JPH07102437A - Electrically-conductive combined filament yarn - Google Patents

Electrically-conductive combined filament yarn

Info

Publication number
JPH07102437A
JPH07102437A JP24934693A JP24934693A JPH07102437A JP H07102437 A JPH07102437 A JP H07102437A JP 24934693 A JP24934693 A JP 24934693A JP 24934693 A JP24934693 A JP 24934693A JP H07102437 A JPH07102437 A JP H07102437A
Authority
JP
Japan
Prior art keywords
yarn
conductive
core
fiber
electrically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24934693A
Other languages
Japanese (ja)
Other versions
JP3210787B2 (en
Inventor
Kazuhiko Tanaka
和彦 田中
Yoshiteru Matsuo
義輝 松尾
Hidekazu Kobayashi
英一 小林
Masao Kawamoto
正夫 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17191665&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07102437(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP24934693A priority Critical patent/JP3210787B2/en
Publication of JPH07102437A publication Critical patent/JPH07102437A/en
Application granted granted Critical
Publication of JP3210787B2 publication Critical patent/JP3210787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To obtain electrically-conductive combined filament yarn having slight discoloration, mixable with other charging yarns, capable of providing a fiber product with excellent antistatic properties and wearing durability. CONSTITUTION:This electrically-conductive combined filament yarn comprises highly orientated undrawn electrically-conductive sheath-core conjugate yarn as side yarn and electrically non-conductive polyethylene terephthalate-based multifilament as core yarn wherein the side yarn has yarn length 0.5-15% longer than that of the core yarn and the mechanical properties of the core yarn are larger than those of the side yarn. The highly orientated undrawn electrically- conductive sheath-core conjugate yarn is composed of a PET-based or PBT- based polymer (A) as a sheath component and a polyamide-based thermoplastic polymer (B) containing an electrically-conductive substance constituted of an electrically-conductive metal oxide as a core component and has specific filament core resistance value, danger elongation and shrinkage percentage in hot water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は除電性能に優れた複合繊
維、とりわけ繊維物性、着用耐久性に優れた除電性能を
有する白色導電性繊維を用いた混繊糸に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite fiber having excellent static elimination performance, and more particularly to a mixed fiber using a white conductive fiber having excellent static elimination performance with excellent physical properties and wear durability.

【0002】[0002]

【従来の技術】除電性能に優れた繊維としての導電性繊
維については種々の提案がなされている。たとえば、カ
−ボンブラックを含有したポリマ−からなる導電性成分
と繊維形成性ポリマ−からなる保護成分とが接合された
導電性繊維が提案されている。しかしながら、カ−ボン
ブラックを用いた導電性繊維の欠点の1つは、繊維が黒
色または灰色に着色することである。そのために用途が
限定されているのが実情である。
2. Description of the Related Art Various proposals have been made for conductive fibers which are excellent in static elimination performance. For example, there has been proposed a conductive fiber in which a conductive component made of a polymer containing carbon black and a protective component made of a fiber-forming polymer are joined. However, one of the drawbacks of conductive fibers with carbon black is that the fibers are colored black or gray. Therefore, the use is limited in reality.

【0003】この欠点を改良する方法として、近年、白
色または無色の導電性金属酸化物を導電性物質として含
有する導電性繊維が提案されている。たとえば、特開昭
57−6762号公報、特公昭62−29526号公報
には、導電性金属酸化物と熱可塑性ポリマ−との混合物
を導電層とし、繊維形成性ポリマ−との複合繊維を作製
する場合に、該複合原糸を作製し延伸を行なった後にさ
らにその繊維を熱処理することにより導電層を修復する
方法が提案されている。すなわち、導電性金属酸化物の
バインダ−として熱可塑性ポリマ−を使用した場合にお
いては延伸工程で導電層が切断される。そのままの状態
では電導性が失われるために導電性繊維としての役割を
果たすことはできない。導電性金属酸化物のバインダ−
として熱可塑性ポリマ−、とくに結晶性の高い熱可塑性
ポリマ−を使用した場合にはこのような熱処理は必要な
ものである。
As a method for improving this drawback, in recent years, conductive fibers containing a white or colorless conductive metal oxide as a conductive substance have been proposed. For example, in JP-A-57-6762 and JP-B-62-29526, a mixture of a conductive metal oxide and a thermoplastic polymer is used as a conductive layer to prepare a composite fiber with a fiber-forming polymer. In this case, a method has been proposed in which the composite yarn is prepared, drawn, and then the fiber is further heat-treated to restore the conductive layer. That is, when the thermoplastic polymer is used as the binder of the conductive metal oxide, the conductive layer is cut in the stretching step. As it is, it cannot serve as a conductive fiber because the electrical conductivity is lost. Binder of conductive metal oxide
Such a heat treatment is necessary when a thermoplastic polymer, particularly a thermoplastic polymer having high crystallinity, is used.

【0004】しかしながら、上記各公報に記載された技
術において得られる導電性繊維は、延伸後の熱処理工程
が必須であるために生産効率が悪い欠点がある。また、
該導電性繊維は着用耐久性が不足している欠点をも有し
ている。導電性繊維の耐久性評価は、導電性繊維を0.
1〜10重量%織り込んだ織物を1年間程度着用し、そ
の時に制電性能が存在するかどうかということを判定し
てなされる。労働省作業安全研究所発行の静電気安全指
針における帯電量の基準値は7μク−ロン/m↑2であ
り、この値以下であることが必要である。従来の白色あ
るいは無色の導電性複合繊維においては上記の耐久性を
満足することができなかった。
However, the conductive fibers obtained by the techniques described in the above publications have the drawback of poor production efficiency because a heat treatment step after stretching is essential. Also,
The conductive fiber also has a drawback that it lacks wear durability. The durability of the conductive fiber was evaluated by measuring the conductive fiber as 0.
A woven fabric in which 1 to 10% by weight is woven is worn for about one year, and it is judged whether or not antistatic performance is present at that time. The standard value of the amount of electrification in the Electrostatic Safety Guideline issued by the Labor Safety Research Institute of the Ministry of Labor is 7 μCoulomb / m ↑ 2, and it is necessary to be less than this value. The conventional white or colorless conductive composite fiber cannot satisfy the above-mentioned durability.

【0005】たとえば、熱可塑性ポリマ−がポリエチレ
ンの場合、実用耐久性は不十分であり、とくに作業服等
の危険な作業上での使用は不適であることが本発明者等
の検討結果判明した。熱可塑性ポリマ−として結晶性熱
可塑性ポリマ−を使用した場合においては、導電性複合
繊維作製直後のフィラメントの抵抗値を9×10↑10
Ω/cm・f以下にすることができ、織物の帯電基準値
を満足することができるが、耐久性に劣るために織物の
制電性能が低下し、実際上使用することが困難である。
For example, when the thermoplastic polymer is polyethylene, practical durability is insufficient, and it is found out by the present inventors that it is not suitable for use in dangerous work such as work clothes. . When a crystalline thermoplastic polymer is used as the thermoplastic polymer, the resistance value of the filament immediately after the production of the conductive composite fiber is 9 × 10 ↑ 10.
Ω / cm · f or less, and it can satisfy the standard value of electrification of the woven fabric, but since the durability is poor, the antistatic performance of the woven fabric is deteriorated and it is difficult to use in practice.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、着色
が少なく他の帯電性繊維と混用でき、繊維製品に優れた
除電性能、着用耐久性を付与することができる導電性混
繊糸を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a conductive mixed fiber which is less colored and can be used in combination with other electrostatically charged fibers to impart excellent static elimination performance and wear durability to textile products. To provide.

