JPH07133510A - Electrically-conductive conjugate yarn - Google Patents

Electrically-conductive conjugate yarn

Info

Publication number
JPH07133510A
JPH07133510A JP30340693A JP30340693A JPH07133510A JP H07133510 A JPH07133510 A JP H07133510A JP 30340693 A JP30340693 A JP 30340693A JP 30340693 A JP30340693 A JP 30340693A JP H07133510 A JPH07133510 A JP H07133510A
Authority
JP
Japan
Prior art keywords
conductive
fiber
polymer
electrically
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30340693A
Other languages
Japanese (ja)
Inventor
Keiji Nakanishi
啓二 中西
Hidenobu Tsutsumi
英伸 堤
Soichi Murakami
荘一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP30340693A priority Critical patent/JPH07133510A/en
Publication of JPH07133510A publication Critical patent/JPH07133510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain electrically-conductive conjugate yarn having limited reduction in electrical conductivity even by drawing at a room temperature and excellent color tone. CONSTITUTION:This electrically-conductive conjugate yarn is obtained by bonding an electrically-conductive mixture A of an electricallyconductive carbon black-containing thermoplastic polymer and an electrically-conductive metal compound-containing thermoplastic polymer having compatibility with a polymer to a fiber-forming polymer B and the electrically-conductive mixture A comprises at least part of the fiber surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は導電性繊維に関する。詳
しくは、冷延伸しても導電性の低下が少なく色調に優れ
た導電性複合繊維に関するものである。
FIELD OF THE INVENTION The present invention relates to conductive fibers. More specifically, the present invention relates to a conductive composite fiber that has little deterioration in conductivity even when cold-drawn and has an excellent color tone.

【0002】[0002]

【従来の技術】繊維、特に疏水性である合成繊維は摩擦
等による静電気の発生が著しく種々の弊害を起こすこと
はよく知られている。これまでにこの帯電防止に関する
多数の提案がされてきた。その有効な手段の1つにカー
ボンブラックや金属粒子等の導電性粒子を分散させた熱
可塑性ポリマーを芯部、繊維形成性ポリマーを鞘部に用
いた導電性複合繊維を静電気を帯びやすい繊維製品に混
入する方法があり、カーペットを中心に作業服など広く
展開されている。
2. Description of the Related Art It is well known that fibers, particularly hydrophobic synthetic fibers, are remarkably affected by static electricity due to friction and cause various problems. Many proposals regarding this antistatic have been made so far. One of the effective means is a conductive composite fiber using a thermoplastic polymer in which conductive particles such as carbon black and metal particles are dispersed in a core part and a fiber-forming polymer in a sheath part, which is easily charged with static electricity. There is a method of mixing it in, and it is widely used for work clothes such as carpets.

【0003】導電性繊維の主用途であるカーペット用途
におけるカーペットパイルへの導電性繊維の混入は、非
導電性のカーペット原繊との混紡、交撚、混繊などで行
われるが、いずれも特別の工程を必要としコスト高とな
る欠点がある。最近、混入の簡略法として非導電性カー
ペット原繊の溶融紡糸中の冷却チムニー内に導電性複合
繊維の未延伸糸を導入し、カーペット原繊フィラメント
と同時に引張りロール上で引き揃え、延伸し、かさ高加
工して導電性繊維入りカーペット原繊が製造されてい
る。この場合、延伸工程は室温で行われることが多く
(冷延伸)、通常、導電性繊維としては冷延伸しても導
電性の低下が少ない導電性カーボンブラック含有の導電
性ポリマーを用いた導電性複合繊維が用いられている。
[0003] In the carpet application, which is the main application of the conductive fiber, the conductive fiber is mixed into the carpet pile by mixing with non-conductive carpet raw fiber, cross twisting, mixing fiber, etc. However, there is a drawback that the process is required and the cost becomes high. Recently, as a simple method of mixing, the undrawn yarn of the conductive composite fiber was introduced into the cooling chimney during the melt spinning of the non-conductive carpet raw fiber, and the carpet raw fiber filament was aligned and drawn on the pulling roll at the same time. Carpet raw fibers containing conductive fibers are manufactured by bulking. In this case, the stretching step is often performed at room temperature (cold stretching), and as a conductive fiber, a conductive polymer using a conductive polymer containing a conductive carbon black that does not significantly decrease in conductivity even when cold-stretched is used. Composite fibers are used.

