いられ
る。これら導電粒子の中でも、導電性カーボンブラック
やアンチモンをドーピングした導電性酸化錫およびこれ
をコーティングした酸化チタンは、粒径が小さくて均一
な粒子が容易に得られ、特に好適である。
The conductive particles include metal powders such as conductive carbon black, silver, nickel, copper, iron and alloys thereof, metal compounds such as copper sulfide, copper iodide, zinc sulfide and cadmium sulfide, and antimony. Alternatively, conductive metal oxide particles doped with a small amount of a second component (impurity) such as tin oxide doped with indium, aluminum, indium, germanium, or tin oxide, usually 50% or less, and often 25% or less. Is mentioned. In addition, non-conductive inorganic particles such as titanium oxide, zinc oxide, magnesium oxide, tin oxide, iron oxide, silicon oxide, and aluminum oxide may also be formed by forming a conductive film of the above metal compound or conductive metal oxide on the surface of the particles. Used. Among these conductive particles, conductive tin oxide doped with conductive carbon black or antimony and titanium oxide coated with the same are particularly preferable because uniform particles having a small particle size can be easily obtained.

【0008】導電性粒子の導電性は、粉末状(50Kg
/cm2 加圧下)での比抵抗(体積抵抗率)が104 Ω
cm程度以下、特に102 Ωcm程度以下が好ましく、
101 Ωcm程度以下が最も好ましい。実際に102
10-3Ωcm程度のものが得られ、本発明の目的に好適
に応用することができるが、更に優れた導電性のものは
一層好ましい。また、導電性粒子が充分小さい粒径のも
のでなくてはならない。平均粒径が1〜2μmのものも
使用不可能ではないが、粗大粒子が核となり、紡糸,延
伸時の糸切れを誘発する場合が多い。このため、通常平
均粒径が1μm以下、特に0.5μm以下、最も好まし
くは0.3μm以下のものを用いる。
The conductivity of the conductive particles is in the form of a powder (50 kg
/ Cm 2 under pressure) with a specific resistance (volume resistivity) of 10 4 Ω
cm or less, particularly preferably about 10 2 Ωcm or less,
Most preferably, it is about 10 1 Ωcm or less. Actually 10 2 ~
Those having a conductivity of about 10 −3 Ωcm can be suitably used for the purpose of the present invention, but those having more excellent conductivity are more preferable. In addition, the conductive particles must have a sufficiently small particle size. Although those having an average particle size of 1 to 2 μm are not unusable, coarse particles serve as nuclei and often cause yarn breakage during spinning and stretching. For this reason, those having an average particle size of usually 1 μm or less, particularly 0.5 μm or less, and most preferably 0.3 μm or less are used.

【0009】導電性粒子の熱可塑性ポリマー(P1)へ
の混合率は、混合するポリマーの性質や結晶性、また導
電性粒子の種類、導電性,粒子形状,粒子径などによっ
て異なるが、多くの場合10〜85重量%程度の範囲内
であり、特に15〜80重量%が好ましい。10重量%
未満では、導電性が発現しないことが多く、一方、85
重量%を越えると粒子をポリマーに均一に分散すること
が困難となり、仮に多大の努力で分散し得ても、ポリマ
ーの流動性が低下し、紡糸に支障を来すので好ましくな
い。導電性成分の比抵抗は107 Ωcm未満であること
が必要であり、104 Ωcm以下が好ましく、102 Ω
cm以下が特に好ましい。
The mixing ratio of the conductive particles to the thermoplastic polymer (P1) varies depending on the properties and crystallinity of the polymer to be mixed, the type, the conductivity, the particle shape, the particle size, etc. of the conductive particles. In this case, the content is in the range of about 10 to 85% by weight, and particularly preferably 15 to 80% by weight. 10% by weight
If it is less than 5, the conductivity often does not appear, while 85
If the amount is more than 10% by weight, it is difficult to uniformly disperse the particles in the polymer, and even if the particles can be dispersed with great effort, the fluidity of the polymer is lowered, and the spinning is hindered. The specific resistance of the conductive component needs to be less than 10 7 Ωcm, preferably 10 4 Ωcm or less, and more preferably 10 2 Ωcm.
cm or less is particularly preferred.