【0007】[0007]

【課題を解決するための手段】本発明は、高配向未延伸
導電性芯鞘複合繊維を側糸とし、非導電性ポリエチレン
テレフタレ−ト系マルチフィラメントを芯糸とした混繊
糸であり、該側糸が該芯糸よりも0.5〜15%糸長が
長く、かつ芯糸の初期ヤング率およびト−タル強度が該
側糸の初期ヤング率およびト−タル強度よりもともに大
きい混繊糸であって、前記高配向未延伸導電性芯鞘複合
繊維が、ポリエチレンテレフタレ−ト系またはポリブチ
レンテレフタレ−ト系のポリマ−(A)を鞘成分、導電
性金属酸化物からなる導電性物質を含有するポリアミド
系熱可塑性ポリマ−(B)を芯成分とし、フィラメント
芯抵抗が1kVの直流電圧において9×10↑10Ω/
cm・fより小さく、危険伸度が5%以上、かつ100
℃の熱水中での収縮率が20%以下であることを特徴と
する導電性混繊糸に係わるものである。
Means for Solving the Problems The present invention is a mixed yarn having highly oriented undrawn conductive core-sheath composite fibers as side yarns and non-conductive polyethylene terephthalate multifilaments as core yarns. The side yarn is 0.5 to 15% longer than the core yarn, and the initial Young's modulus and total strength of the core yarn are both larger than the initial Young's modulus and total strength of the side yarn. In the filament yarn, the highly oriented unstretched conductive core-sheath composite fiber comprises a polyethylene terephthalate-based or polybutylene terephthalate-based polymer (A) as a sheath component and a conductive metal oxide. A polyamide-based thermoplastic polymer (B) containing a conductive material is used as a core component, and the filament core resistance is 9 × 10 ↑ 10Ω / at a DC voltage of 1 kV.
less than cm · f, danger elongation is 5% or more, and 100
The present invention relates to a conductive mixed yarn, which has a shrinkage rate of 20% or less in hot water of ℃.

【0008】除電性能とは帯電した物体の電荷を非接触
により除電することをいい、芯抵抗が10↑11Ω/c
m・f以下の導電性を有する繊維の場合、不平等電界を
形成し、コロナ放電により除電されるが、芯抵抗が10
↑11Ω/cm・fを越える場合にはコロナ放電によっ
て放電は起こらず、有効な除電性を示さない。
The static elimination performance means the static elimination of electric charges of a charged object by non-contact, and the core resistance is 10 ↑ 11Ω / c.
In the case of a fiber having a conductivity of m · f or less, a non-uniform electric field is formed and static electricity is removed by corona discharge, but the core resistance is 10
↑ When it exceeds 11 Ω / cm · f, no discharge occurs due to corona discharge, and effective charge removal property is not exhibited.

【0009】本発明者等は繊維は伸長する過程で芯抵抗
が1KVの直流電圧において10↑11Ω/cm・fを
越える時の伸度、すなわち除電性能を失う時の伸度(本
発明における危険伸度)と導電性芯鞘複合繊維の構成成
分、ならびに導電性芯鞘複合繊維と他の繊維との混繊状
態を検討した。その結果、実用耐久性に大きく影響する
要因として、上記危険伸度と導電性物質を含有する熱可
塑性ポリマ−、ならびに導電性芯鞘複合繊維と他の繊維
との混繊状態が挙げられることを見出だした。
The inventors of the present invention have found that the elongation of the fiber when the core resistance exceeds 10 ↑ 11Ω / cmf at a DC voltage of 1 KV in the process of elongation, that is, the elongation at the time of losing the static elimination performance (danger in the present invention The elongation) and the constituent components of the conductive core-sheath composite fiber, and the mixed fiber state of the conductive core-sheath composite fiber and other fibers were examined. As a result, as factors that greatly affect the practical durability, there is a thermoplastic polymer containing the dangerous elongation and the conductive material, and a mixed fiber state of the conductive core-sheath composite fiber and other fibers. I found it.

【0010】本発明に係わる導電性芯鞘複合繊維(単に
導電性繊維と称する場合がある)とは導電性物質を含有
する芯成分と、鞘成分とからなる芯鞘型複合構造を有し
ている。芯鞘の複合形態は、同心芯鞘型、偏心芯鞘型、
多芯芯鞘型等が挙げられる。効果の点においては偏心芯
鞘型が好ましいが耐久性の点においては同心芯鞘型が好
ましく、用途に応じて、また要求性能に応じて使い分け
ることができる。芯成分に含有される導電性物質は白色
または無色系の金属酸化物の微粒子、あるいは該金属酸
化物が無機微粒子を核としてその表面に被覆された状態
の微粒子をいう。金属酸化物の多くのものは絶縁体に近
い半導体であって充分な導電性を示さないことが多い。
しかしながら、たとえば、充分な導電性を有するものが
得られる、このような導電性強化剤(ド−ピング剤)と
して、酸化錫に対して酸化アンチモン、酸化亜鉛に対し
てアルミニウム、カリウム等が知られている。平均粒径
0.1μの酸化錫の比抵抗は約10↑3Ω・cmである
が、酸化アンチモンと酸化錫との固容体の比抵抗は1〜
10Ω・cmであり導電性が強化されている。該固容体
中に占める酸化アンチモンの割合は0.01〜0.10
(重量比)とすることが総合的な性能からいって必要で
ある。酸化アンチモンの被覆量が少ないと、導電性が不
足し、逆に多いと目的の白色系の方向から遠ざかってし
まう。
The conductive core-sheath composite fiber according to the present invention (which may be simply referred to as conductive fiber) has a core-sheath type composite structure composed of a core component containing a conductive substance and a sheath component. There is. The composite form of the core-sheath is concentric core-sheath type, eccentric core-sheath type,
A multi-core sheath type and the like can be mentioned. The eccentric core-sheath type is preferable from the viewpoint of the effect, but the concentric core-sheath type is preferable from the viewpoint of durability, and the eccentric core-sheath type can be used properly according to the application and the required performance. The conductive substance contained in the core component means fine particles of white or colorless metal oxide, or fine particles in which the surface of the metal oxide is covered with the inorganic fine particles as nuclei. Many metal oxides are semiconductors close to insulators and often do not show sufficient conductivity.
However, for example, antimony oxide for tin oxide, aluminum, potassium for zinc oxide, etc. are known as such conductivity enhancers (doping agents) that can provide those having sufficient conductivity. ing. The specific resistance of tin oxide having an average particle diameter of 0.1 μ is about 10 ↑ 3Ω · cm, but the specific resistance of the solid solution of antimony oxide and tin oxide is 1 to 1.
It is 10 Ω · cm, and the conductivity is enhanced. The proportion of antimony oxide in the solid solution is 0.01 to 0.10.
(Weight ratio) is necessary for overall performance. If the coating amount of antimony oxide is small, the conductivity is insufficient, and conversely, if it is large, the target white-based direction is moved away.

【0011】本発明において導電性物質としては上記の
被覆された酸化亜鉛、酸化錫が導電性、白色度等に優れ
好適であるが、これら以外の金属酸化物、たとえば酸化
タングステン、酸化インジウム、酸化ジルコニウム等の
導電性金属酸化物、酸化チタン、酸化マグネシウム等の
金属微粒子、シリカ等の無機化合物微粒子の表面に前記
導電性金属酸化物を被覆したものが挙げられる。
In the present invention, as the conductive substance, the above-mentioned coated zinc oxide and tin oxide are preferable because of their excellent conductivity and whiteness, but other metal oxides such as tungsten oxide, indium oxide, and oxide are preferable. Examples thereof include conductive metal oxides such as zirconium, metal fine particles such as titanium oxide and magnesium oxide, and inorganic compound fine particles such as silica, which are coated with the conductive metal oxide.