【0004】しかしながら、カーボンブラック含有ポリ
マーは黒色であるため繊維は黒色を呈し易く、特に充分
な制電性能を得るために導電性成分を繊維製品の表面に
露出させると、繊維製品の外観を著しく損ねるという大
きな欠点があり、例えば特開昭57−199817号公
報などをはじめ、カーボンブラックの混入量を減らすた
めのいくつかの提案されている。
However, since the carbon black-containing polymer is black, the fibers tend to be black, and particularly when the conductive component is exposed on the surface of the fiber product in order to obtain sufficient antistatic performance, the appearance of the fiber product is remarkably increased. There is a major drawback that it damages, and several proposals have been made to reduce the amount of carbon black mixed in, such as JP-A-57-199817.

【0005】一方、白色系の導電性繊維としては、導電
性無機粒子を混合した導電性ポリマー応用の導電性複合
繊維が使われているが、導電性の発現には導電性粒子を
多量に(例えば、50重量%以上、特に70重量%以
上)ポリマーに混合することが必須である。そのため、
室温で延伸するとポリマーが切断され、導電性が低下あ
るいは消失する現象が著しく、上述の導電性繊維混入法
には不向きである。
On the other hand, as the white conductive fibers, conductive composite fibers mixed with conductive inorganic particles and used for conductive polymers are used, but a large amount of conductive particles ( It is essential to mix it with the polymer (for example 50% by weight or more, especially 70% by weight or more). for that reason,
When stretched at room temperature, the polymer is severed and the conductivity decreases or disappears remarkably, which is not suitable for the above-mentioned conductive fiber mixing method.

【0006】[0006]

【発明が解決しようとする問題点】本発明の目的は、最
近の簡略化された導電繊維混入方法に適応し得る冷延伸
しても導電性の低下が少なくかつ色調において優れた導
電性複合繊維を容易に提供することにある。
DISCLOSURE OF THE INVENTION The object of the present invention is to adapt to the recent simplified method for mixing conductive fibers, and the conductive composite fibers exhibit little deterioration in conductivity even when cold-drawn and are excellent in color tone. Is to provide easily.

【0007】[0007]

【問題点を解決するための手段】すなわち本発明は、導
電性カーボンブラックを含有する熱可塑性ポリマーP1
と導電性金属化合物粒子を含有し前記P1と相溶性を有
する熱可塑性ポリマーP2との導電性混合物Aと、繊維
形成性ポリマーBとが接合され、繊維横断面において前
記導電性混合物が繊維表面の少なくとも一部を占めてい
ることを特徴とする導電性複合繊維である。
[Means for Solving the Problems] That is, the present invention relates to a thermoplastic polymer P1 containing a conductive carbon black.
A conductive mixture A of a thermoplastic polymer P2 containing conductive metal compound particles and having compatibility with P1 and a fiber-forming polymer B are joined together, and the conductive mixture has a fiber surface in a cross section of the fiber. The conductive composite fiber is characterized by occupying at least a part thereof.

【0008】本発明において導電性のカーボンブラック
とは、アセチレンブラック、チャンネルブラック、ファ
ーネスブラック、サーマルブラック、ケッチェンブラッ
クなどのカーボンブラックのうち導電性の良好なものを
意味し、その体積抵抗率が101 Ωcm以下、好ましくは
100 Ωcm以下、更に好ましくは10-1Ωcm以下がよ
い。
In the present invention, the conductive carbon black means one having good conductivity among carbon blacks such as acetylene black, channel black, furnace black, thermal black and Ketjen black, and its volume resistivity is It is preferably 10 1 Ωcm or less, preferably 10 0 Ωcm or less, and more preferably 10 -1 Ωcm or less.

【0009】本発明に用いられる白色の導電性金属化合
物粒子は、粉末状での体積抵抗率が104 Ωcm程度以下
のものであればあらゆる種類の粒子が使用可能である。
白度の高い金属酸化物皮膜を有する粒子や金属化合物が
もっとも好ましいが、金属粉(例えば銀、ニッケル、
銅、鉄あるいはこれらの合金など)、硫化銅、よう化
銅、硫化亜鉛、硫化カドミウミなどの金属化合物などや
や色調に劣るものも使用し得る。
As the white conductive metal compound particles used in the present invention, any kind of particles can be used as long as the powdery volume resistivity is about 10 4 Ωcm or less.
Particles and metal compounds having a high whiteness metal oxide film are most preferable, but metal powder (for example, silver, nickel,
Copper, iron, alloys thereof, etc.), metal compounds such as copper sulfide, copper iodide, zinc sulfide, cadmium sulfide and the like, which are slightly inferior in color tone, may also be used.