【0010】本発明において使用する繊維形成性のポリ
オレフィン(P2)及びBは、ポリエチレン,ポリプロ
ピレン,ポリブテン−1など、およびこれらの共重合体
のうち溶融紡糸可能であればあらゆるポリオレフィンが
使用可能である。
As the fiber-forming polyolefin (P2) and B used in the present invention, polyethylene, polypropylene, polybutene-1, and the like, and all copolymers of these copolymers can be used if they can be melt-spun. .

【0011】また、上記P1とP2の組合わせは、特に
限定されるものではないが、延伸等による剥離をより一
層防止できるという点では、接着性に富む組合わせが好
ましい。例えば、P1にポリアミドやポリエステル、P
2にアクリル酸や無水マレイン酸などの不飽和ジカルボ
ン酸またはその無水物で変性したポリオレフィンとした
組合わせなどが挙げられる。
The combination of P1 and P2 is not particularly limited, but a combination having high adhesiveness is preferable from the viewpoint that peeling due to stretching or the like can be further prevented. For example, P1 is polyamide or polyester, P
As No. 2, there may be mentioned a combination of an unsaturated dicarboxylic acid such as acrylic acid and maleic anhydride or a polyolefin modified with an anhydride thereof.

【0012】また、導電性成分,保護成分には、さらに
分散剤(ワックス類,ポリアルキレンオキシド類,各種
界面活性剤,有機電解質など),着色剤,熱安定剤(酸
化防止剤,紫外線吸収剤など),流動性改善剤その他の
添加剤を加えることができる。
The conductive component and the protective component further include a dispersant (waxes, polyalkylene oxides, various surfactants, organic electrolytes, etc.), a coloring agent, a heat stabilizer (an antioxidant, an ultraviolet absorber). Etc.), a fluidity improver and other additives can be added.

【0013】本発明の繊維は、導電性組成物(CP)
繊維形成性ポリオレフィン(P2)の混合物Aと繊維形
成性ポリオレフィンBの保護成分とが接合された複合繊
維であり、かつ導電性混合物成分Aは繊維表面に露出し
ていることが肝要である。このような複合構造をとるこ
とにより、Bと元来接着しないP1が延伸等による繊維
からの剥落を起こさず、かつ優れた制電性能を有する導
電性複合繊維の製造が可能となる。混合物A中に占める
導電性組成物(CP)の割合は、CPとP2の溶融粘
度、相溶性によっても異なるが、通常50〜90体積
%、好ましくは60〜80体積%、最も好ましくは65
〜75体積%であることが必要である。50体積%以下
では、一般にP2より溶融粘度の高いCPが繊維軸方向
において断続的となったり、またCPが混合物A中で海
島構造の島に相当する構造となり繊維表面に露出しなか
ったりし、導電性能,制電性能に劣る傾向がある。一
方、90体積%以上とすると紡糸・延伸及び加工工程に
おいてA成分とB成分間の剥離が生じ易く好ましくな
い。
The fiber of the present invention is a composite fiber in which a mixture A of a conductive composition (CP) and a fiber-forming polyolefin (P2) is bonded to a protective component of a fiber-forming polyolefin B, and a conductive mixture. It is important that component A is exposed on the fiber surface. By adopting such a composite structure, it is possible to produce a conductive composite fiber having excellent antistatic performance without causing P1 which originally does not adhere to B to be separated from the fiber by drawing or the like. The proportion of the conductive composition (CP) in the mixture A varies depending on the melt viscosity and compatibility of CP and P2, but is usually 50 to 90% by volume, preferably 60 to 80% by volume, and most preferably 65 to 90% by volume.
It needs to be ~ 75% by volume. At 50% by volume or less, CP having a melt viscosity higher than that of P2 generally becomes discontinuous in the fiber axis direction, or CP becomes a structure corresponding to an island having a sea-island structure in the mixture A, and is not exposed to the fiber surface. It tends to have poor conductivity and antistatic performance. On the other hand, if the content is 90% by volume or more, peeling between the component A and the component B is apt to occur in the spinning / drawing and processing steps, which is not preferable.

【0014】本発明の繊維は溶融紡糸方法(複合)によ
って製造する。導電性組成物(CP)と繊維形成性ポリ
オレフィンP2の混合は、任意の方法によって混合がで
きる。例えば、単軸または2軸溶融押出機中で機械的に
混練する方法、ポリマー流路内に設けた静止型混練器に
よる混合方法、あるいは紡糸パック内に3〜5個程度の
比較的少ない静止型混練素子を設けて混合する方法など
及びこれらの併用を用いることができる。
The fiber of the present invention is produced by a melt spinning method (composite). The conductive composition (CP) and the fiber-forming polyolefin P2 can be mixed by any method. For example, a method of mechanically kneading in a single-screw or twin-screw extruder, a method of mixing with a static kneader provided in a polymer flow path, or a relatively small static type of about 3 to 5 pieces in a spinning pack A method of providing a kneading element and mixing, or a combination thereof can be used.