【0012】これらの導電性物質は1種類または2種類
以上混合して用いることができる。さらに白色系を損な
わない範囲内で金属酸化物以外の導電性物質、たとえば
金属、カ−ボンブラック等と併用することができる。導
電性物質としての金属酸化物微粒子の粒径は小さいもの
がよく、平均粒径が1μ以下、とくに0.5μ以下のも
のが好ましく用いられる。
These conductive materials may be used alone or in combination of two or more. Further, it can be used in combination with a conductive substance other than metal oxide, such as metal or carbon black, within a range that does not impair the white color. It is preferable that the metal oxide fine particles as a conductive substance have a small particle diameter, and an average particle diameter of 1 μm or less, particularly 0.5 μm or less is preferably used.

【0013】また該導電性物質の芯成分への含有量は6
0〜75重量%であることが好ましい。導電性物質の含
有量が60重量%未満の場合、好ましい導電性が得られ
にくく、充分な除電性能が発揮されない。一方、導電性
物質の含有量が75重量%を越える場合、導電性のより
一層の向上は認められず、芯成分の流動性が著しく低下
して、紡糸性が極端に悪化し、とりわけフィルタ−詰ま
り等のパック寿命が短くなり、工程安定性に劣るので好
ましくない。
The content of the conductive substance in the core component is 6
It is preferably from 0 to 75% by weight. When the content of the conductive substance is less than 60% by weight, it is difficult to obtain preferable conductivity and sufficient charge removing performance is not exhibited. On the other hand, when the content of the conductive substance exceeds 75% by weight, further improvement in conductivity is not recognized, the fluidity of the core component is remarkably reduced, and the spinnability is extremely deteriorated, and especially the filter- Pack life such as clogging is shortened and process stability is poor, which is not preferable.

【0014】上記導電性繊維の芯成分を構成するポリマ
−は、ナイロン6、ナイロン66、ナイロン12、メタ
キシリレンジアミンナイロン等、またはこれらを主成分
とするの熱可塑性ポリアミド系ポリマ−である。しかも
紡糸の際のポリアミド系ポリマ−の水分率が100〜1
200ppmの範囲内にあることが好ましい。紡糸時に
おけるポリアミド中の水分率がこの範囲をはずれると、
導電性繊維の危険伸度が5%以上とならず、またコロナ
放電による除電が行なわれにくくなる。また、紡糸時に
おけるポリアミドの水分率が100ppm未満と極端に
少なくなると、樹脂自体が脆くなり導電構造が不安定に
なり易くなる。一方、紡糸時のポリアミドの水分率が1
200ppmを越えると、発泡、ボイド等が生じ易く、
導電層中に微細な欠陥が発生し易くなる。
The polymer constituting the core component of the conductive fiber is nylon 6, nylon 66, nylon 12, metaxylylenediamine nylon, or the like, or a thermoplastic polyamide polymer containing these as the main components. Moreover, the water content of the polyamide-based polymer during spinning is 100 to 1
It is preferably in the range of 200 ppm. When the water content in the polyamide during spinning deviates from this range,
The dangerous elongation of the conductive fiber does not become 5% or more, and it becomes difficult to eliminate the charge by corona discharge. Further, when the water content of the polyamide during spinning is extremely low at less than 100 ppm, the resin itself becomes brittle and the conductive structure tends to become unstable. On the other hand, the water content of polyamide during spinning is 1
If it exceeds 200 ppm, foaming, voids, etc. tend to occur,
Fine defects are likely to occur in the conductive layer.

【0015】該ポリアミド系ポリマ−は適当な極性基を
有するために導電物質である金属酸化物と相溶性、接着
性が良好であり、高濃度で導電性物質を配合しても流動
性があまり低下せず、高い導電性と良好な流動性を兼ね
備えたポリマ−である。さらに導電性物質である金属酸
化物とポリアミド系ポリマ−は強固な接着性を有するこ
とから機械的物性も極めて良好であり、長期間の実着用
でも導電層が切断されることがなく、除電性能を失うこ
とがない。
Since the polyamide-based polymer has an appropriate polar group, it has good compatibility and adhesiveness with the metal oxide which is a conductive substance, and even if it is blended with a conductive substance at a high concentration, it has little fluidity. It is a polymer that does not decrease and has both high conductivity and good fluidity. Furthermore, since the metal oxide, which is a conductive substance, and the polyamide-based polymer have strong adhesiveness, the mechanical properties are also extremely good, and the conductive layer is not cut even after long-term actual wear, and the static elimination performance is improved. Never lose.

【0016】さらに本発明に係わる導電性繊維におい
て、上述したように芯成分は導電性物質である導電性金
属酸化物を含有する熱可塑性ポリアミド系ポリマ−であ
り、鞘成分としてはポリエチレンテレフタレ−ト系ポリ
マ−(PET系ポリマ−)またはポリブチレンテレフタ
レ−ト系ポリマ−(PBT系ポリマ−)が用いられる。
PET系ポリマ−またはPBT系ポリマ−は引張りに対
して伸長しにくく、さらに他のポリマ−、たとえばポリ
アミド等に比較して紡糸後自発伸長しにくいという特徴
を有している。自発伸長するポリマ−である場合には、
時間の経過と供に芯成分が徐々に伸長されることにな
り、芯成分中の導電層が破断して導電性能が失われるこ
とになる。さらに、PET系ポリマ−またはPBT系ポ
リマ−を用いると、著しい加工耐久性、実着用耐久性も
得られる。
Further, in the conductive fiber according to the present invention, as described above, the core component is a thermoplastic polyamide polymer containing a conductive metal oxide which is a conductive substance, and the sheath component is polyethylene terephthalate. A polymer (PET-based polymer) or a polybutylene terephthalate-based polymer (PBT-based polymer) is used.
The PET-based polymer or the PBT-based polymer is characterized in that it is difficult to stretch with respect to tension, and further, it is difficult to spontaneously stretch after spinning as compared with other polymers such as polyamide. When the polymer is a spontaneously extending polymer,
As the time elapses, the core component gradually expands, and the conductive layer in the core component breaks and the conductive performance is lost. Further, when PET-based polymer or PBT-based polymer is used, remarkable processing durability and durability in actual wear can be obtained.

【0017】PET系ポリマ−あるいはPBT系ポリマ
−とは、それぞれエチレンテレフタレ−ト単位、あるい
はブチレンテレフタレ−ト単位を主たる繰り返し単位と
するポリマ−のことであり、それ以外のジカルボン酸成
分、ジオ−ル成分あるいはオキシカルボン酸成分が共重
合されていてもよい。しかしながら、共重合割合が増す
にしたがって導電性繊維の引張り抵抗性が低下すること
になるので、共重合割合は低くすることが好ましい。望
ましくは繰り返し単位の85モル%以上がエチレンテレ
フタレ−ト単位あるいはブチレンテレフタレ−ト単位で
あるポリエステルが好ましい。そして、その固有粘度
〔η〕は0.55以上であることが好ましい。
The PET-based polymer or PBT-based polymer is a polymer having an ethylene terephthalate unit or a butylene terephthalate unit as a main repeating unit, respectively, and other dicarboxylic acid components, A diol component or an oxycarboxylic acid component may be copolymerized. However, as the copolymerization ratio increases, the tensile resistance of the conductive fiber decreases, so it is preferable to lower the copolymerization ratio. Desirably, polyester in which 85 mol% or more of repeating units are ethylene terephthalate units or butylene terephthalate units is preferable. The intrinsic viscosity [η] is preferably 0.55 or more.

【0018】本発明に係わる導電性繊維において、芯成
分と鞘成分の複合比率は前者/後者=8/92〜22/
78(重量比)、とくに10/90〜20/80(重量
比)であることが好ましい。鞘成分が92重量%を越え
ると、安定した芯鞘構造の複合繊維を紡糸することが困
難となり、一方、鞘成分が78重量%未満になると、鞘
成分であるPET系ポリマ−またはPBT系ポリマ−が
充分な繊維形成能をもっていたとしても複合した糸の紡
糸性が低下し、繊維物性も極端に低下し、実用性は失わ
れてしまう。
In the conductive fiber according to the present invention, the composite ratio of the core component and the sheath component is the former / the latter = 8/92 to 22 /.
It is preferably 78 (weight ratio), particularly preferably 10/90 to 20/80 (weight ratio). If the sheath component exceeds 92% by weight, it becomes difficult to spin a stable composite fiber having a core-sheath structure. On the other hand, if the sheath component is less than 78% by weight, the PET component or PBT polymer that is the sheath component is used. Even if-has a sufficient fiber-forming ability, the spinnability of the composite yarn is lowered, the physical properties of the fiber are extremely lowered, and the practicality is lost.

【0019】上記導電性繊維は、〔η〕=0.55以上
のPET系ポリマ−またはPBT系ポリマ−、ならびに
水分率が100〜1200ppmになるように乾燥さ
れ、導電性物質を含有するポリアミド系ポリマ−を、そ
れぞれ別々のエクストル−ダ−で溶融し、複合紡糸装置
を用いて高速紡糸を行なうことによって得られる。
The conductive fiber is a PET-based polymer or PBT-based polymer having [η] = 0.55 or more, and a polyamide-based fiber which is dried to have a water content of 100 to 1200 ppm and contains a conductive substance. The polymer is obtained by melting the polymer in separate extruders and performing high-speed spinning using a composite spinning device.

【0020】このようにして得られた紡糸後の糸条は1
00℃における熱水収縮率(WSr)が20%以下にな
るように、紡糸速度3500〜5000m/分で高配向
溶融紡糸される。通常、該導電性繊維は布帛中に少量混
在させて使用される。その際、該導電性繊維のWSrが
他の繊維のWSrに比較して極端に大きいと、布帛に外
力が加わった場合に該導電性繊維の切断等のトラブルが
発生し易く、とくに実着用時にこの影響が大きい。ま
た、本発明に係わる導電性繊維の危険伸度は5%以上で
あり、芯抵抗が1kVの直流電圧において9×10↑1
0Ω/cm・fより小さい値を示し、除電性能に優れて
いるのである。
The yarn after spinning thus obtained has 1
High orientation melt spinning is performed at a spinning speed of 3500 to 5000 m / min so that the hot water shrinkage rate (WSr) at 00 ° C. is 20% or less. Usually, the conductive fiber is used in a small amount in a cloth. At that time, if the WSr of the conductive fiber is extremely large as compared with the WSr of other fibers, troubles such as cutting of the conductive fiber are likely to occur when an external force is applied to the fabric, especially during actual wearing. This effect is great. Further, the risk elongation of the conductive fiber according to the present invention is 5% or more, and the core resistance is 9 × 10 ↑ 1 at a DC voltage of 1 kV.
It shows a value smaller than 0 Ω / cm · f and is excellent in static elimination performance.

【0021】本発明で重要なことは、上述した高配向未
延伸導電性繊維が側糸となって混繊糸を形成しているこ
とにある。混繊糸を構成する他の成分である芯糸として
は、非導電性のPET系マルチフィラメントが用いられ
る。該PET系マルチフィラメントは、引張りに対する
伸長抵抗が大きく、さらに加工耐久性および実着用耐久
性に優れているので、側糸である導電性繊維に過度の引
張り応力がかかり、導電層が破断することを防ぐことが
できる。
What is important in the present invention is that the above-mentioned highly oriented undrawn conductive fibers serve as side yarns to form a mixed yarn. A non-conductive PET-based multifilament is used as the core yarn which is another component of the mixed fiber. Since the PET-based multifilament has a large elongation resistance to pulling and is excellent in processing durability and durability for actual wearing, the conductive fiber as the side yarn is subjected to excessive tensile stress and the conductive layer is broken. Can be prevented.

【0022】そして、芯糸である非導電性PET系マル
チフィラメントが、側糸である導電性繊維より糸長が短
いことが本発明において必須である。その程度は芯糸の
糸長を100%としたとき、側糸の糸長が100.5〜
115%となる範囲である。側糸の糸長が100.5%
未満の場合、側糸に張力がかかることを防ぐことができ
ず、実着用時に徐々に導電性能が損なわれることとな
り、一方、側糸の糸長が115%を越えると、実着用時
に布帛表面に導電性繊維が突出し、該導電性繊維が摩耗
して導電性能が低下することとなる。このように導電性
繊維の糸長を非導電性PET系マルチフィラメントより
長くすることにより、混繊糸に張力がかかった際に、導
電性繊維に過度の張力がかかり、その結果、導電層が破
断する事態が生ずることを防いでいる。
It is essential in the present invention that the non-conductive PET multifilament which is the core yarn has a shorter yarn length than the conductive fiber which is the side yarn. The degree is such that when the yarn length of the core yarn is 100%, the yarn length of the side yarn is 100.5 to
The range is 115%. The side thread length is 100.5%
If it is less than 100%, it is impossible to prevent tension from being applied to the side yarns, and the conductive performance is gradually impaired during actual wearing. On the other hand, if the yarn length of the side yarns exceeds 115%, the fabric surface during actual wearing is reduced. The electrically conductive fibers are projected to the surface, and the electrically conductive fibers are abraded and the electrically conductive performance is deteriorated. By making the yarn length of the conductive fiber longer than that of the non-conductive PET-based multifilament as described above, when tension is applied to the mixed fiber, excessive tension is applied to the conductive fiber, and as a result, the conductive layer is formed. It prevents the situation of breaking.

【0023】また、芯糸である非導電性PET系マルチ
フィラメントの初期ヤング率とト−タル破断強度は、そ
れぞれ側糸である導電性繊維の初期ヤング率とト−タル
破断強度より高いことが必要である。これらのうちのい
ずれか一方、または両方が導電性繊維のほうが高い場合
には上述した条件と同様に、導電性繊維に張力がかかり
導電層が破断することになる。このような初期ヤング率
およびト−タル破断強度を満足する非導電性PET系マ
ルチフィラメントとしては、ポリエチレンテレフタレ−
トまたはエチレンテレフタレ−ト単位を主たる繰り返し
単位とする共重合ポリエステルからなる延伸繊維、ある
いは溶融ポリエステルをノズルから押し出し、500〜
4500m/分の速度で巻き取り、ついで1.2〜5倍
の延伸倍率で延伸した繊維が好適に用いられる。
The initial Young's modulus and total breaking strength of the non-conductive PET type multifilament which is the core yarn may be higher than the initial Young's modulus and total breaking strength of the conductive fiber which is the side yarn, respectively. is necessary. When the conductive fiber is higher in either one or both of them, tension is applied to the conductive fiber and the conductive layer is broken, as in the above-described conditions. As a non-conductive PET-based multifilament satisfying such initial Young's modulus and total breaking strength, polyethylene terephthalate
Stretched fiber made of copolymerized polyester having ethylene or ethylene terephthalate unit as a main repeating unit or molten polyester is extruded from a nozzle to give 500-
A fiber wound at a speed of 4500 m / min and then drawn at a draw ratio of 1.2 to 5 times is preferably used.

【0024】本発明でいうト−タル破断強度とは、混繊
糸を芯糸と側糸に分けて、芯糸は芯糸で、側糸は側糸
で、それぞれの糸条全体の破断強度を求め、その値を糸
条を構成しているフィラメントの総繊度で除した値であ
る。
The total breaking strength as used in the present invention means that the mixed fiber is divided into a core thread and a side thread. The core thread is the core thread, the side thread is the side thread, and the breaking strength of each whole yarn is Is obtained and is divided by the total fineness of the filaments forming the yarn.

【0025】導電性繊維と非導電性PET系マルチフィ
ラメントとの合糸比率、それぞれの繊度、繊維を構成す
る単繊維の本数などはとくに限定されず、使用目的に応
じて任意に選択することができる。導電性繊維糸条の繊
度は50デニ−ル以下、とくに30デニ−ル以下が好適
である。構成フィラメント数は1〜5本、とくに1〜2
本程度、すなわち、導電性繊維の単繊度は2〜25デニ
−ルが好適である。非導電性PET系マルチフィラメン
トの繊度は10〜100デニ−ル、とくに20〜50デ
ニ−ルが好適であり、構成フィラメント数は5本以上、
とくに10本以上、すなわち非導電性PET系マルチフ
ィラメントを構成するフィラメントの単繊度は20デニ
−ル以下が好適である。また、両者が合糸された混繊糸
中における導電性繊維(糸条)の混合率は16〜66重
量%であることが好適である。
There are no particular restrictions on the blending ratio of the conductive fibers and the non-conductive PET-based multifilaments, the respective fineness, the number of single fibers constituting the fibers, etc., and they can be selected arbitrarily according to the purpose of use. it can. The fineness of the conductive fiber yarn is preferably 50 denier or less, and particularly preferably 30 denier or less. 1-5 filaments, especially 1-2
This degree, that is, the fineness of the conductive fibers is preferably 2 to 25 denier. The fineness of the non-conductive PET-based multifilament is preferably 10 to 100 denier, especially 20 to 50 denier, and the number of constituent filaments is 5 or more,
Particularly, it is preferable that the number of filaments constituting the non-conductive PET multifilament is 10 or more, that is, 20 denier or less. In addition, it is preferable that the mixing ratio of the conductive fibers (threads) in the mixed fiber in which both are combined is 16 to 66% by weight.

【0026】本発明の混繊糸は通常の方法によって行な
うことができる。たとえば、芯糸となる非導電性PET
系マルチフィラメントと、側糸になる導電性繊維とを別
々の供給ロ−ラに送り込み両者を合糸した後、空気絡合
ノズルまたは乱流ノズルにより合糸糸条に流体処理を施
して両糸条を交絡混繊し、そして得られた混繊糸を巻き
取る方法が用いられる。その際の側糸である導電性繊維
の供給ロ−ラの表面速度を、芯糸の供給ロ−ラの表面速
度より高くすることにより、前記糸長差を達成すること
が可能となり、またかかる速度差により、導電性繊維が
側糸に非導電性PET系マルチフィラメントが芯糸にな
る。
The mixed yarn of the present invention can be prepared by a usual method. For example, non-conductive PET that becomes the core yarn
-Type multifilament and conductive fiber to be side yarns are sent to separate supply rollers to combine them, and then the yarn is subjected to fluid treatment by an air entanglement nozzle or a turbulent flow nozzle and both yarns are subjected to fluid treatment. A method is used in which the filaments are entangled and mixed, and the resulting mixed fiber is wound up. At that time, by making the surface velocity of the feeding roller of the conductive fiber which is the side yarn higher than the surface velocity of the feeding roller of the core yarn, it becomes possible to achieve the yarn length difference, and Due to the speed difference, the conductive fiber becomes the side yarn and the non-conductive PET-based multifilament becomes the core yarn.

【0027】芯糸と側糸は、前述したように空気等を吹
き付けることにより交絡していることが、側糸である導
電性繊維単独に張力がかかる上で好ましく、その際の交
絡数は0.5〜5個/インチの範囲が好適である。交絡
数は、混繊糸を水面に浮かべ糸条の拡がりを観察し、糸
条が拡がらない箇所を数えることにより容易に導き出さ
れる。なお、得られた混繊糸を必要に応じて熱処理して
もよく、熱処理条件としては120〜210℃の範囲の
温度で定長以下での弛緩熱処理が好適である。
As described above, it is preferable that the core yarn and the side yarn are entangled by blowing air or the like, because tension is applied to the conductive yarn which is the side yarn, and the entanglement number at that time is 0. The range of 0.5 to 5 pieces / inch is preferable. The number of entanglements can be easily derived by observing the spread of the mixed filament yarn floating on the water surface and counting the places where the yarn does not spread. The obtained mixed fiber may be heat-treated as necessary, and the heat treatment condition is preferably a relaxation heat treatment at a temperature in the range of 120 to 210 ° C and a length not more than a fixed length.

【0028】本発明の混繊糸は、他の帯電性の繊維、た
とえば絹、羊毛、セルロ−スアセテ−ト、ポリアミド、
ポリエステル、ポリオレフィン、ポリビニル系、ポリア
クリロニトリル系等の各種天然、合成繊維と混用して織
物、編物、ロ−プ、紐、カ−ペット等の繊維製品を製造
することができる。通常、除電性能付与目的であれば、
繊維製品中の導電性繊維の混用率は0.1〜5重量%で
充分であるが、優れた除電性能を付与するためには1〜
50重量%とすることもできる。たとえば、本発明の混
繊糸を作業着等に用いられる布帛に、一定間隔、通常は
3mm〜5cm位の間隔で挿入することにより、実着用
時の屈折、もみ、引張り等の繰り返しによっても優れた
導電性能が極めて損なわれにくいという長所を有してい
る。
The mixed filament yarn of the present invention is made of other electrically-chargeable fibers such as silk, wool, cellulose acetate, polyamide,
Textile products such as woven fabrics, knitted fabrics, ropes, cords and carpets can be produced by mixing with various natural and synthetic fibers such as polyester, polyolefin, polyvinyl, polyacrylonitrile and the like. Usually, for the purpose of imparting static elimination performance,
The mixing ratio of the conductive fibers in the fiber product is 0.1 to 5% by weight, but it is 1 to 5% in order to impart excellent static elimination performance.
It can also be 50% by weight. For example, by inserting the mixed fiber of the present invention into a cloth used for work clothes or the like at a constant interval, usually about 3 mm to 5 cm, it is also excellent in repeated refraction, chaffing, pulling, etc. during actual wearing. It also has the advantage that the conductive performance is extremely unlikely to be impaired.

【0029】[0029]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれら実施例により何等限定されるもの
ではない。なお、実施例中における各物性値は下記の方
法により測定、算出した。 (1)PETまたはPBTの固有粘度〔η〕(dl/g) フェノ−ル/テトラクロロエタン(等重量)混合溶媒を
用いて、30℃で測定した。 (2)ナイロン6の相対粘度 1g/100mlの96%硫酸ナトリウム溶液を用いて、
30℃で測定した。 (3)危険伸度 特開平2−53915号公報に記載の測定装置を用い、
同様の方法にて測定した。 (4)芯抵抗(Ω/cm・f) 導電性繊維を10cm長さに切断し、切断断面に導電塗
料(ド−タイト)を塗布して繊維端部を固定した後、該
端部を電極として印加電圧1kVにおける電気抵抗を測
定して算出した。 (5)帯電電荷量(μ・ク−ロン/m↑2) 労働省産業安全研究所発行の静電気安全指針のRIIS
TR78−1によって行なった(22℃、30%RHの
部屋に24時間放置後測定)。 (6)繊維の強度(g/デニ−ル)および初期ヤング率
(g/デニ−ル) 島津製作所製、島津オ−トグラフ2000Aを用いて測
定した。 (7)糸長差 混繊糸の撚りを除いて約1m採取する。両端に結び目を
つくりその長さ(L↓1)を測定する。次に針で鞘糸を
伸ばさないように注意しながら芯糸と鞘糸を分ける。結
び目から結び目まで全て分けたところで鞘糸側の長さ
(L↓2)を測定する。糸長差L↓0は下記式により算
出した。 L↓0=〔(L↓2−L↓1)/L↓1〕×100
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Each physical property value in the examples was measured and calculated by the following methods. (1) Intrinsic viscosity of PET or PBT [η] (dl / g) It was measured at 30 ° C using a mixed solvent of phenol / tetrachloroethane (equal weight). (2) Relative viscosity of nylon 6 Using 1 g / 100 ml of 96% sodium sulfate solution,
It was measured at 30 ° C. (3) Dangerous elongation Using the measuring device described in JP-A-2-53915,
It measured by the same method. (4) Core resistance (Ω / cm · f) A conductive fiber is cut into a length of 10 cm, a conductive coating (dotite) is applied to the cut cross section to fix the fiber end, and then the end is an electrode. Was calculated by measuring the electric resistance at an applied voltage of 1 kV. (5) Amount of electrified charge (μ ・ Kuron / m ↑ 2) RIS, an electrostatic safety guideline issued by the National Institute of Industrial Safety, Ministry of Labor
The measurement was carried out by TR78-1 (measurement after leaving in a room at 22 ° C. and 30% RH for 24 hours). (6) Fiber strength (g / denier) and initial Young's modulus (g / denier) It was measured using Shimadzu Autograph 2000A manufactured by Shimadzu Corporation. (7) Difference in yarn length About 1 m is taken excluding the twist of the mixed yarn. Make a knot on both ends and measure its length (L ↓ 1). Next, separate the core yarn and the sheath yarn, being careful not to stretch the sheath yarn with the needle. The length (L ↓ 2) on the sheath yarn side is measured when the whole knot is divided from the knot. The yarn length difference L ↓ 0 was calculated by the following formula. L ↓ 0 = [(L ↓ 2-L ↓ 1) / L ↓ 1] × 100

【0030】実施例1 表面を15重量%の酸化第二錫(酸化アンチモンを2重
量%含む)でコ−ティングした酸化チタン粒子(平均粒
径0.2μm以下、W1と称する)60部をナイロン6
のチップ40部と270℃で溶融混合して、体積固有抵
抗9×10↑2Ω・cmの導電層ポリマ−を得た。そし
てこのチップを80℃で真空乾燥し、チップの水分率を
400ppmに調節した。ついでこのチップと、〔η〕
=0.63のPETチップとを別々のエクストル−ダで
溶融し、複合紡糸装置を用いてポリアミドチップが芯
部、PETチップが鞘部になるように芯鞘複合繊維(芯
鞘重量比=13:87)を295℃で4孔の吐出孔より
紡出し、紡糸速度4500m/分で2分割して巻取り、
25デニ−ル/2フィラメントの導電性芯鞘複合繊維を
得た。得られた導電性芯鞘複合繊維の芯抵抗は5×10
↑10Ω/cm・f、危険伸度は15%、ト−タル強度
は3.2g/デニ−ル、初期ヤング率は74g/デニ−
ルであった。
Example 1 60 parts of titanium oxide particles (average particle size of 0.2 μm or less, referred to as W1) whose surface was coated with 15% by weight of stannic oxide (containing 2% by weight of antimony oxide) were nylon. 6
40 parts of the above chips were melt-mixed at 270 ° C. to obtain a conductive layer polymer having a volume resistivity of 9 × 10 ↑ 2Ω · cm. Then, the chips were vacuum dried at 80 ° C. to adjust the water content of the chips to 400 ppm. Then, with this chip, [η]
= 0.63 PET chips are melted in separate extruders, and a composite fiber spinning device is used so that the polyamide chips are the core part and the PET chips are the sheath part (core-sheath weight ratio = 13 : 87) was spun out from 4 discharge holes at 295 ° C., and was divided into two at a spinning speed of 4500 m / min and wound up,
A conductive core-sheath composite fiber of 25 denier / 2 filament was obtained. The core resistance of the obtained conductive core-sheath composite fiber is 5 × 10.
↑ 10Ω / cmf, danger elongation 15%, total strength 3.2g / denier, initial Young's modulus 74g / denier.
It was Le.

【0031】この高配向未延伸導電性芯鞘複合繊維25
デニ−ル/2フィラメントを側糸に用いて混繊糸を作製
した。すなわち、紡糸速度1200m/分で紡糸して巻
取り、78℃のホットロ−ラ、150℃のホットプレ−
トを用いて、3.5倍に延伸した、ト−タル強度5.0
g/デニ−ル、初期ヤング率110g/デニ−ルのPE
Tマルチフィラメント糸30デニ−ル/24フィラメン
トを用意した。このPETマルチフィラメントと上記導
電性繊維とをそれぞれ別々の供給ロ−ラより、導電性繊
維を55.5m/分の速度で、PETマルチフィラメン
トを54.0m/分の速度で送り込み、両糸条を合糸し
た後、4.0kg/cm↑2の空気絡合ノズルを用いて
両糸条を交絡混繊させ、速度54.0m/分の引取りロ
−ラで引取り、巻き取った。得られた混繊糸の交絡数が
1.5個/インチであり、芯糸と側糸の糸長差は2.5
%であった。
This highly oriented unstretched conductive core-sheath composite fiber 25
A mixed yarn was prepared by using Denier / 2 filament as a side yarn. That is, it is spun at a spinning speed of 1200 m / min and wound up, a hot roller of 78 ° C., a hot plate of 150 ° C.
The total strength was 5.0, which was stretched 3.5 times.
PE with g / denier and initial Young's modulus of 110 g / denier
T multifilament yarn 30 denier / 24 filament was prepared. The PET multifilament and the above-mentioned conductive fiber were fed from separate feed rollers at a speed of 55.5 m / min for the conductive fiber and at a speed of 54.0 m / min for the PET multifilament, to obtain both yarns. Was mixed with each other, and both yarns were entangled and mixed with each other using an air entanglement nozzle of 4.0 kg / cm ↑ 2, and the yarn was taken up by a take-up roller at a speed of 54.0 m / min and wound up. The number of entanglements of the obtained mixed fiber is 1.5 / inch, and the difference in yarn length between the core yarn and the side yarn is 2.5.
%Met.

【0032】この混繊糸を光学顕微鏡により観察したと
ころ、PETマルチフィラメントが混繊糸のほぼ中心部
に位置し、その周囲を導電性繊維が不完全ではあるが一
応まつわりついているのが確認された。
When the mixed fiber was observed by an optical microscope, it was confirmed that the PET multifilament was located almost at the center of the mixed fiber, and the conductive fiber was incompletely wrapped around the conductive fiber. Was done.

【0033】この混繊糸を、PET/綿=65/35、
綿番手20s/↓2の経糸に80本に1本の割合で打ち
込んで、経糸80本/インチ、緯糸50本/インチの1
/2ツイル織物とした。続いて通常のポリエステル混綿
織物の条件で染色仕上げを行なった。この織物を1年間
着用し、その間約250回洗濯を繰り返した後の帯電電
荷量は4.8μ・ク−ロン/m↑2、芯抵抗は6×10
↑10Ω/cm・fであった。
This mixed fiber is PET / cotton = 65/35,
One of 80 warps / inch and 50 wefts / inch of warp yarn of 20s / ↓ 2 is struck at a rate of 1 out of 80 warps.
/ 2 twill fabric. Subsequently, dyeing and finishing were carried out under the condition of ordinary polyester blended cotton fabric. After wearing this fabric for 1 year and repeating washing about 250 times during that period, the electrified charge amount was 4.8 μ · coulon / m ↑ 2, and the core resistance was 6 × 10.
↑ It was 10 Ω / cm · f.

