JP2006097145A - Fiber composite material and use thereof - Google Patents

Fiber composite material and use thereof Download PDF

Info

Publication number
JP2006097145A
JP2006097145A JP2004281294A JP2004281294A JP2006097145A JP 2006097145 A JP2006097145 A JP 2006097145A JP 2004281294 A JP2004281294 A JP 2004281294A JP 2004281294 A JP2004281294 A JP 2004281294A JP 2006097145 A JP2006097145 A JP 2006097145A
Authority
JP
Japan
Prior art keywords
conductive
fiber
composite
fabric
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004281294A
Other languages
Japanese (ja)
Inventor
Keiji Nakanishi
啓二 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP2004281294A priority Critical patent/JP2006097145A/en
Publication of JP2006097145A publication Critical patent/JP2006097145A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Filtering Materials (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber product having good conductive performance even by a surface resistivity measuring method and excellent antistatic performance and durability. <P>SOLUTION: The fiber composite material contains a conductive conjugate fiber composed of a conductive thermoplastic component and a fiber-forming component. The conductive conjugate fiber has a conjugate structure to cover ≥50% of the fiber surface with a thermoplastic polymer containing carbon black and an elongation at break of 80-250% and is produced by conjugated melt spinning. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、主として静電気帯電を抑制する目的で使用される繊維製品に関する。   The present invention relates to a textile product used mainly for the purpose of suppressing electrostatic charging.

合成繊維からなる布帛は、天然繊維からなる布帛に比較すると、一般に、強度、耐久性に優れている事から、様々な分野で使用されている。しかし、合成繊維からなる布帛は帯電しやすいという欠点を持っている。近年、医療品、薬品、食品、電子機器および精密機器製造等における製品の高性能化が進むにつれ、空気中の塵埃が製品の性能に大きな影響を及ぼすことが明らかになってきた。例えば、衣服の静電気帯電によって塵埃を吸着させたまま製造環境に持ち込む事は、生産効率の低下に繋がる。そればかりか、火災や爆発が生じやすい環境においては、静電気によるスパークが発生しやすく危険にさらされる可能性もあり、様々な製造現場において静電気対策を施した布帛を用いた繊維製品が必須なものになっている。   Fabrics made of synthetic fibers are generally used in various fields because they are generally superior in strength and durability compared to fabrics made of natural fibers. However, fabrics made of synthetic fibers have the disadvantage of being easily charged. In recent years, it has become clear that dust in the air has a great influence on the performance of products as the performance of products in the manufacture of medical products, medicines, foods, electronic devices, precision devices, and the like advances. For example, bringing into a manufacturing environment with dust adsorbed by electrostatic charging of clothes leads to a decrease in production efficiency. In addition, in an environment where fires and explosions are likely to occur, sparks due to static electricity are likely to occur, and there is a risk of danger, and textile products using fabrics with anti-static measures at various manufacturing sites are essential. It has become.

具体的には、静電気対策を施した布帛からなる防塵衣や靴内層材は、例えばクリーンルーム内での作業着および作業靴に用いられる。衣服や人体に蓄積する静電気を抑えて放電による微小回路の破壊を防ぎ、衣服や人体への静電気による塵埃の吸着を抑えて、クリーンルーム内に塵埃を持ち込まないことで製品の歩留向上が見込まれる為である。また、静電気対策を施した布帛はフィルターの素材としても利用価値が高い。これは引火性を有する液体又は気体をろ過する際にフィルターとの摩擦によって発生する静電気を抑制し、引火爆発を回避する為である。   Specifically, a dust-proof garment and a shoe inner layer material made of a fabric with countermeasures against static electricity are used for, for example, work clothes and work shoes in a clean room. Suppressing static electricity accumulated in clothes and the human body, preventing destruction of microcircuits due to electric discharge, suppressing adsorption of dust due to static electricity on clothes and human body, and improving the product yield by not bringing dust into the clean room Because of that. In addition, fabrics with countermeasures against static electricity are highly useful as filter materials. This is to suppress static electricity generated by friction with the filter when filtering flammable liquid or gas and to avoid flammable explosion.

従来から布帛の静電気対策として様々な方法が考案されている。例えば、界面活性剤を後加工で布帛表面に付着させる方法や、親水性ポリマーを混入させた制電性繊維で布帛を構成する方法などが一般的である。しかしこれらの布帛は、いずれも洗濯耐久性が低いことや低湿度下での制電性能が十分でない。そこで、通常は導電性繊維が一定の割合で混入させた布帛が使用されている。   Conventionally, various methods have been devised as countermeasures against static electricity of fabrics. For example, a method of attaching a surfactant to the fabric surface by post-processing, a method of forming a fabric with antistatic fibers mixed with a hydrophilic polymer, and the like are common. However, none of these fabrics has low washing durability and antistatic performance under low humidity. Therefore, a fabric in which conductive fibers are mixed at a certain ratio is usually used.

導電性繊維としては、導電性粒子と熱可塑性成分からなる導電性成分を芯成分(島成分)とし、繊維形成性成分を鞘成分(海成分)とする導電性複合繊維が、工程通過性や洗濯耐久性の面から一般的である。   As the conductive fiber, a conductive composite fiber having a conductive component composed of conductive particles and a thermoplastic component as a core component (island component) and a fiber-forming component as a sheath component (sea component) is used as a process passability or It is common in terms of washing durability.

近年欧米を中心に、繊維製品を破壊せずにその制電性能を評価する手段として、繊維製品の表面の二ヶ所に電極を当て電極間の抵抗値を測定する方法(以下表面抵抗測定法と記す)が普及しつつある。本方法であると、実際の製品としての制電性能が十分であるにも関わらず、繊維製品に混用する導電性繊維表面への導電性成分の露出面積が小さい場合、導電性成分と電極が接触しないため生地表面の導電性能が低くなってしまうため、制電性能不良と判断されるという問題がある。   In recent years, mainly in Europe and the United States, as a means to evaluate the antistatic performance without destroying textile products, a method of measuring the resistance value between electrodes by applying electrodes to two locations on the surface of textile products (hereinafter referred to as surface resistance measurement method) Is being spread. With this method, when the exposed area of the conductive component on the surface of the conductive fiber mixed with the textile product is small, although the anti-static performance as an actual product is sufficient, the conductive component and the electrode Since there is no contact, the conductive performance of the fabric surface is lowered, and there is a problem that the antistatic performance is judged to be poor.

例えば特許文献1には、導電性能を良くするために芯となる合成繊維長繊維糸条に導電性複合繊維をカバリングした導電糸条を用い、導電糸条間の接触性を向上させた織物の提案がなされている。しかし、導電性成分の繊維表面への露出が小さければ、導電性成分同士や電極間との接触は起こり得ず、接触抵抗を軽減させるがための浸透性のある導電性接着剤を使用しない限り、表面抵抗測定法における良好な導電性能は得られ難い。   For example, Patent Document 1 discloses a woven fabric in which a conductive yarn covered with a synthetic composite fiber is used as a core synthetic fiber long yarn to improve the conductive performance, and the contact between the conductive yarns is improved. Proposals have been made. However, if the exposure of the conductive component to the fiber surface is small, contact between the conductive components and between the electrodes cannot occur, unless a permeable conductive adhesive is used to reduce contact resistance. It is difficult to obtain good conductive performance in the surface resistance measurement method.

この欠点を無くする為には表面層を導電性成分とすればよいことは容易に考えられその提案は種種なされている。たとえば酸化チタン、ヨウ化第1銅などの金属成分や導電性カーボン粒子を分散させた導電性成分を表面にコーティングまたはメッキする方法が提案されているが、これらの方法で得られる導電性繊維には洗濯耐久性が無く、初期評価では導電性能は高いが繰り返し洗濯を行うと導電性成分の剥離および脱落がおこり、導電性能を低下させるばかりか自己発塵を助長させる原因にもなり、使用時に多数の洗濯が必要不可欠な用途、例えばクリーンルームで使用される防塵衣などに供することは難しい。   In order to eliminate this defect, it is easily considered that the surface layer may be a conductive component, and various proposals have been made. For example, a method of coating or plating a metal component such as titanium oxide or cuprous iodide or a conductive component in which conductive carbon particles are dispersed has been proposed. Is not durable in washing and has high conductive performance in the initial evaluation, but repeated washing causes peeling and removal of conductive components, which not only lowers the conductive performance but also promotes self-dusting. It is difficult to provide a lot of laundry indispensable applications such as dustproof clothing used in a clean room.

特開平11−350296号公報Japanese Patent Laid-Open No. 11-350296

本発明の目的は、表面抵抗測定法においても良好な導電性能が得られ、かつ制電性能と耐久性にも優れた繊維製品を提供することにある。   An object of the present invention is to provide a textile product that can obtain good conductive performance even in a surface resistance measurement method and is excellent in antistatic performance and durability.

上記課題は、導電性熱可塑性成分と繊維形成性成分からなる導電性複合繊維を混用した繊維複合体であって、導電性複合繊維が、カーボンブラックを含有する熱可塑性重合体からなる導電性熱可塑性成分が繊維表面の50%以上を被覆する複合構造を有し、かつ破断伸度が80〜250%の溶融複合紡糸された導電性複合繊維であることを特徴とする繊維複合体を用いることで解決する。   The above-mentioned problem is a fiber composite in which conductive composite fibers composed of a conductive thermoplastic component and a fiber-forming component are mixed, wherein the conductive composite fibers are made of a thermoplastic polymer containing carbon black. Use of a fiber composite characterized in that it is a conductive composite fiber having a composite structure in which the plastic component covers 50% or more of the fiber surface and having a breaking elongation of 80 to 250%, and is melt-spun. To solve.

又、本発明の好ましい態様として、繊維複合体中の導電性複合繊維が0.1〜15重量%のものが挙げられる。更に、本発明の繊維複合体の具体的な用途として防塵衣、靴内層材、フィルターがある。   Moreover, as a preferable aspect of the present invention, a conductive composite fiber in the fiber composite is 0.1 to 15% by weight. Furthermore, specific applications of the fiber composite of the present invention include dust-proof clothing, shoe inner layer materials, and filters.

本発明により、導電性能とその耐久性に優れた繊維製品を得ることが出来る。   According to the present invention, a fiber product excellent in conductive performance and durability can be obtained.

本発明に用いられる導電性複合繊維について説明する。なお、以下では導電性熱可塑性成分のことを単に「導電性成分」と称し、繊維形成性成分を「非導電性成分」と称することがある。   The conductive conjugate fiber used in the present invention will be described. Hereinafter, the conductive thermoplastic component may be simply referred to as “conductive component”, and the fiber-forming component may be referred to as “non-conductive component”.

本発明に用いられる導電性複合繊維の導電性成分、非導電性成分に使用される熱可塑性重合体としては、ポリエステル類やポリアミド類及びポリオレフィン類とそれらの共重合体など、あらゆる公知の繊維形成能を有する熱可塑性重合体が使用可能であり、適宜選択すれば良い。布帛の大部分を占めるベース糸即ち導電性複合繊維と混用する繊維の素材と同種であることが染色その他の後工程において格別の注意を払う必要が軽減されることから望ましい。   The thermoplastic polymer used for the conductive component and non-conductive component of the conductive composite fiber used in the present invention includes all known fiber formations such as polyesters, polyamides, polyolefins and copolymers thereof. A thermoplastic polymer having a function can be used and may be appropriately selected. It is desirable that the base yarn occupying most of the fabric, that is, the same material as that of the fiber mixed with the conductive composite fiber, because the need to pay special attention in dyeing and other subsequent processes is reduced.

又、導電性成分と非導電性成分に使用する熱可塑性重合体は両成分の接着性の点から同種の熱可塑性重合体であることが好ましい。両方の熱可塑性重合体が異なっている場合でも、両方またはどちらか一方の成分に相溶化剤を混入し接着性が改善できる事もある。例えば、ポリアミドとポリオレフィンの場合には、ポリオレフィン側に相溶化剤としてマレイン酸変性ポリオレフィンを少量混入することで接着性が改善できる。   The thermoplastic polymer used for the conductive component and the non-conductive component is preferably the same kind of thermoplastic polymer from the viewpoint of the adhesiveness of both components. Even when the two thermoplastic polymers are different from each other, a compatibilizer may be mixed into both or one of the components to improve the adhesion. For example, in the case of polyamide and polyolefin, the adhesiveness can be improved by mixing a small amount of maleic acid-modified polyolefin as a compatibilizer on the polyolefin side.

前記導電性成分は熱可塑性重合体に導電性カーボンブラックを常法に従って均一に混合したものにより構成されている。導電性カーボンブラックの混合率は使用する重合体やカーボンブラックの種類によって異なるが、通常10〜50重量%、特に15〜40重量%が好ましい。   The conductive component is composed of a thermoplastic polymer in which conductive carbon black is uniformly mixed according to a conventional method. The mixing ratio of conductive carbon black varies depending on the polymer used and the type of carbon black, but is usually 10 to 50% by weight, particularly preferably 15 to 40% by weight.

本発明に用いる導電性複合繊維の破断伸度は80〜250%の範囲内である必要がある。導電性複合繊維においては破断伸度が小さくなるに伴って、導電性能も低下する傾向が見られる。破断伸度が小さくなるということは、紡糸・延伸等の製造工程において繊維を伸長させる方向へ力が加えられたことを意味し、その結果、導電成分中に含まれる導電性粒子間の距離が増大することから導電性能が低下するものと考えられている。   The breaking elongation of the conductive conjugate fiber used in the present invention needs to be in the range of 80 to 250%. In the conductive conjugate fiber, as the elongation at break decreases, the conductive performance tends to decrease. The fact that the elongation at break is small means that a force is applied in the direction of stretching the fiber in the production process such as spinning and drawing, and as a result, the distance between the conductive particles contained in the conductive component is reduced. It is considered that the conductive performance is lowered due to the increase.

破断伸度が80%以上であればフィラメント抵抗は1.0×108Ω/cm・f未満となり、表面抵抗測定において制電生地の基準として多く採用されている106Ω/□以下を満たすことが可能となる。一方、破断伸度をより高く設定することは、フィラメント抵抗を低下させ、繊維複合体の導電性繊維の使用量を抑えることが可能になることからより望ましい。しかしながら、破断伸度が250%を超えると、分子配向が不足し、強度が著しく低く、合糸あるいは合撚工程中で破断しやすいだけでなく、低応力で容易に引き伸ばされて導電性を低下させてしまうため、合糸あるいは合撚の工程を経て布帛とした段階でフィラメント抵抗が1.0×108Ω/cm・f以上となる危険性が高い。 When the elongation at break is 80% or more, the filament resistance is less than 1.0 × 10 8 Ω / cm · f, which satisfies 10 6 Ω / □ or less, which is widely adopted as a standard for antistatic fabric in surface resistance measurement. It becomes possible. On the other hand, it is more desirable to set the breaking elongation higher because the filament resistance is lowered and the amount of conductive fibers used in the fiber composite can be suppressed. However, if the elongation at break exceeds 250%, the molecular orientation is insufficient, the strength is remarkably low, and not only is it easy to break during the combined yarn or twisting process, but it is easily stretched with low stress to lower the conductivity. Therefore, there is a high risk that the filament resistance becomes 1.0 × 10 8 Ω / cm · f or more at the stage of forming a fabric through the process of combining or twisting.

これら導電性能の維持、工程通過性の観点から破断伸度は80〜250%の範囲内であることが必須であり、100〜200%がより好適に使用できる。   From the viewpoints of maintaining the conductive performance and passing through the process, the elongation at break is in the range of 80 to 250%, and 100 to 200% can be more suitably used.

本発明の破断伸度を得るための製造方法は特に規定されない。つまり、いわゆるコンベンショナル方式に則り、未延伸糸を比較的低倍率で延伸することも可能である。一方、引取速度を高速化し、高配向未延伸糸としても目的の破断伸度を得ることができる。更に、低倍率でのスピンドロー方式でも同様である。   The production method for obtaining the elongation at break of the present invention is not particularly defined. That is, it is possible to draw an undrawn yarn at a relatively low magnification in accordance with a so-called conventional method. On the other hand, the take-up speed is increased, and the desired breaking elongation can be obtained even as a highly oriented undrawn yarn. The same applies to the spin draw method at a low magnification.

導電性成分、非導電性成分には、さらに分散剤(ワックス類、ポリアルキレンオキシド類、各種界面活性剤、有機電解質など)、着色剤、熱安定剤(酸化防止剤、紫外線吸収剤など)、流動性改善剤、蛍光増白剤その他の添加剤を必要に応じて加えることができる。   In addition to conductive and non-conductive components, dispersants (waxes, polyalkylene oxides, various surfactants, organic electrolytes, etc.), colorants, heat stabilizers (antioxidants, UV absorbers, etc.), Fluidity improvers, fluorescent brighteners and other additives can be added as needed.

本発明に用いる導電性複合繊維の複合形態は特に制限されるものではないが、繊維表面の50%以上が導電性成分で被覆されていなければならない。断面形状の一例としては図1〜3に示すようなものが挙げられる。このうち、図1に示したものは芯鞘構造をとる複合導電性繊維で有り、鞘成分が導電性成分となっているものである。また、図2、3では、4〜8個程度の導電性成分を繊維表面に配した複合繊維の構造例を示した。この様な構造の導電性複合繊維を利用することにより、導電性繊維間の導電性成分同士の接触性及び導電性成分と測定器電極との接触性が向上し、表面抵抗測定法における良好な導電性能を得ることが出来る。   The composite form of the conductive composite fiber used in the present invention is not particularly limited, but 50% or more of the fiber surface must be coated with a conductive component. Examples of the cross-sectional shape include those shown in FIGS. Among these, what is shown in FIG. 1 is a composite conductive fiber having a core-sheath structure, and the sheath component is a conductive component. Moreover, in FIG.2, 3, the structural example of the composite fiber which arranged about 4-8 conductive components on the fiber surface was shown. By using the conductive composite fiber having such a structure, the contact between the conductive components between the conductive fibers and the contact between the conductive component and the measuring instrument electrode are improved, and the surface resistance measurement method is good. Conductive performance can be obtained.

本来の目的から言えば導電性成分の繊維表面への露出率はより高い方が好ましいが、導電性成分は導電性カーボンブラックの含有により溶融流動性が著しく低下するために完全に被覆することは技術的難度が高く、また表面抵抗測定法において使用される測定器の電極サイズと複合繊維の繊維径から十分に接触性があると判断され、繊維表面の50%以上が被覆されていれば目的は達せられるといえる。逆に導電成分の繊維表面の被覆率が50%未満の場合は、電極と導電性成分との接触性が不確実となり、表面抵抗測定結果において、非常に大きな数値を指し示すことが発生しがちである。その結果、平均値も高くなり、目標とする106Ω/□以下を達成できない。安定的な表面抵抗値を得るためには被覆率が50%以上であることが必要だが、60%以上が更に好ましく、65%以上が特に好ましい。 Speaking from the original purpose, the higher the exposure rate of the conductive component to the fiber surface is preferable, but the conductive component is completely covered because the melt fluidity is remarkably lowered by the inclusion of conductive carbon black. If the technical difficulty is high, and it is judged that there is sufficient contact from the electrode size of the measuring instrument used in the surface resistance measurement method and the fiber diameter of the composite fiber, and if more than 50% of the fiber surface is covered Can be said to be achieved. Conversely, when the coverage of the fiber surface of the conductive component is less than 50%, the contact between the electrode and the conductive component is uncertain, and the surface resistance measurement result tends to indicate a very large value. is there. As a result, the average value also increases, and the target value of 10 6 Ω / □ or less cannot be achieved. In order to obtain a stable surface resistance value, the coverage is required to be 50% or more, more preferably 60% or more, and particularly preferably 65% or more.