【0015】本発明の複合繊維の断面(輪郭)は円形で
もよく、非円形でもよく特に限定されないが、複合繊維
の横断面形上において、導電性組成物(CP)とポリオ
レフィン(P2)の混合物Aの少なくとも一部が繊維表
面に露出していることが肝要である。図1〜図4は本発
明に用いることができる複合構造の例を示す複合繊維の
横断面図である。図においてAは導電性組成物(CP)
とポリオレフィン(P2)との混合物を示し、Bは非導
電性の繊維形成性ポリオレフィンBの保護成分である。
図1は3層型の例、図2は放射型の例、図3は鍵穴型の
例、図4は多重化した鍵穴型の例である。混合物A、す
なわち導電性組成物(P1)を繊維表面に露出させるこ
とにより制電性能(帯電防止性)に優れた導電性複合繊
維が得られ、また、元来Bと接着しない導電性組成物が
ポリオレフィンの保護成分から剥落することなく、製糸
が可能となる。導電性組成物Aの複合比率(断面積占有
率)については、導電性粒子を多量に混合した導電性組
成物は曳糸性(紡糸性)や強伸度などに劣る傾向がある
ため、通常50%以下が好ましく、特に30%以下、よ
り好ましくは20%以下が好適である。
The cross section (contour) of the conjugate fiber of the present invention may be circular or non-circular, and is not particularly limited. However, a mixture of the conductive composition (CP) and the polyolefin (P2) may be formed on the cross section of the conjugate fiber. It is important that at least a part of A is exposed on the fiber surface. 1 to 4 are cross-sectional views of a conjugate fiber showing an example of a conjugate structure that can be used in the present invention. In the figure, A is a conductive composition (CP)
And shows a mixture of the polyolefin (P2), B is a protective component of the non-conductive fiber-forming polyolefin B.
1 is an example of a three-layer type, FIG. 2 is an example of a radiation type, FIG. 3 is an example of a keyhole type, and FIG. 4 is an example of a multiplexed keyhole type. By exposing the mixture A, that is, the conductive composition (P1), to the fiber surface, a conductive composite fiber having excellent antistatic performance (antistatic property) is obtained, and a conductive composition which does not originally adhere to B Can be formed without peeling off from the protective component of the polyolefin. Regarding the composite ratio (cross-sectional area occupancy) of the conductive composition A, a conductive composition in which a large amount of conductive particles are mixed tends to be inferior in spinnability (spinnability) and high elongation. It is preferably at most 50%, particularly preferably at most 30%, more preferably at most 20%.

【0016】以下、実施例によって本発明を具体的に説
明する。
Hereinafter, the present invention will be described in detail with reference to examples.

【0017】[0017]

【実施例1】分子量14000のナイロン6に導電性カ
ーボンブラックを35重量%混合分散した導電性コンパ
ウンドをCP1とする。メルトフローレート値36g/
10min、融点152℃のポリプロピレンに導電性カ
ーボンブラックを35重量%混合分散した導電性コンパ
ウンドをCP2とする。分子量20000のナイロン6
をP1とする。メルトフローレート値が23g/10m
in、融点152℃のポリプロピレンをPO1とする。
また、無水マレイン酸を2重量%グラフト重合したメル
トフローレート値(試験法 ASTM D1238)が
17g/10min、融点163℃の変性ポリプロピレ
ンをPO2とする。CP1,CP2,P1,PO1,P
O2を用いて、表1に示す複合構造、複合比率(体積比
率)にて複合紡糸を行った。温度270℃で径0.25
mm(L/D=1)のオリフィスから紡出し、冷却オイ
リングしながら700m/minの速度で捲取り、17
0デニール/24フィラメントの未延伸糸UDY1〜U
DY7を得た。なお、導電性成分を形成する導電性組成
物とポリオレフィンBは、所定の混合比率にチップブレ
ンドして単軸の溶融押出機のホッパー口から投入した。
Example 1 A conductive compound obtained by mixing and dispersing 35% by weight of conductive carbon black in nylon 6 having a molecular weight of 14,000 is designated as CP1. Melt flow rate value 36g /
A conductive compound obtained by mixing and dispersing 35% by weight of conductive carbon black in polypropylene having a melting point of 152 ° C. for 10 minutes is referred to as CP2. Nylon 6 with a molecular weight of 20,000
Is P1. Melt flow rate value is 23g / 10m
In, polypropylene having a melting point of 152 ° C. is designated as PO1.
In addition, modified polypropylene having a melt flow rate (test method ASTM D1238) of 17 g / 10 min and a melting point of 163 ° C., which is obtained by graft polymerization of maleic anhydride at 2% by weight, is designated as PO2. CP1, CP2, P1, PO1, P
Using O2, composite spinning was performed at the composite structure and composite ratio (volume ratio) shown in Table 1. 0.25 diameter at 270 ° C
mm (L / D = 1) orifice, and wound up at a speed of 700 m / min while cooling oiling.
0 denier / 24 filament undrawn yarn UDY1 to UDY
DY7 was obtained. In addition, the conductive composition forming the conductive component and the polyolefin B were chip-blended at a predetermined mixing ratio, and charged from a hopper port of a single-screw melt extruder.