【0034】上記の導電性繊維をPET/綿=65/3
5の混紡糸でカバ−リングし、PET/綿=65/3
5、綿番手20s/↓2の経糸に80本に1本の割合で
打ち込んで、経糸80本/インチ、緯糸50本/インチ
の1/2ツイル織物とした。続いて通常のポリエステル
混綿織物の条件で染色仕上げを行なった。この織物を1
年間着用し、その間約250回洗濯を繰り返した後の帯
電電荷量は5.2μ・ク−ロン/m↑2、芯抵抗は7×
10↑10Ω/cm・fであった。導電性繊維とPET
との混繊糸にして使用することにより、より一層耐久性
能が増していることがわかる。
PET / cotton = 65/3 made of the above conductive fiber
Covered with a blended yarn of 5, PET / cotton = 65/3
5. A warp yarn of cotton count 20s / ↓ 2 was hammered at a ratio of 1 out of 80 yarns to obtain a 1/2 twill fabric having 80 warps / inch and 50 wefts / inch. Subsequently, dyeing and finishing were carried out under the condition of ordinary polyester blended cotton fabric. This fabric 1
After being worn for a year and repeatedly washed about 250 times during that period, the amount of electrified charge was 5.2μ · coulomb / m ↑ 2 and the core resistance was 7 ×.
It was 10 ↑ 10Ω / cm · f. Conductive fiber and PET
It can be seen that the durability performance is further increased by using the mixed fiber of and.

【0035】実施例2 実施例1で使用したW1含有ポリアミドが芯部、PBT
(ノバドウ−ル5008、三菱化成製)が鞘部になるよ
うに、265℃で4孔の吐出孔より紡出し、紡糸速度3
750m/分で2分割して巻取り、25デニ−ル/2フ
ィラメントの導電性芯鞘複合繊維を得た。得られた導電
性芯鞘複合繊維の芯抵抗は5×10↑9Ω/cm・f、
危険伸度は12%、ト−タル強度は2.8g/デニ−
ル、初期ヤング率は45g/デニ−ルであった。この導
電性繊維を側糸に用いて、実施例1と同様にして混繊糸
とし、さらにこの混繊糸を用いて実施例1と同様にし
て、2/1ツイル織物に打ち込み、1年間実着用し、そ
の間に250回の繰り返し洗濯を行なった後の帯電電荷
量は4.2μ・ク−ロン/m↑2、芯抵抗は7×10↑
9Ω/cm・fであった。
Example 2 The W1-containing polyamide used in Example 1 was made of PBT.
(Novadoule 5008, manufactured by Mitsubishi Kasei) was spun at 265 ° C. from four discharge holes so that the sheath portion was formed, and the spinning speed was 3
The conductive core-sheath composite fiber of 25 denier / 2 filament was obtained by winding in two at 750 m / min. The core resistance of the obtained conductive core-sheath composite fiber is 5 × 10 ↑ 9Ω / cm · f,
Dangerous elongation is 12%, total strength is 2.8g / denier
The initial Young's modulus was 45 g / denier. Using this conductive fiber as a side yarn, a mixed fiber was prepared in the same manner as in Example 1, and this mixed fiber was further used in the same manner as in Example 1 to drive it into a 2/1 twill woven fabric for one year. After wearing and repeating 250 times of washing between them, the amount of charge is 4.2μ · coulomb / m ↑ 2 and the core resistance is 7 × 10 ↑
It was 9 Ω / cm · f.

【0036】上記の導電性繊維をPET/綿=65/3
5の混紡糸でカバ−リングし、PET/綿=65/3
5、綿番手20s/↓2の経糸に80本に1本の割合で
打ち込んで、経糸80本/インチ、緯糸50本/インチ
の1/2ツイル織物とした。続いて通常のポリエステル
混綿織物の条件で染色仕上げを行なった。この織物を1
年間着用し、その間約250回洗濯を繰り返した後の帯
電電荷量は4.5μ・ク−ロン/m↑2、芯抵抗は1×
10↑10Ω/cm・fであった。導電性繊維とPET
との混繊糸にして使用することにより、より一層耐久性
能が増していることがわかる。
PET / cotton = 65/3 made of the above conductive fiber
Covered with a blended yarn of 5, PET / cotton = 65/3
5. A warp yarn of cotton count 20s / ↓ 2 was hammered at a ratio of 1 out of 80 yarns to obtain a 1/2 twill fabric having 80 warps / inch and 50 wefts / inch. Subsequently, dyeing and finishing were carried out under the condition of ordinary polyester blended cotton fabric. This fabric 1
After being worn for a year and repeatedly washed about 250 times during that period, the amount of electrified charge is 4.5 μ · coulon / m ↑ 2, and the core resistance is 1 ×
It was 10 ↑ 10Ω / cm · f. Conductive fiber and PET
It can be seen that the durability performance is further increased by using the mixed fiber of and.

【0037】比較例1 実施例1において、混繊糸とする際の導電性繊維とPE
Tマルチフィラメントとの供給速度を、ともに54m/
分とする以外は実施例1とまったく同じ条件で混繊糸を
作製した。この混繊糸を光学顕微鏡で観察したところ、
両糸条が単にならんで一体化されているだけであり、芯
糸、側糸の区別がなく、糸長差も0であった。この混繊
糸を用い、実施例1と同様にして2/1ツイル織物に打
ち込み、1年間実着用し、その間に250回の繰り返し
洗濯を行なった後の帯電電荷量は5.8μ・ク−ロン/
m↑2、芯抵抗は9×10↑10Ω/cm・fであっ
た。混繊糸におけるPETマルチフィラメントが強力支
持の働きを充分にしていないために、導電性繊維の導電
層が切断し、除電性能が低下しているものと思われる。
Comparative Example 1 In Example 1, the conductive fiber and PE used in the mixed fiber
Supply speed with T multifilament is 54m /
A mixed yarn was produced under exactly the same conditions as in Example 1 except that the amount was changed. When observing this mixed fiber with an optical microscope,
Both yarns were simply aligned and integrated, there was no distinction between the core yarn and the side yarn, and the difference in yarn length was 0. Using this mixed fiber, a 2/1 twill woven fabric was driven in the same manner as in Example 1 and actually worn for 1 year, during which the amount of electrified charge after repeated washing of 250 times was 5.8 μ ··· Ron/
m ↑ 2 and core resistance were 9 × 10 ↑ 10Ω / cm · f. It is considered that the PET multifilament in the mixed fiber does not sufficiently function as a strong support, so that the conductive layer of the conductive fiber is cut and the charge removal performance is deteriorated.

【0038】比較例2 実施例1において、混繊糸とする際のPETマルチフィ
ラメントに代えて、紡糸速度1000m/分で引取り、
巻き取ることなく続いて延伸倍率2.5倍で延伸した、
ト−タル強度3.9g/デニ−ル、初期ヤング率41g
/デニ−ルのナイロン−6マルチフィラメント30デニ
−ル/24フィラメントを用いて混繊糸を作製し、この
混繊糸を用いて実施例1と同様の2/1ツイル織物を作
製した。この織物を1年間実着用し、その間に250回
の繰り返し洗濯を行なった後の帯電電荷量は5.9μ・
ク−ロン/m↑2、芯抵抗は1×10↑11Ω/cm・
fであった。混繊糸を構成している芯糸がナイロン−6
の場合、糸長差が本発明の範囲内であってもナイロン−
6では強力支持の働きが不十分であり、側糸である導電
性繊維の導電層が切断し、除電性能が低下しているもの
と思われる。
Comparative Example 2 Instead of the PET multifilament used in the mixed fiber in Example 1, the yarn was taken up at a spinning speed of 1000 m / min.
It was subsequently stretched at a stretch ratio of 2.5 times without winding up,
Total strength 3.9 g / denier, initial Young's modulus 41 g
/ Denier nylon-6 multifilament 30 denier / 24 filament was used to prepare a mixed fiber, and this mixed fiber was used to prepare a 2/1 twill fabric similar to that of Example 1. The fabric was actually worn for 1 year, and the amount of electrified charge after repeated 250 washings was 5.9μ ・
Coulomb / m ↑ 2, core resistance is 1 × 10 ↑ 11Ω / cm ・
It was f. Nylon-6 is the core yarn that makes up the mixed yarn.
In the case of nylon, even if the yarn length difference is within the range of the present invention, nylon-
In No. 6, the function of strong support is insufficient, and the conductive layer of the conductive fiber which is the side yarn is cut, and it is considered that the static elimination performance is deteriorated.

【0039】[0039]

【発明の効果】本発明の混繊糸は優れた除電性能、とく
に長期間の使用や、洗濯の繰り返し等を経てもその除電
性能が低下しないので、作業服、防塵服、学生服等耐久
性および除電性能が要求される分野において極めて有用
性が高い。さらに種々の用途、たとえば外套、フォ−マ
ル、ユニフォ−ム、カ−ペット、テ−ブルマット、イン
テリア、カ−テン、複写機等に用いられる。
EFFECTS OF THE INVENTION The mixed yarn of the present invention has excellent static elimination performance, especially the static elimination performance does not deteriorate even after long-term use or repeated washing, so that it is durable for work clothes, dust-proof clothes, school clothes, etc. It is also extremely useful in fields requiring static elimination performance. Further, it is used in various applications such as mantles, forms, uniforms, carpets, table mats, interiors, curtains, and copying machines.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D01F 6/90 301 7199−3B (72)発明者 河本 正夫 岡山県倉敷市酒津1621番地 株式会社クラ レ内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location D01F 6/90 301 7199-3B (72) Inventor Masao Kawamoto 1621 Sakata, Kurashiki-shi, Okayama Within

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】高配向未延伸導電性芯鞘複合繊維を側糸と
し、非導電性ポリエチレンテレフタレ−ト系マルチフィ
ラメントを芯糸とした混繊糸であり、該側糸が該芯糸よ
りも0.5〜15%糸長が長く、かつ芯糸の初期ヤング
率およびト−タル強度が該側糸の初期ヤング率およびト
−タル強度よりもともに大きい混繊糸であって、 前記高配向未延伸導電性芯鞘複合繊維が、ポリエチレン
テレフタレ−ト系またはポリブチレンテレフタレ−ト系
のポリマ−(A)を鞘成分、導電性金属酸化物からなる
導電性物質を含有するポリアミド系熱可塑性ポリマ−
(B)を芯成分とし、フィラメント芯抵抗が1kVの直
流電圧において9×10↑10Ω/cm・fより小さ
く、危険伸度が5%以上、かつ100℃の熱水中での収
縮率が20%以下であることを特徴とする導電性混繊
糸。
1. A mixed fiber comprising highly oriented undrawn conductive core-sheath composite fiber as a side yarn and non-conductive polyethylene terephthalate multifilament as a core yarn, the side yarn being more than the core yarn. Is 0.5 to 15%, the yarn length is long, and the initial Young's modulus and total strength of the core yarn are both larger than the initial Young's modulus and total strength of the side yarns. The oriented unstretched conductive core-sheath composite fiber is a polyamide system containing a polyethylene terephthalate-based or polybutylene terephthalate-based polymer (A) as a sheath component and a conductive substance composed of a conductive metal oxide. Thermoplastic polymer
Using (B) as the core component, the filament core resistance is less than 9 × 10 ↑ 10Ω / cm · f at a DC voltage of 1 kV, the critical elongation is 5% or more, and the shrinkage ratio in hot water at 100 ° C. is 20. % Or less, a conductive mixed fiber yarn.
【請求項2】芯糸の総繊度が20〜100デニ−ルであ
ることを特徴とする請求項1記載の導電性混繊糸。
2. The conductive mixed fiber yarn according to claim 1, wherein the total fineness of the core yarn is 20 to 100 denier.
【請求項3】芯糸に対する側糸の総繊度比が0.2〜2
であることを特徴とする請求項1記載の導電性混繊糸。
3. The total fineness ratio of the side yarns to the core yarn is 0.2 to 2
The conductive mixed fiber yarn according to claim 1, wherein
JP24934693A 1993-10-05 1993-10-05 Conductive mixed yarn Expired - Fee Related JP3210787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24934693A JP3210787B2 (en) 1993-10-05 1993-10-05 Conductive mixed yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24934693A JP3210787B2 (en) 1993-10-05 1993-10-05 Conductive mixed yarn

Publications (2)

Publication Number Publication Date
JPH07102437A true JPH07102437A (en) 1995-04-18
JP3210787B2 JP3210787B2 (en) 2001-09-17

Family

ID=17191665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24934693A Expired - Fee Related JP3210787B2 (en) 1993-10-05 1993-10-05 Conductive mixed yarn

Country Status (1)

Country Link
JP (1) JP3210787B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363826A (en) * 2001-06-06 2002-12-18 Unitica Fibers Ltd Conductive yarn
JP2003041437A (en) * 2001-07-26 2003-02-13 Unitica Fibers Ltd Electroconductive fiber
KR100416129B1 (en) * 1996-07-15 2004-04-13 주식회사 휴비스 Production of suede-like fabric having excellent antistatic properties

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416129B1 (en) * 1996-07-15 2004-04-13 주식회사 휴비스 Production of suede-like fabric having excellent antistatic properties
JP2002363826A (en) * 2001-06-06 2002-12-18 Unitica Fibers Ltd Conductive yarn
JP2003041437A (en) * 2001-07-26 2003-02-13 Unitica Fibers Ltd Electroconductive fiber
JP4633300B2 (en) * 2001-07-26 2011-02-16 ユニチカトレーディング株式会社 Conductive yarn

Also Published As

Publication number Publication date
JP3210787B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
JP4902545B2 (en) Conductive conjugate fiber and method for producing the same
US5318845A (en) Conductive composite filament and process for producing the same
JPWO2008004448A1 (en) Conductive core-sheath type composite fiber and method for producing the same
JP3917524B2 (en) Fiber composite and use thereof
WO2020261914A1 (en) Electroconductive composite fibers and fiber structure using same
JP4367038B2 (en) Fiber and fabric
JPH0364603B2 (en)
EP0343496B1 (en) Conductive composite filament and process for producing the same
JP3132791B2 (en) Conductive composite fiber
JP3210787B2 (en) Conductive mixed yarn
JP4280546B2 (en) Conductive composite fiber and conductive woven / knitted fabric
JP2705096B2 (en) Material for antistatic wiping
JP4923519B2 (en) Conductive mixed yarn
JPS6156334B2 (en)
JP2004204395A (en) Conductive combined filament yarn and fabric
JP2801386B2 (en) Conductive fiber
JPS61174469A (en) Production of conductive composite fiber
JPS6350446B2 (en)
JP3210793B2 (en) Durable conductive mixed yarn
JP2778981B2 (en) Conductive composite fiber and method for producing the same
JPH02289118A (en) Electrically conductive white conjugate fiber
JP7340183B1 (en) Core-sheath type polyester composite fiber and its manufacturing method
JPH10310944A (en) Antistatic sewing yarn
JP2019026991A (en) Black spun-dyed polyester fiber
JP2006097145A (en) Fiber composite material and use thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090713

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130713

LAPS Cancellation because of no payment of annual fees