【0010】金属酸化物粒子としては、酸化錫、酸化亜
鉛、酸化銅、亜酸化銅、酸化インジウム、酸化ジルコニ
ウム、酸化タングステンなどの粒子があげられる。金属
酸化物の多くのものは絶縁体に近い半導体であるが、例
えば、適当な第2成分(不純物)を少量通常50%以
下、多くの場合25%以下添加するなどの方法により、
導電性を強化し、本発明の目的に充分な導電性を有する
ものが得られる。このような導電性強化剤としては、酸
化錫に対して酸化アンチモンが、酸化亜鉛に対してはア
ルミニウム、インジウム、ゲルマニウム、錫などの金属
酸化物が使える。更に、酸化チタン、酸化亜鉛、酸化マ
グネシウム、酸化錫、酸化鉄、酸化珪素、酸化アルミニ
ウムなどの非導電性無機物粒子の表面に上記金属酸化物
または金属化合物の導電性皮膜を形成した粒子も用いら
れる。中でも酸化チタンは、白色度に優れ、かつ粒径が
小さくて均一な粒子が得られるので好適である。
Examples of the metal oxide particles include particles of tin oxide, zinc oxide, copper oxide, cuprous oxide, indium oxide, zirconium oxide, tungsten oxide and the like. Most of the metal oxides are semiconductors close to insulators. For example, a suitable second component (impurity) is added in a small amount, usually 50% or less, and often 25% or less.
It is possible to obtain one having enhanced conductivity and having sufficient conductivity for the purpose of the present invention. As such a conductivity enhancer, antimony oxide can be used for tin oxide, and metal oxides such as aluminum, indium, germanium, and tin can be used for zinc oxide. Further, particles in which a conductive film of the above metal oxide or metal compound is formed on the surface of non-conductive inorganic material particles such as titanium oxide, zinc oxide, magnesium oxide, tin oxide, iron oxide, silicon oxide, aluminum oxide are also used. . Among them, titanium oxide is preferable because it is excellent in whiteness and has a small particle size and uniform particles can be obtained.

【0011】白色導電性粒子の導電性は、粉末状での体
積抵抗率が104 Ωcm程度以下、特に102 Ωcm程度以
下が好ましく、101 Ωcm程度以下が最も好ましい。実
際に102 〜10-2Ωcm程度のものが得られ、本発明の
目的に好適に応用することができるが、更に優れた導電
性のものは一層好ましい。
With respect to the conductivity of the white conductive particles, the volume resistivity in powder form is preferably about 10 4 Ωcm or less, more preferably about 10 2 Ωcm or less, most preferably about 10 1 Ωcm or less. Actually, a material having a conductivity of about 10 2 to 10 −2 Ωcm can be obtained and can be suitably applied for the purpose of the present invention, but a material having more excellent conductivity is more preferred.

【0012】粒子コンパウンドの着色を防止するため、
導電性粒子の粒径を光の波長以下にすることも有効であ
る。可紡性の点から平均粒径が1〜2μmのものも使用
不可能ではないが、通常平均粒径が1μm以下、特に
0.5μm以下、最も好ましくは0.3μm以下のもの
が用いられる。
In order to prevent coloring of the particle compound,
It is also effective to make the particle diameter of the conductive particles equal to or smaller than the wavelength of light. From the viewpoint of spinnability, those having an average particle size of 1 to 2 μm are not unusable, but usually those having an average particle size of 1 μm or less, particularly 0.5 μm or less, most preferably 0.3 μm or less are used.

【0013】導電性ポリマーP1のカーボンブラック粒
子の混合率は、混合する結合材ポリマーの性質や結晶ま
たカーボンブラック粒子の種類、導電性粒子形状、粒子
径などによって異なるが、多くの場合15〜45重量%
程度の範囲内であり、特に30〜40重量%が好まし
い。15重量%未満ではパーコレーションスレッショル
ド近傍にあたり導電性が不安定である。また、また、4
5重量%を越えるとカーボンブラック粒子をポリマーに
均一に分散することが困難となり、分散し得たとして
も、重合体の流動性が低下し、可紡性の点から好ましく
ない。また、ポリマーP1の導電性は、コンパウント状
で体積抵抗率が104 Ωcm以下が好ましく、102 未満
であることが好ましい。
The mixing ratio of the carbon black particles of the conductive polymer P1 varies depending on the properties of the binder polymer to be mixed, the type of crystal or carbon black particles, the shape of the conductive particles, the particle size, etc. weight%
It is within the range of about 30 to 40% by weight. If it is less than 15% by weight, it is near the percolation threshold and the conductivity is unstable. Again, 4
When it exceeds 5% by weight, it becomes difficult to uniformly disperse the carbon black particles in the polymer, and even if the carbon black particles can be dispersed, the fluidity of the polymer is lowered, which is not preferable from the viewpoint of spinnability. The conductivity of the polymer P1 is preferably a compound and has a volume resistivity of 10 4 Ωcm or less, and preferably less than 10 2 .