【0018】[0018]

【表1】 [Table 1]

【0019】次に、未延伸糸UDY1〜UDY5を85
℃の延伸ローラー上で2.36倍に延伸し、120℃の
熱プレート上で熱処理して巻取り、72デニール/24
フィラメントの延伸糸DY1〜DY6を得た。また、U
DY7は、未延伸糸ボビンからの糸の引出し時、導電成
分の脱落物が飛散したり、捲取った糸中に毛羽,タルミ
が多く、延伸できなかった。
Next, the undrawn yarns UDY1 to UDY5 are
The film is stretched 2.36 times on a stretching roller at 120 ° C., heat-treated on a hot plate at 120 ° C. and wound up, and 72 denier / 24
Filament drawn yarns DY1 to DY6 were obtained. Also, U
In the case of DY7, when the yarn was pulled out from the undrawn yarn bobbin, the fallout of the conductive component was scattered, and the wound yarn was so fuzzy and thick that it could not be drawn.

【0020】次いで、上記延伸糸DY1〜DY6を約1
00000デニールに合糸し、スタッファー型捲縮加工
機により約15個/25mmクリンプをかけ、51mm
長にカットし、ステープルY1〜Y6を得た。ステープ
ルY1〜Y5の電気抵抗値は、5.3×107 ,5.7
×107 ,3.9×107 ,4.4×107 ,1.6×
108 Ω/cmであり、いずれも良好な導電性能を有し
ていたが、Y6は7.8×1011Ω/cmで導電性能が
劣っていた。これらステープルY1〜Y5を別途作成し
た単糸1.5デニール、15個/25mmクリンプ、5
1mmカット長のポリプロピレン(メルトフローレート
値23g/10min)ステープル綿と混率10重量%
で混綿、カードし、目付50g/m2 ウェブを作成、さ
らにこれらのウェブを温度140℃のローラー、線圧3
0Kg/cmで格子模様(5mm角)にエンボス加工を
施し不織布F1〜F5を作成した。これら不織布の温湿
度20℃、23%RH条件下での表面抵抗率の測定結果
を表2に示す。
Next, the above drawn yarns DY1 to DY6 are
Threaded to 00000 denier, crimped about 15 pieces / 25mm by stuffer type crimping machine, 51mm
It was cut into long pieces to obtain staples Y1 to Y6. The electric resistance values of the staples Y1 to Y5 are 5.3 × 10 7 and 5.7.
× 10 7 , 3.9 × 10 7 , 4.4 × 10 7 , 1.6 ×
The conductivity was 10 8 Ω / cm, and all had good conductivity. However, Y6 was 7.8 × 10 11 Ω / cm, and the conductivity was poor. These staples Y1 to Y5 were separately prepared, and a single yarn 1.5 denier, 15 pieces / 25 mm crimp,
1mm cut length polypropylene (melt flow rate value 23g / 10min) staple cotton and 10% by weight
The mixture was mixed with cotton and carded to prepare a web having a basis weight of 50 g / m 2.
The lattice pattern (5 mm square) was embossed at 0 Kg / cm to form nonwoven fabrics F1 to F5. Table 2 shows the measurement results of the surface resistivity of these nonwoven fabrics under the conditions of temperature and humidity of 20 ° C. and 23% RH.