導電性成分と非導電性成分の複合比率については、体積比率で導電性成分:非導電性成分=1:20〜2:1であることが好ましい。繊維の物性を確保すると言う観点からは非導電性成分の比率が大きいほど好ましいが、導電性成分の比率が小さくなると安定した複合形態を得ることが難しくなり、これに伴い導電性の安定性が不足するので、これらの事を考慮すると導電性成分:非導電性成分=1:20〜2:1が好ましく、1:15〜1:1が更に好ましい。   About the composite ratio of a conductive component and a non-conductive component, it is preferable that the volume ratio is conductive component: non-conductive component = 1: 20-2: 1. From the viewpoint of securing the physical properties of the fiber, it is preferable that the ratio of the non-conductive component is large. However, when the ratio of the conductive component is small, it becomes difficult to obtain a stable composite form, and accordingly, the conductivity stability is reduced. Considering these matters, the conductive component: non-conductive component = 1: 20 to 2: 1 is preferable, and 1:15 to 1: 1 is more preferable.

本発明に用いる導電性複合繊維は、溶融複合紡糸法にて製造されることが肝要である。例えばコーティング等の処方により後加工で類似の複合形態を形成させた複合繊維では耐久性が不足し、製品で繰り返し洗濯を行なった際に導電性成分の剥離や脱落が発生する。溶融複合紡糸法で製造されることにより、例えばクリーンルーム等で使用される防塵衣の如く多数回の洗濯を必要とされる用途においても十分な耐久性を発現させることができるのである。   It is important that the conductive conjugate fiber used in the present invention is produced by a melt conjugate spinning method. For example, in a composite fiber in which a similar composite form is formed by post-processing by a prescription such as a coating, the durability is insufficient, and peeling and dropping off of the conductive component occur when repeated washing is performed on the product. By being produced by the melt composite spinning method, sufficient durability can be exhibited even in applications that require many washings, such as a dust-proof garment used in a clean room or the like.

本発明の繊維複合体は、上述した導電性繊維に他の繊維(以下、「非導電性繊維」と称す)を混用する。導電性複合繊維に混用する他の繊維は、あらゆる繊維が利用可能である。例えば、ナイロン、ポリエステル、アクリル等の合成繊維や綿、絹、羊毛等の天然繊維が例示される。又、複数の繊維を混合したものを用いても良い。
中でも、繊維複合体の用途を考えると合成繊維の使用が好ましい。これは、合成繊維が天然繊維に比べて強度、耐久性が高いためである。
In the fiber composite of the present invention, other fibers (hereinafter referred to as “non-conductive fibers”) are mixed with the conductive fibers described above. Any fiber can be used as the other fiber mixed with the conductive composite fiber. Examples thereof include synthetic fibers such as nylon, polyester, and acrylic, and natural fibers such as cotton, silk, and wool. Further, a mixture of a plurality of fibers may be used.
Among these, the use of synthetic fibers is preferable in consideration of the use of the fiber composite. This is because synthetic fibers have higher strength and durability than natural fibers.

導電性複合繊維と非導電性繊維の混合方法は特に制限はない。例えば、導電性複合繊維を単体で織物や編物に一定間隔に打込む事も可能であるし、その繊度によっては非導電性繊維と合糸又は合撚して布帛に打込んでも良い。又、所定の長さにカットして、他の短繊維と混紡する事も可能であるし、既成の布帛に縫糸として混用しても良い。   There is no particular limitation on the method of mixing the conductive conjugate fiber and the non-conductive fiber. For example, it is possible to drive the conductive conjugate fiber alone into a woven fabric or knitted fabric at regular intervals, and depending on its fineness, the conductive composite fiber may be driven into the fabric after being twisted or twisted with the nonconductive fiber. Further, it can be cut to a predetermined length and blended with other short fibers, or may be mixed as a sewing thread with an existing fabric.

本発明の繊維複合体中における導電性複合繊維の使用量としては、0.1〜15重量%が好ましい。この範囲であると、コロナ放電による帯電防止効果が十分で有り、また工程通過性も優れるので好ましい。   As a usage-amount of the electroconductive composite fiber in the fiber composite of this invention, 0.1 to 15 weight% is preferable. Within this range, an antistatic effect due to corona discharge is sufficient, and process passability is excellent, which is preferable.

本発明の防塵衣は、上述した繊維複合体の織物、編物等で構成されるものである。ベースとなる糸条は生地自体の発塵量を抑制する観点からフィラメント使いであることが好ましい。紡績糸を使用する場合、ラミネート加工等で自己発塵を抑える事が好ましい。   The dust-proof garment of the present invention is composed of the above-described fiber composite fabric, knitted fabric or the like. It is preferable to use a filament as the base yarn from the viewpoint of suppressing the dust generation amount of the fabric itself. When using spun yarn, it is preferable to suppress self-dusting by laminating or the like.

布帛の組織は特に限定されるものではないが、通塵性阻止の観点から高密度である方が好ましい。しかし、密度が高くなりすぎると着用感に劣るため、目的に応じて組織及び密度を設定すれば良い。更に必要であればカレンダー加工等で布帛を押圧して緻密性を高めることや、着用感の改善を目的とした吸水即乾性や抗菌性能を有する繊維、布帛の帯電圧のより迅速な減衰を促進させる制電繊維等の各種機能性繊維も併せて使用できる。   The structure of the fabric is not particularly limited, but a high density is preferable from the viewpoint of preventing dust permeability. However, if the density is too high, the feeling of wearing is inferior, and therefore the structure and density may be set according to the purpose. Furthermore, if necessary, the fabric is pressed by calendering, etc. to increase the denseness, and the water and quick-drying and antibacterial properties for improving the feeling of wear are promoted to accelerate the decay of the charged voltage of the fabric and fabric. Various functional fibers such as antistatic fibers can be used together.

本発明の防塵衣を使用することにより、いかなる環境下においても衣服に蓄積する静電気を抑えて放電による微小回路の破壊を防ぎ、静電気による塵埃の吸着を抑えて、クリーンルーム内に塵埃を持ち込まないことで製品の歩留向上が期待できる。又、製品の表面抵抗を測定することでその制電性能を予測できるため、製品を破壊せず、簡略な品質管理が可能となる。   By using the dustproof garment of the present invention, it is possible to suppress static electricity accumulated in clothes under any environment, prevent destruction of microcircuits due to discharge, suppress dust adsorption due to static electricity, and do not bring dust into the clean room. Can improve the product yield. Moreover, since the antistatic performance can be predicted by measuring the surface resistance of the product, it is possible to perform simple quality control without destroying the product.

本発明の靴内層材は、上述した繊維複合体の織物、不織布等で構成されるものである。非導電性繊維としては、摩耗耐久性に優れるポリアミドが主として用いられるが、特に限定されるものではない。熱接着性繊維や、鞘部に低融点重合体を配した複合繊維を用いて、点圧着加工を施し、立体構造を保持させ衝撃を緩和させる事もできる。   The shoe inner layer material of the present invention is composed of the above-described fiber composite fabric, nonwoven fabric, or the like. As the non-conductive fiber, polyamide having excellent wear durability is mainly used, but is not particularly limited. Using a heat-adhesive fiber or a composite fiber in which a low-melting-point polymer is disposed on the sheath, a point-bonding process can be performed to maintain the three-dimensional structure and to reduce the impact.

本発明における導電性複合繊維を不織布として用いる際には、単糸繊度は8dtex以下であることが好ましい。単糸繊度が小さくなると、同一の重量混率でも混用される本数が多く、導電性複合繊維同士が接触する確率が増え、布帛表面(水平方向)および垂直方向の導電性能が向上するからである。その一方で、複合繊維の場合、単糸繊度が小さくなりすぎると生産工程上に大幅な支障を来たす場合が多く見られる。特に導電性複合繊維の場合には導電性成分と非導電性成分の溶融粘度が大きくかけ離れていることからその傾向が顕著であるため、生産性と展開用途と加味して考慮すれば単糸繊度は0.3dtex以上が好ましく、0.8dtex以上が特に好適であると考えられる。 When the conductive conjugate fiber according to the present invention is used as a nonwoven fabric, the single yarn fineness is preferably 8 dtex or less. This is because when the single yarn fineness is reduced, the number of fibers mixed even at the same weight mixing ratio is increased, the probability that the conductive conjugate fibers are in contact with each other increases, and the conductive performance in the fabric surface (horizontal direction) and in the vertical direction is improved. On the other hand, in the case of a composite fiber, if the single yarn fineness is too small, there are many cases where the production process is greatly hindered. In particular, in the case of conductive conjugate fibers, the tendency is remarkable because the melt viscosity of the conductive component and the non-conductive component are greatly separated from each other. Is preferably 0.3 dtex or more, and 0.8 dtex or more is considered particularly suitable.

本発明の靴内層材を使用することにより、内層材自体が帯電防止されることはもちろん、靴のソール部に導電性を有する樹脂を使用すれば、内層材とソールを通して人体に蓄積される静電気を地面へと漏洩させることが可能となる。その結果、防塵衣と同様にクリーンルーム内での作業効率の向上が期待できる。   By using the shoe inner layer material of the present invention, the inner layer material itself is prevented from being charged, and if a conductive resin is used for the sole part of the shoe, static electricity accumulated in the human body through the inner layer material and the sole is used. Can be leaked to the ground. As a result, improvement in work efficiency in a clean room can be expected as in the case of dust-proof clothing.

本発明のフィルターは、上述した繊維複合体の織物、不織布等で構成されるものである。靴内層材と同様に、熱接着性繊維や、鞘部に低融点重合体を配した複合繊維を用いて、点圧着加工を施し、立体構造を保持させ寸法安定性の向上を図る事もできる。又、不織布として用いる際に単糸繊度が小さい方が好ましい点も靴内層材と同様である。   The filter of the present invention is composed of the above-described fiber composite fabric, nonwoven fabric, or the like. Similar to the shoe inner layer material, it is possible to improve the dimensional stability by maintaining the three-dimensional structure by applying a point-bonding process using a thermo-adhesive fiber or a composite fiber with a low melting point polymer in the sheath. . In addition, it is the same as the shoe inner layer material that it is preferable that the single yarn fineness is smaller when used as a nonwoven fabric.

本発明のフィルターを使用することにより、引火性を有する液体又は気体を高速でろ過する際にフィルターとの摩擦によって発生する静電気を抑制し、引火爆発を回避する事が可能となる。又、ろ過速度を高く設定出来るため、生産性の向上に寄与する事が出来る。   By using the filter of the present invention, it is possible to suppress static electricity generated by friction with the filter when a flammable liquid or gas is filtered at high speed, and to avoid a flammable explosion. Moreover, since the filtration rate can be set high, it can contribute to productivity improvement.

以下、実施例に基づいて本発明を具体的に説明する。なお、下記の実施例における各種物性の測定および評価は、次の方法により実施した。   Hereinafter, the present invention will be specifically described based on examples. In addition, measurement and evaluation of various physical properties in the following examples were performed by the following methods.

導電性複合繊維の導電性能は、長さ10cmに切り取って試料とし、両端を金属端子と導電性接着剤で接着し、1,000Vの直流電圧を印加して抵抗値を測定し、その値を基に換算した比抵抗で評価した。   The conductive performance of the conductive conjugate fiber was cut to a length of 10 cm to make a sample, both ends were bonded to a metal terminal with a conductive adhesive, a DC voltage of 1,000 V was applied, the resistance value was measured, and the value was The specific resistance converted into a group was evaluated.

布帛の表面抵抗は、ACL Staticide社製メガオームメーター モデル800を用い、平行電極幅7.5cm、電極間距離7.5cmにおける導電性を測定した。なお、測定には20℃×30%RHの環境下で予め調湿した試料を用いた。   The surface resistance of the fabric was measured for conductivity at a parallel electrode width of 7.5 cm and a distance between electrodes of 7.5 cm using a Mega Ohm meter model 800 manufactured by ACL Staticide. For the measurement, a sample conditioned in advance in an environment of 20 ° C. × 30% RH was used.

布帛の制電性能はJIS L 1094 摩擦帯電減衰測定法に準じて、20℃×30%RHの環境下で調湿した試料を用いて初期帯電圧を測定した。   The antistatic performance of the fabric was measured in accordance with JIS L 1094 triboelectric charge decay measurement method using an initial charged voltage using a sample conditioned in an environment of 20 ° C. × 30% RH.

耐久性については洗濯耐久性を評価した。JIS L 0217 E 103法にて100回の洗濯を実施し、洗濯前後での導電性複合繊維の導電性能及び布帛の表面抵抗を上述の方法で測定した。   As for durability, washing durability was evaluated. Washing was carried out 100 times by the JIS L 0217 E 103 method, and the conductive performance of the conductive conjugate fiber and the surface resistance of the fabric before and after washing were measured by the above-described methods.

繊維表面における導電性成分の被覆比率についてはオリンパス製の光学顕微鏡で糸の断面写真を任意の間隔をおいて20点撮影し、キーエンス製の画像解析装置にて測定、その平均値で評価した。   About the covering ratio of the conductive component on the fiber surface, 20 cross-sectional photographs of the yarn were taken at an arbitrary interval with an Olympus optical microscope, measured with an image analyzer manufactured by Keyence, and evaluated by the average value.

[実施例1〜6、比較例1〜4]
イソフタル酸を12mol%共重合したポリエチレンテレフタレートに導電性カーボンブラックを25重量%混合分散させた導電性ポリマーを導電性成分、ホモポリエチレンテレフタレートを非導電性成分とし、数条件の複合比率、複合構造で複合し、285℃にて紡出し、冷却、オイリングしながら数条件の紡糸速度で巻き取り、導電性複合繊維Y1〜Y9を製造した。Y1〜Y9の導電性能及び繊維表面における導電性成分の被覆比率を表1に示す。
[Examples 1-6, Comparative Examples 1-4]
Conductive polymer in which 25% by weight of conductive carbon black is mixed and dispersed in polyethylene terephthalate copolymerized with 12 mol% of isophthalic acid is used as a conductive component, and homopolyethylene terephthalate is used as a non-conductive component. The composite composites were spun at 285 ° C., and wound at a spinning speed under several conditions while cooling and oiling to produce conductive composite fibers Y1 to Y9. Table 1 shows the conductive performance of Y1 to Y9 and the coating ratio of the conductive component on the fiber surface.

Figure 2006097145
Figure 2006097145

実施例1〜7、比較例1においては特に紡糸上大きな問題なく捲き取ることができたが、比較例2においては捲き取ったボビンで毛羽立ちが多く見られ、とても実用に供せられるものではなかった。フィラメント抵抗を測定したところ、バラツキが大きく、平均値も高目であった。   In Examples 1 to 7 and Comparative Example 1, it was possible to scoop off without any significant problem in spinning, but in Comparative Example 2, the scooped bobbins showed a lot of fluffing, which is not very practical. It was. When the filament resistance was measured, the variation was large and the average value was high.

地部を形成する経、緯糸にポリエステル長繊維糸84デシテックス/72フィラメントを使用し、導電性糸条としてY1を経、緯それぞれ5mm間隔で使用した平織物を得、この織物を通常の加工方法で加工したものを布帛1とする。   Using a polyester long fiber yarn 84 dtex / 72 filament as the warp and weft to form the ground part, we obtained a plain fabric that used Y1 as the conductive yarn and the weft at intervals of 5 mm each, and this fabric was processed by the usual processing method The fabric 1 was processed as 1.

Y1の代わりに導電性糸条としてY2〜Y9をそれぞれポリエステル長繊維糸56デシテックス/24フィラメントと撚数250T/mにて合撚せしめた導電性合撚糸を使用した以外は布帛1と同様の構成の布帛2〜9を得た。しかしながら、紡糸工程通過性に問題のあったY7においては、合撚および製織工程において多数回に渡る停台を繰り返したため実用性がないものと判断し、更に布帛7の品位も良好なものではなかったため、評価から除外した。   The same configuration as that of the fabric 1 except that Y2 to Y9 are used as conductive yarns instead of Y1 and polyester continuous fiber yarns 56 decitex / 24 filaments and conductive twisted yarns twisted at 250 T / m are used. Fabrics 2 to 9 were obtained. However, in Y7 where there was a problem in passing through the spinning process, it was judged that there was no practicality because the stoppage was repeated many times in the twisting and weaving processes, and the quality of the fabric 7 was not good. Therefore, it was excluded from the evaluation.

又、比較例4として市販されているナイロンモノフィラメント22デシテックスの周囲をカーボンブラック混入樹脂で被覆した導電性繊維Y10を使用し、布帛2〜9と同様の構成の布帛10を得た。尚、Y10のフィラメント抵抗は2.2×105Ω/cm・fと良好であった。布帛1〜10中の導電性繊維の混用率及び各種物性値を表2に示す。 Moreover, the fabric 10 of the structure similar to the fabrics 2-9 was obtained using the conductive fiber Y10 which coat | covered the circumference | surroundings of the nylon monofilament 22 dtex marketed as the comparative example 4 with the carbon black mixing resin. The filament resistance of Y10 was as good as 2.2 × 10 5 Ω / cm · f. Table 2 shows the mixing ratio of conductive fibers and various physical property values in the fabrics 1 to 10.

Figure 2006097145
Figure 2006097145

表2から明らかなように、破断伸度が250%を超えるY5は本発明で目的とする表面抵抗測定結果が得られなかった。布帛5よりY5を抜き出してそのフィラメント抵抗を測定したところ、4.1×108Ω/cm・fであり、紡糸捲き取り後から導電性の低下が確認された。合撚あるいは製織工程中において張力が加わったため、延伸されてしまったものと考えられる。 As is apparent from Table 2, Y5 having a breaking elongation of more than 250% did not give the intended surface resistance measurement result in the present invention. When Y5 was extracted from the fabric 5 and its filament resistance was measured, it was 4.1 × 10 8 Ω / cm · f, and a decrease in conductivity was confirmed after spinning off. It is considered that the film was stretched because tension was applied during the twisting or weaving process.

又、表面に導電性成分が全く露出していないY9は洗濯に対する耐久性は認められるものの、表面抵抗測定においては効果が認められなかった。   In addition, although Y9 having no conductive component exposed on the surface was recognized as having durability against washing, no effect was observed in the surface resistance measurement.

一方、Y10においては初期では本発明と同等以上の性能を発揮するものの、100回の洗濯によって導電性成分の剥離、脱落が生じ、その導電性能及び制電性能はほぼ消失してしまった。これらに対し、本発明は表面抵抗とその耐久性に良好な結果が得られた。   On the other hand, in Y10, although the performance equal to or higher than that of the present invention was initially exhibited, the conductive component was peeled off and dropped off after 100 washings, and the conductive performance and the antistatic performance were almost lost. On the other hand, in the present invention, good results were obtained in terms of surface resistance and durability.

これらの布帛を用い、防塵衣を作製して、実用評価を行なったところ、布帛時の評価と同等の結果が得られた。   Using these fabrics, dustproof garments were produced and evaluated for practical use. As a result, results equivalent to those for the fabrics were obtained.

[実施例7〜8、比較例5]
6ナイロンに導電性カーボンブラックを35重量%混合分散させた導電性ポリマーを導電性成分、6ナイロンを非導電性成分とし、数条件の複合比率、複合構造で複合し、275℃にて紡出し、冷却、オイリングしながら900m/minの紡糸速度で捲き取り、加熱しながら延伸倍率1.9倍にて延伸し、330デシテックス/100フィラメントの導電性複合繊維Y11〜Y13を製造した。Y11〜Y13の導電性能及び繊維表面における導電性成分の被覆比率を表3に示す。
[Examples 7 to 8, Comparative Example 5]
Conductive polymer in which conductive carbon black is mixed and dispersed in 35% by weight of nylon 6 is used as the conductive component, and nylon 6 is used as the non-conductive component. The mixture was wound at a spinning speed of 900 m / min while cooling and oiling, and stretched at a draw ratio of 1.9 times while heating to produce 330 dtex / 100 filament conductive composite fibers Y11 to Y13. Table 3 shows the conductive performance of Y11 to Y13 and the covering ratio of the conductive component on the fiber surface.

Figure 2006097145
Figure 2006097145

Y11〜Y13をそれぞれ収束して約30万デシテックスとした後、クリンプ加工を施し、51mm長にカットして、単糸3.3デシテックスのステープルを得た。
これらのステープルを3.3デシテックス、51mm長の6ナイロンステープルと混用率5重量%で混合して、ニードルパンチ法により目付約180g/m2の不織布を作製し、更にエンボス加工を施して布帛11〜13を得た。布帛11〜13の各種物性値を表4に示す。
Y11 to Y13 were each converged to about 300,000 dtex, then crimped and cut to a length of 51 mm to obtain a single yarn 3.3 dtex staple.
These staples were mixed with 3.3 dtex and 6 nylon staples of 51 mm length at a blending rate of 5% by weight to produce a nonwoven fabric having a basis weight of about 180 g / m 2 by the needle punch method, and further embossed to fabric 11 ~ 13 were obtained. Table 4 shows various physical property values of the fabrics 11 to 13.

Figure 2006097145
Figure 2006097145

表4から明らかなように、比較例5は制電性能とその耐久性においては十分な効果が得られたものの、表面抵抗測定においては測定値にばらつきが多く、安定した効果が認められなかった。導電性成分の複合比率が小さく、繊維表面に占める導電性成分の露出が不足したためと推測される。
又、本発明の不織布を靴内層材として使用し、ソール部にも導電処理を施した作業靴を着用した場合には、人体に蓄積される静電気が靴を通して漏洩され、人体帯電圧が軽減する結果が得られた。
As is apparent from Table 4, Comparative Example 5 obtained sufficient effects in antistatic performance and durability, but in the surface resistance measurement, there were many variations in measured values, and a stable effect was not recognized. . It is presumed that the composite ratio of the conductive component is small and the exposure of the conductive component on the fiber surface is insufficient.
In addition, when the non-woven fabric of the present invention is used as a shoe inner layer material and a work shoe with a conductive treatment applied to the sole portion is worn, static electricity accumulated in the human body is leaked through the shoe and the human body voltage is reduced. Results were obtained.

[実施例9〜11、比較例6〜7]
上述のY11の混合率を変更する以外は、実施例7と同様の方法で布帛を作製した。得られた不織布の物性値を表5に示す。
[Examples 9 to 11, Comparative Examples 6 to 7]
A fabric was produced in the same manner as in Example 7 except that the mixing ratio of Y11 was changed. Table 5 shows the physical property values of the obtained nonwoven fabric.

Figure 2006097145
Figure 2006097145

表5から明らかなように、実施例9〜11においては導電性複合繊維の混用率が増加する伴い、表面抵抗及び制電性能は良化する傾向を示し、いずれも満足な結果を呈した。一方、比較例6では混用率が不足し、表面抵抗及び制電性能ともに効果が見られなかった。又、比較例7においては表面抵抗及び制電性能は飽和状態にあり、導電性複合繊維は過剰に存在していると考えられる。特に不織布としての工程通過性や諸物性に問題はなかったが、コスト的には余り良くなかった。   As is apparent from Table 5, in Examples 9 to 11, as the mixed use ratio of the conductive conjugate fibers increased, the surface resistance and the antistatic performance tended to improve, and all showed satisfactory results. On the other hand, in Comparative Example 6, the mixed use rate was insufficient, and no effect was seen in both surface resistance and antistatic performance. In Comparative Example 7, the surface resistance and the antistatic performance are in a saturated state, and it is considered that the conductive conjugate fiber is excessively present. In particular, there was no problem in process passability and various physical properties as a nonwoven fabric, but the cost was not so good.

実施例12
従来公知であるメルトブロー方式により得られたポリエテレンテレフタレート長繊維不織布にエンボス加工を施し、目付約75g/m2の不織布を作製した。この不織布に、上述の導電性複合繊維Y2を2本と、ポリエステル長繊維糸44デシテックス/18フィラメントとの計3本をS撚り600T/mで合撚したものを、Z撚り480T/mで合撚した縫糸を用い、不織布の幅方向に5mm間隔で縫込んで得られた不織布を布帛14とする。この布帛の表面抵抗値は8.7×106Ω、制電性能は2,110Vであり、良好な結果が得られた。
Example 12
Embossing was performed on a polyethylene terephthalate long fiber nonwoven fabric obtained by a conventionally known melt blow method to prepare a nonwoven fabric having a basis weight of about 75 g / m 2 . To this non-woven fabric, a total of three conductive composite fibers Y2 and polyester long fiber yarn 44 dtex / 18 filaments, S and twisted at 600 T / m, were combined at Z twist of 480 T / m. A non-woven fabric obtained by sewing a twisted sewing thread at intervals of 5 mm in the width direction of the non-woven fabric is designated as fabric 14. The fabric had a surface resistance value of 8.7 × 10 6 Ω and antistatic performance of 2,110 V, and good results were obtained.

又、この布帛は100回の洗濯においても性能が低下することなく、フィルターとして使用した場合には、十分な制電性能を発揮した。   Further, this fabric exhibited sufficient antistatic performance when used as a filter without deterioration in performance even after 100 washes.

本発明の方法は特にクリーンルーム等で着用される衣類での使用に適している。   The method of the present invention is particularly suitable for use in clothing worn in a clean room or the like.

本発明の繊維複合体に使用される導電性複合繊維の一例の横断面図である。It is a cross-sectional view of an example of the electroconductive composite fiber used for the fiber composite of this invention. 本発明の繊維複合体に使用される導電性複合繊維の一例の横断面図である。It is a cross-sectional view of an example of the electroconductive composite fiber used for the fiber composite of this invention. 本発明の繊維複合体に使用される導電性複合繊維の一例の横断面図である。It is a cross-sectional view of an example of the electroconductive composite fiber used for the fiber composite of this invention. 本発明範囲外の繊維複合体に使用される導電性複合繊維の一例の横断面図である。It is a cross-sectional view of an example of the conductive composite fiber used for the fiber composite outside the scope of the present invention. 本発明範囲外の繊維複合体に使用される導電性複合繊維の一例の横断面図である。It is a cross-sectional view of an example of the conductive composite fiber used for the fiber composite outside the scope of the present invention.

符号の説明Explanation of symbols

1 導電性成分
2 非導電性成分


1 Conductive component 2 Non-conductive component


Claims (5)

導電性熱可塑性成分と繊維形成性成分からなる導電性複合繊維を混用した繊維複合体であって、導電性複合繊維が、カーボンブラックを含有する熱可塑性重合体からなる導電性熱可塑性成分が繊維表面の50%以上を被覆する複合構造を有し、かつ破断伸度が80〜250%の溶融複合紡糸された導電性複合繊維であることを特徴とする繊維複合体。 A fiber composite in which conductive composite fibers composed of a conductive thermoplastic component and a fiber-forming component are mixed, wherein the conductive composite fiber is composed of a thermoplastic polymer containing carbon black. A fiber composite having a composite structure covering 50% or more of the surface, and a melt composite spun conductive composite fiber having a breaking elongation of 80 to 250%. 導電性複合繊維が0.1〜15重量%含まれる請求項1記載の繊維複合体。 The fiber composite according to claim 1, wherein the conductive composite fiber is contained in an amount of 0.1 to 15% by weight. 請求項1又は2記載の繊維複合体からなる防塵衣。 A dust-proof garment comprising the fiber composite according to claim 1. 請求項1又は2記載の繊維複合体からなる靴内層材。 A shoe inner layer material comprising the fiber composite according to claim 1. 請求項1又は2記載の繊維複合体からなるフィルター。

A filter comprising the fiber composite according to claim 1.

JP2004281294A 2004-09-28 2004-09-28 Fiber composite material and use thereof Pending JP2006097145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004281294A JP2006097145A (en) 2004-09-28 2004-09-28 Fiber composite material and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004281294A JP2006097145A (en) 2004-09-28 2004-09-28 Fiber composite material and use thereof

Publications (1)

Publication Number Publication Date
JP2006097145A true JP2006097145A (en) 2006-04-13

Family

ID=36237226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004281294A Pending JP2006097145A (en) 2004-09-28 2004-09-28 Fiber composite material and use thereof

Country Status (1)

Country Link
JP (1) JP2006097145A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902652B2 (en) * 2006-07-03 2012-03-21 株式会社クラレ Conductive core-sheath type composite fiber and method for producing the same
KR101493730B1 (en) * 2008-09-22 2015-02-17 (주)효성 Conductive composite fiber
KR101551429B1 (en) * 2009-12-31 2015-09-21 주식회사 효성 Process for preparing conductive polyamide conjugated yarn having fluidized carbon nanotube
CN113026139A (en) * 2019-12-25 2021-06-25 宇部爱科喜模株式会社 Black synthetic fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902652B2 (en) * 2006-07-03 2012-03-21 株式会社クラレ Conductive core-sheath type composite fiber and method for producing the same
KR101493730B1 (en) * 2008-09-22 2015-02-17 (주)효성 Conductive composite fiber
KR101551429B1 (en) * 2009-12-31 2015-09-21 주식회사 효성 Process for preparing conductive polyamide conjugated yarn having fluidized carbon nanotube
CN113026139A (en) * 2019-12-25 2021-06-25 宇部爱科喜模株式会社 Black synthetic fiber

Similar Documents

Publication Publication Date Title
JP3917524B2 (en) Fiber composite and use thereof
JP4916460B2 (en) Core-sheath composite type conductive fiber
JP4923174B2 (en) Conductive composite yarn and conductive fabric
JP4367038B2 (en) Fiber and fabric
JP5220673B2 (en) Conductive sewing thread and knitted fabric
JP5302112B2 (en) Moist heat resistant conductive sewing thread and knitted fabric
JP2007002374A (en) Conductive conjugated fiber and conductive fabric
JP4280546B2 (en) Conductive composite fiber and conductive woven / knitted fabric
JP2003171844A (en) Woven fabric for dustproof garment and the resultant dustproof garment
JP2006097145A (en) Fiber composite material and use thereof
JP2705096B2 (en) Material for antistatic wiping
JP2001164474A (en) Woven fabric for dustfree garment and working wear
JP2006274512A (en) Method for producing conductive conjugate fiber
JP2007092199A (en) Conductive conjugate fiber having moist heat resistance and conductive fabric having moist heat resistance
JP7107226B2 (en) conductive composite fiber
JP2010285708A (en) Woven fabric for uniform, and garment
WO2023080124A1 (en) Sheath-core type polyester composite fiber and method for producing same
JP2007092200A (en) Conductive conjugate fiber having moist heat resistance and conductive fabric having moist heat resistance
JP2010285707A (en) Woven fabric for uniform, and garment
JPH10310944A (en) Antistatic sewing yarn
JPH07102437A (en) Electrically-conductive combined filament yarn
JP2813368B2 (en) Antistatic composite fiber
JP4763451B2 (en) Conductive composite fiber
JP4598784B2 (en) Conductive composite fiber
JP6420141B2 (en) Conductive yarn and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060214