【0014】導電性ポリマーP2への白色導電性粒子の
混合率は、粒子の種類、導電性、粒子径、粒子の連鎖形
成能及び混合する結合材ポリマーの性質や結晶性などに
よって変わるが、通常10〜85重量%程度の範囲内で
あり、多くの場合30〜80重量%程度、特に好ましく
は50〜80重量%である。導電性ポリマーP2の比抵
抗(体積抵抗率)は106 Ωcm未満であることが必要で
あり、104 Ωcm以下が好ましく、102 Ωcm以下が特
に好ましい。
The mixing ratio of the white conductive particles to the conductive polymer P2 varies depending on the kind of particles, conductivity, particle size, chain forming ability of particles, and the nature and crystallinity of the binder polymer to be mixed, but usually. It is in the range of about 10 to 85% by weight, often about 30 to 80% by weight, and particularly preferably 50 to 80% by weight. The specific resistance (volume resistivity) of the conductive polymer P2 needs to be less than 10 6 Ωcm, preferably 10 4 Ωcm or less, particularly preferably 10 2 Ωcm or less.

【0015】導電性カーボンブラック粒子や白色導電性
粒子と混合して導電性成分を形成する熱可塑性ポリマー
は、相溶性を有することが肝要である。それ以外には特
に限定されることはなく任意に選ぶことが出来る。例え
ばボリアミド、ポリエステル、ポリオレフィン、ポリビ
ニル系、ポリエーテルなど多数の熱可塑性ポリマーがあ
げられる。このポリマーは繊維形成性のものが可紡性の
見地から好ましいが可紡性の劣るものでも、組み合わせ
る非導電性成分に繊維形成性のポリマーを用いれば複合
繊維を得ることが出来る。この様なポリマーのうち、繊
維形成性の非導電性ポリマーとの親和性の乏しい結晶化
度60%以上のポリマーが好適でこの様なポリマーとし
てはポリエチレン、ポリプロピレン、ポリオキシメチレ
ン、ポリエチレンオキシドおよびその誘導体(例えばポ
リエチレンオキシド PETのブロックコポリマー)、
ポリビニルアルコール、ポリカプロラクトンなどがあげ
られる。これらのポリマーのうちポリエチレンが特に好
適である。
It is essential that the thermoplastic polymer mixed with the conductive carbon black particles or the white conductive particles to form the conductive component has compatibility. Other than that, it is not particularly limited and can be arbitrarily selected. Examples include numerous thermoplastic polymers such as polyamides, polyesters, polyolefins, polyvinyls, and polyethers. This polymer is preferably a fiber-forming one from the viewpoint of spinnability, but even if it is inferior in spinnability, a composite fiber can be obtained by using a fiber-forming polymer as the non-conductive component to be combined. Among such polymers, polymers having a crystallinity of 60% or more, which has a poor affinity with the fiber-forming non-conductive polymer, are preferable, and examples of such polymers include polyethylene, polypropylene, polyoxymethylene, polyethylene oxide and the like. Derivatives (eg block copolymers of polyethylene oxide PET),
Examples thereof include polyvinyl alcohol and polycaprolactone. Of these polymers, polyethylene is particularly suitable.

【0016】導電性ポリマーP1、P2には、更に分散
性(例えばワックス類、ポリアルキレンオキシド類、各
種界面活性剤、有機電解質など)、着色剤、顔料、安定
剤(酸化防止剤、紫外線吸収剤など)、流動性改善剤、
その他の添加剤を加えることが出来る。
The conductive polymers P1 and P2 further have dispersibility (for example, waxes, polyalkylene oxides, various surfactants, organic electrolytes, etc.), colorants, pigments, stabilizers (antioxidants, ultraviolet absorbers). Etc.), fluidity improver,
Other additives can be added.