【0021】[0021]

【表2】 [Table 2]

【0022】不織布F1,F2,F4の表面抵抗率は1
9 Ωオーダー以下で導電性に優れていたが、F3,F
5の不織布では、いずれも1011Ω以上で導電性に劣っ
ていた。不織布F5の表面を光学顕微鏡で観察したとこ
ろ、導電性複合繊維の導電性成分が施したエンボス加工
の格子模様状に溶融切断されていた。次いで、不織布F
1,F2,F4をJISL−0823(1971)に準
じ摩擦試験を行った。摩擦条件は、摩擦試験機:II型,
摩擦子:白綿布,荷重:300g,摩擦回数:500回
である。試験後の不織布の表面抵抗率は、F1,F2,
F4で5.7×108 ,7.6×108 ,8.6×10
12Ωとなり、F4の導電性の低下が著しかった。また、
F4では、試験後の摩擦子の白綿布上に抜けた導電性繊
維が数多く見受けられた。
The surface resistivity of the nonwoven fabrics F1, F2 and F4 is 1
In 0 9 Omega orders less it was excellent in conductivity but, F3, F
All of the nonwoven fabrics of No. 5 were inferior in conductivity at 10 11 Ω or more. Observation of the surface of the nonwoven fabric F5 with an optical microscope revealed that the nonwoven fabric F5 was melt-cut into an embossed lattice pattern provided with the conductive component of the conductive conjugate fiber. Next, the nonwoven fabric F
Friction test was performed on 1, F2 and F4 according to JISL-0823 (1971). The friction conditions were as follows:
Friction element: white cotton cloth, load: 300 g, number of friction: 500 times. The surface resistivity of the nonwoven fabric after the test was F1, F2,
5.7 × 10 8 , 7.6 × 10 8 , 8.6 × 10 in F4
12 Ω, and the conductivity of F4 was significantly reduced. Also,
In F4, many conductive fibers were found on the white cotton cloth of the friction element after the test.

【0023】[0023]

【発明の効果】本発明によれば、制電性能に優れ、ポリ
オレフィンとの接着性に富むポリオレフィン系導電性複
合繊維が容易に製造できる。ここで得られる複合繊維
は、通常の合成および天然繊維と同様な取扱いができ、
連続したフィラメントまたはステープル状で、捲縮しな
い状態または捲縮した状態で、ポリオレフィン素材の不
織布に公知の方法で混合でき、製品への制電性付与が可
能となる。もちろん、ポリオレフィン以外の他の素材の
繊維製品にも混用でき、繊維製品への混用率は通常0.
1〜5重量%程度、目的によっては5〜100重量%や
0.1重量%未満の混率が適応される場合もある。
According to the present invention, a polyolefin-based conductive conjugate fiber having excellent antistatic performance and excellent adhesion to polyolefin can be easily produced. The conjugate fiber obtained here can be handled in the same manner as ordinary synthetic and natural fibers,
In a continuous filament or staple form, in an uncrimped state or in a crimped state, it can be mixed with a nonwoven fabric of a polyolefin material by a known method, and it is possible to impart antistatic properties to a product. Of course, it can be mixed with fiber products of materials other than polyolefin, and the mixing ratio to fiber products is usually 0.1.
A mixing ratio of about 1 to 5% by weight, 5 to 100% by weight or less than 0.1% by weight may be applied depending on the purpose.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の導電性複合繊維の複合構造の具体例で
ある。
FIG. 1 is a specific example of a composite structure of a conductive composite fiber of the present invention.

【図2】本発明の導電性複合繊維の複合構造の具体例で
ある。
FIG. 2 is a specific example of a composite structure of the conductive composite fiber of the present invention.

【図3】本発明の導電性複合繊維の複合構造の具体例で
ある。
FIG. 3 is a specific example of a composite structure of the conductive composite fiber of the present invention.

【図4】本発明の導電性複合繊維の複合構造の具体例で
ある。
FIG. 4 is a specific example of a composite structure of the conductive composite fiber of the present invention.

【図5】本発明の優位性を示すのに用いた導電性複合繊
維の複合構造の比較例である。
FIG. 5 is a comparative example of a composite structure of a conductive composite fiber used to show the superiority of the present invention.