【0017】本発明における混合物Aは、導電ポリマー
P1とP2を紡糸時に混合することが好適である。例え
ば、紡糸パック内のポリマー流路に設けた静止型混練素
子により混合する方法、単軸押出機を用いて機械的に混
練する方法等があり、これらの方法により混合を行う。
The mixture A in the present invention is preferably prepared by mixing the conductive polymers P1 and P2 during spinning. For example, there are a method of mixing with a static type kneading element provided in a polymer flow path in a spinning pack, a method of mechanically kneading with a single-screw extruder, and the like.

【0018】このような混合により冷延伸が可能となる
(導電性が消失しない)理由は、P2単独では白色は得
られるが冷延伸によりポリマーが切断され、即ち導電粒
子による連鎖構造が破壊され導電性が消失するが、冷延
伸によってもこの連鎖構造が破壊され難いP1の混入に
より、P1がP2の空隙を補うべく作用し、結果として
冷延伸によって導電性は低下するものの消失するまでに
は至らないと推測される。本発明者らの検討結果では、
導電性混合物AにおけるポリマーP1の混合量は、P1
及びP2中のカーボンブラック、導電性金属化合物粒子
の濃度に依存し特に限定されないが、通常10〜50重
量%の範囲内であり、特には30〜40重量%程度が好
ましい。10重量%未満では冷延伸性が発現され難く、
50重量%以上では白色の維持が困難となり好ましくな
い。
The reason why such a mixture makes it possible to carry out cold stretching (conductivity does not disappear) is that P2 alone gives a white color, but the polymer is cut by cold stretching, that is, the chain structure of the conductive particles is destroyed and the conductivity is reduced. However, due to the incorporation of P1, the chain structure of which is difficult to be destroyed even by cold stretching, P1 acts to compensate for the voids of P2, and as a result, the electrical conductivity is reduced by cold stretching, but it does not disappear. It is supposed not. According to the examination results of the present inventors,
The amount of the polymer P1 mixed in the conductive mixture A is P1.
Although it is not particularly limited depending on the concentrations of carbon black and conductive metal compound particles in P2 and P2, it is usually in the range of 10 to 50% by weight, and particularly preferably about 30 to 40% by weight. If it is less than 10% by weight, cold stretchability is hardly exhibited,
When it is 50% by weight or more, it is difficult to maintain the white color, which is not preferable.

【0019】一方、複合繊維の繊維形成性ポリマーBと
しては、紡糸可能なあらゆるものが用いられる。中でも
ナイロン6、ナイロン66、ナイロン12、ナイロン6
10などのポリアミド、ポリエチレンテレフタレート、
ポリエチレンオキシベンゾエート、ポリブチレンテレフ
タレートなどのポリエステル、ポリアクリロニトリル、
ポリプロピレン及びそれらのポリマーの共重合体や変性
体が特に好適である。繊維形成性ポリマーには、艶消
剤、顔料、着色料、安定剤、制電剤(ポリアルキレンオ
キシド類、各種界面活性剤など)など公知の添加剤を必
要により加えることも出来る。
On the other hand, as the fiber-forming polymer B of the composite fiber, any spinnable fiber is used. Among them, nylon 6, nylon 66, nylon 12, nylon 6
Polyamide such as 10, polyethylene terephthalate,
Polyester such as polyethyleneoxybenzoate, polybutylene terephthalate, polyacrylonitrile,
Polypropylene and copolymers and modified products of these polymers are particularly preferable. If desired, known additives such as matting agents, pigments, colorants, stabilizers, antistatic agents (polyalkylene oxides, various surfactants, etc.) can be added to the fiber-forming polymer.

【0020】本発明の複合繊維において導電性混合物A
の複合比(断面積占有率)は任意であるが通常3〜50
%、特に5〜30%最も多くの場合7〜20%が好適で
ある。複合比が3%未満では導電性が低下したり、不安
定となり、一方50%を超えると糸質が劣化する。
In the composite fiber of the present invention, the conductive mixture A
The composite ratio (cross-sectional area occupancy rate) is arbitrary, but is usually 3 to 50.
%, Especially 5-30% and most often 7-20%. When the compounding ratio is less than 3%, the conductivity is lowered or becomes unstable, while when it exceeds 50%, the yarn quality is deteriorated.

【0021】本発明の複合繊維の断面(輪郭)は円形で
もよく、非円形でもよく特に限定されないが、混合成分
Aが繊維表面の少なくとも一部を占めることが肝要であ
る。図1〜図2は本発明に好適な複合繊維の横断面の例
である。
The cross section (contour) of the conjugate fiber of the present invention may be circular or non-circular and is not particularly limited, but it is essential that the mixed component A occupies at least a part of the fiber surface. 1 and 2 are examples of cross-sections of composite fibers suitable for the present invention.

【0022】[0022]

【実施例】以下実施例により本発明をより詳しく説明す
る。%は特記しない限り重量比を示す。また実施例にお
いて、制電性能および導電性能は以下の方法により重量
比により評価した。制電性は、JIS No.L109
4(1988)参考法に準拠し、次の方法によって評価
した。通常の6ナイロン延伸糸(210デニール/54
フィラメント)を丸編み機を用いて編み立て、その際1
0周に1周の間隔で導電性複合繊維を編み込み、混入率
0.85%の丸編物を作成する。精錬によって紡糸油剤
を除去したのち、充分に洗浄し80℃で3時間乾燥した
後、更に25℃、20%RHの雰囲気中で24時間調湿
する。その後同じ温湿度中で綿布にて15回摩擦直後の
帯電圧を測定し評価した。導電性は、長さ10cmのガ
ットまたは単糸5本を束ねて両端に0.5mm四方のア
ルミ箔を導電性接着剤で接着し1kVの直流電圧を印加
して抵抗値を測定し、それから算出した導電性成分の体
積抵抗率で評価した。色調は、ハンター形色差計を用
い、L値で評価した。
The present invention will be described in more detail with reference to the following examples. Unless otherwise specified,% indicates a weight ratio. In the examples, the antistatic performance and the conductive performance were evaluated by the weight ratio by the following method. Antistatic property is JIS No. L109
4 (1988) reference method and evaluated by the following methods. Normal 6 nylon drawn yarn (210 denier / 54
(Filament) is knitted using a circular knitting machine, in which case 1
A conductive knitted fabric is knitted at intervals of 1 turn to 0 turn to form a circular knitted fabric with a mixing ratio of 0.85%. After the spinning oil is removed by refining, it is thoroughly washed, dried at 80 ° C. for 3 hours, and then conditioned at 25 ° C. and 20% RH for 24 hours. Then, the charged voltage was measured and evaluated immediately after rubbing 15 times with a cotton cloth in the same temperature and humidity. Conductivity is calculated by bundling 10 cm long gut or 5 single yarns, adhering 0.5 mm square aluminum foil to both ends with conductive adhesive, applying a DC voltage of 1 kV and measuring the resistance value. The volume resistivity of the conductive component was evaluated. The color tone was evaluated by the L value using a Hunter color difference meter.

【0023】実施例 表面に酸化すずの皮膜15%を有する酸化チタン粒子に
対して1.5%の酸化アンチモンを混合焼成して得られ
た淡灰青色の平均粒径0.25μm,比抵抗4.0Ωcm
の導電性粉末をA1とする。分子量約16,000、融
点215℃、ナイロン6に導電性カーボンブラックを3
5%混合、分散させた導電性ポリマーをCP1、上記導
電性粉末A1を75%混合、分散させた導電性ポリマー
をCP2、また艶消剤として酸化チタン粒子5%を分散
させたポリマーをNP1とする。
Example A pale grey-blue average particle size of 0.25 μm, specific resistance of which was obtained by mixing and firing 1.5% of antimony oxide with titanium oxide particles having a tin oxide film of 15% on the surface. 0 Ωcm
The conductive powder of is referred to as A1. Molecular weight about 16,000, melting point 215 ° C, nylon 6 with conductive carbon black 3
5% mixed and dispersed conductive polymer was CP1, 75% of the above conductive powder A1 was mixed and dispersed CP2, and 5% titanium oxide particles were dispersed as a matting agent, and NP1 was used as the polymer. To do.

【0024】CP1を導電性ポリマーP1、CP2をP
2、NP1をB成分として、第1表に示すような複合比
率、断面形状で複合溶融紡糸をした。溶融複合した各成
分を紡糸温度270℃で直径0.25mmのオリフィス
から紡出し、冷却、オイリングしながら600m/mi
n.の速度で巻き取った。次いで温室で延伸倍率3.0
で延伸し、40デニール/8フィラメントの延伸糸Y1
を得た。導電成分A中のCP1の配合率、複合比及び繊
維断面形状を変化させる以外、実施例1と同様の方法で
延伸糸Y2〜Y7を得た。これらの導電性複合繊維の未
延伸での体積抵抗率及び、延伸糸の体積抵抗率、摩擦帯
電圧および色調の測定結果を表1に示す。
CP1 is a conductive polymer P1 and CP2 is P
2. Using NP1 as the B component, composite melt spinning was performed with a composite ratio and a cross-sectional shape as shown in Table 1. The melt-composited components were spun at a spinning temperature of 270 ° C. from an orifice having a diameter of 0.25 mm, and cooled and oiled at 600 m / mi.
n. It was wound up at the speed of. Then draw in a greenhouse at a draw ratio of 3.0
Drawn with 40 denier / 8 filament Y1
Got Stretched yarns Y2 to Y7 were obtained in the same manner as in Example 1 except that the compounding ratio of CP1 in the conductive component A, the composite ratio, and the fiber cross-sectional shape were changed. Table 1 shows the measurement results of the volume resistivity of these electroconductive composite fibers in the undrawn state, the volume resistivity of the drawn yarn, the friction electrostatic voltage and the color tone.

【0025】[0025]

【表1】 [Table 1]

【0026】糸Y1、Y2及びY4〜Y7は、いずれも
延伸による導電性の低下が少なく、延伸糸の比抵抗値も
104 Ωcm以下の良好な導電性を示したが、Y3は延
伸による導電性低下が著しかった。制電性能は、Y1、
Y2Y4、Y5が摩擦帯電圧2.5kV以下となり良好
な値を示したが、導電性の低いY3及び導電性成分が繊
維表面に露出していないY6は制電性が劣るものであっ
た。なお、通常の6ナイロン延伸糸(210デニール/
54フィラメント)だけからなる丸編物で測定した帯電
圧は12.5kVであった。また、色調的にはY4、Y
7及び混合成分Aの繊維表面への露出度の大きいY5は
白色または灰白色を示していた。
The yarns Y1, Y2, and Y4 to Y7 all showed little decrease in conductivity due to drawing, and the drawn yarn also showed good conductivity of 10 4 Ωcm or less, but Y3 showed conductivity due to drawing. The sex decline was remarkable. Anti-static performance is Y1,
Y2Y4 and Y5 had a friction band voltage of 2.5 kV or less, which was a good value, but Y3 having low conductivity and Y6 in which the conductive component was not exposed on the fiber surface had poor antistatic property. In addition, ordinary 6 nylon drawn yarn (210 denier /
The electrification voltage measured with a circular knitted fabric consisting of only 54 filaments was 12.5 kV. Also, in terms of color tone, Y4, Y
Y5, which had a high degree of exposure of 7 and the mixed component A to the fiber surface, was white or off-white.

【0027】導電成分にCP1を単独で使用し、実施例
1と同様の方法でY8を、CP2の単独使用でY9を得
た。実施例と同様の評価結果を表1に示す。Y8は導電
性、制電性に優れていたが繊維の着色が大きく、また、
Y9は延伸による導電性の低下が著しく、制電性能も劣
っていた。
CP1 was used alone as the conductive component, Y8 was obtained in the same manner as in Example 1, and Y9 was obtained by using CP2 alone. Table 1 shows the evaluation results similar to those of the examples. Y8 was excellent in conductivity and antistatic property, but the coloring of the fiber was large, and
Y9 had a remarkable decrease in conductivity due to stretching and was inferior in antistatic performance.

【0028】[0028]

【本発明の効果】本発明糸により、特別な混入方法を必
要とせず通常の製糸方法で、白色導電性繊維入りのカー
ペットなどに使用されるかさ高加工糸や織編物用の通常
糸が容易に得られ、制電性繊維製品の製造においてコス
トダウン化が可能となる。
EFFECTS OF THE INVENTION With the yarn of the present invention, a bulked yarn used for a carpet containing white conductive fibers and a normal yarn for woven or knitted fabric can be easily produced by a usual yarn producing method without requiring a special mixing method. Therefore, it is possible to reduce the cost in the production of antistatic textile products.

【0029】[0029]

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明に好適な導電性複合繊維の横断面形状
を示す例である。
FIG. 1 is an example showing a cross-sectional shape of a conductive composite fiber suitable for the present invention.

【図2】本願発明に好適な導電性複合繊維の横断面形状
を示す例である。
FIG. 2 is an example showing a cross-sectional shape of a conductive composite fiber suitable for the present invention.

【図3】本願発明に好適な導電性複合繊維の横断面形状
を示す例である。
FIG. 3 is an example showing a cross-sectional shape of a conductive composite fiber suitable for the present invention.

【図4】本願発明の優位性を示すために用いた比較例で
ある。
FIG. 4 is a comparative example used to show the superiority of the present invention.

【符号の説明】[Explanation of symbols]

A カーボンブラック含有導電性ポリマーP1と金属化
合物含有の白色系導電性ポリマーP2との混合成分 B 繊維形成性ポリマー
A mixed component of carbon black-containing conductive polymer P1 and metal compound-containing white conductive polymer P2 B fiber-forming polymer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導電性カーボンブラックを含有する熱可
塑性ポリマーP1と導電性金属化合物粒子を含有し前記
P1と相溶性を有する熱可塑性ポリマーP2との導電性
混合物Aと、繊維形成性ポリマーBとが接合され、繊維
横断面において前記導電性混合物Aが繊維表面の少なく
とも一部を占めていることを特徴とする導電性複合繊
維。
1. A conductive mixture A of a thermoplastic polymer P1 containing a conductive carbon black and a thermoplastic polymer P2 containing conductive metal compound particles and having compatibility with the P1, and a fiber-forming polymer B. Are joined together, and the conductive mixture A occupies at least a part of the fiber surface in the cross-section of the fiber.
【請求項2】 導電性混合物Aが10〜50重量%のP
1と90〜50重量%のP2とからなる請求項1記載の
繊維。
2. The conductive mixture A comprises 10 to 50% by weight of P.
The fiber of claim 1 comprising 1 and 90-50% by weight P2.
【請求項3】 導電性混合物Aが繊維横断面において、
断面積の7〜20%以下を占めている請求項1記載の繊
維。
3. The electrically conductive mixture A, in a fiber cross section,
The fiber according to claim 1, which occupies 7 to 20% or less of the cross-sectional area.
JP30340693A 1993-11-08 1993-11-08 Electrically-conductive conjugate yarn Pending JPH07133510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30340693A JPH07133510A (en) 1993-11-08 1993-11-08 Electrically-conductive conjugate yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30340693A JPH07133510A (en) 1993-11-08 1993-11-08 Electrically-conductive conjugate yarn

Publications (1)

Publication Number Publication Date
JPH07133510A true JPH07133510A (en) 1995-05-23

Family

ID=17920646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30340693A Pending JPH07133510A (en) 1993-11-08 1993-11-08 Electrically-conductive conjugate yarn

Country Status (1)

Country Link
JP (1) JPH07133510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045599A (en) * 2018-09-20 2020-03-26 Kbセーレン株式会社 Undrawn electroconductive composite fiber and method of manufacturing bcf using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045599A (en) * 2018-09-20 2020-03-26 Kbセーレン株式会社 Undrawn electroconductive composite fiber and method of manufacturing bcf using the same

Similar Documents

Publication Publication Date Title
US4457973A (en) Conductive composite filaments and methods for producing said composite filaments
US4420534A (en) Conductive composite filaments and methods for producing said composite filaments
US5213892A (en) Antistatic core-sheath filament
JP4367038B2 (en) Fiber and fabric
JPH0364603B2 (en)
JP4280546B2 (en) Conductive composite fiber and conductive woven / knitted fabric
JP2004225214A (en) Electroconductive conjugated fiber
JPH01292116A (en) Electrically conductive fiber and production thereof
JPS6156334B2 (en)
JPH07133510A (en) Electrically-conductive conjugate yarn
EP0276756B1 (en) Conductive composite filaments and fibrous articles containing the same
JPS61174469A (en) Production of conductive composite fiber
JP2005194650A (en) Conductive conjugate fiber
JPH03241010A (en) Electrically conductive conjugate fiber
JPS6240444B2 (en)
JPH042808A (en) Electrically conductive conjugate fiber
JP3210787B2 (en) Conductive mixed yarn
JP7340183B1 (en) Core-sheath type polyester composite fiber and its manufacturing method
JP3113054B2 (en) Conductive composite fiber
JPS5860015A (en) Preparation of electrically conductive composite fiber
JP2988818B2 (en) Polyolefin-based conductive composite fiber
JP3129602B2 (en) Polyolefin-based conductive composite fiber
JPS61132626A (en) Conjugated fiber of high conductivity
KR950000723B1 (en) Composite fiber having an electrical conductivity and being prepared 3 other components
JPH0122366B2 (en)