【符号の説明】[Explanation of symbols]

A 導電性組成物とポリオレフィンの混合物からなる複
合繊維の導電性成分 B ポリオレフィンからなる導電性複合繊維の保護成分
A Conductive component of conjugate fiber composed of a mixture of conductive composition and polyolefin B Protective component of conductive conjugate fiber composed of polyolefin

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−148811(JP,A) 特開 昭63−235526(JP,A) 特開 昭63−190017(JP,A) 特開 昭63−40211(JP,A) 特開 昭60−110920(JP,A) 特開 平2−289108(JP,A) 特開 昭55−6540(JP,A) 特開 昭61−174469(JP,A) (58)調査した分野(Int.Cl.7,DB名) D01F 8/06 D01F 1/09 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-148811 (JP, A) JP-A-63-235526 (JP, A) JP-A-63-190017 (JP, A) 40211 (JP, A) JP-A-60-110920 (JP, A) JP-A-2-289108 (JP, A) JP-A-55-6540 (JP, A) JP-A-61-174469 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) D01F 8/06 D01F 1/09

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱可塑性ポリマーに導電性粒子を分散し
た比抵抗107 Ωcm未満の導電性組成物50〜90体
積%と繊維形成性ポリオレフィン10〜50体積%との
混合物Aと、非導電性の繊維形成性ポリオレフィンBと
が接合され、かつA成分の少なくとも一部が繊維軸方向
において繊維表面に露出するように複合してなることを
特徴とする導電性複合繊維。
1. A mixture A of 50 to 90% by volume of a conductive composition having a specific resistance of less than 10 7 Ωcm, in which conductive particles are dispersed in a thermoplastic polymer, and 10 to 50% by volume of a fiber-forming polyolefin, The conductive conjugate fiber is bonded to the fiber-forming polyolefin B, and is compounded so that at least a part of the component A is exposed on the fiber surface in the fiber axis direction.
JP06123190A 1994-05-11 1994-05-11 Polyolefin-based conductive composite fiber Expired - Fee Related JP3129602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06123190A JP3129602B2 (en) 1994-05-11 1994-05-11 Polyolefin-based conductive composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06123190A JP3129602B2 (en) 1994-05-11 1994-05-11 Polyolefin-based conductive composite fiber

Publications (2)

Publication Number Publication Date
JPH07310234A JPH07310234A (en) 1995-11-28
JP3129602B2 true JP3129602B2 (en) 2001-01-31

Family

ID=14854427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06123190A Expired - Fee Related JP3129602B2 (en) 1994-05-11 1994-05-11 Polyolefin-based conductive composite fiber

Country Status (1)

Country Link
JP (1) JP3129602B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101691702B1 (en) * 2014-11-12 2016-12-30 조용연 Golf Swing Training Shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101691702B1 (en) * 2014-11-12 2016-12-30 조용연 Golf Swing Training Shaft

Also Published As

Publication number Publication date
JPH07310234A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
US4457973A (en) Conductive composite filaments and methods for producing said composite filaments
CA1158816A (en) Conductive composite filaments and methods for producing said composite filaments
AU613735B2 (en) Melt-bondable fibers for use in nonwoven web
JPWO2002075030A1 (en) Fiber composite and its use
EP0311860A2 (en) Nonwoven fabric made of heat bondable fibers
JP3129602B2 (en) Polyolefin-based conductive composite fiber
DE10161339B4 (en) Rechargeable tow, laminates under its use and goods processed therefrom
JP2988818B2 (en) Polyolefin-based conductive composite fiber
JP2006274503A (en) Dry-laid nonwoven fabric comprising polymer alloy fiber
JPS61174469A (en) Production of conductive composite fiber
JP3032396B2 (en) Polyolefin-based conductive composite fiber
JP5254532B2 (en) Conductive polyester fiber
JPH0122365B2 (en)
JP3210787B2 (en) Conductive mixed yarn
JP2778981B2 (en) Conductive composite fiber and method for producing the same
JP2834256B2 (en) Conductive composite fiber
JP3238535B2 (en) Conductive composite fiber
JP3161018B2 (en) Thermal adhesive fiber sheet and method for producing the same
JPH07133510A (en) Electrically-conductive conjugate yarn
JP3113054B2 (en) Conductive composite fiber
JP3133633B2 (en) Conductive composite fiber
JP3046509B2 (en) Conductive composite fiber
JPS61132626A (en) Conjugated fiber of high conductivity
JPS5860015A (en) Preparation of electrically conductive composite fiber
JP2006097145A (en) Fiber composite material and use thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees