JP5741225B2 - Heat-fusible composite fiber and non-woven fabric using the same - Google Patents

Heat-fusible composite fiber and non-woven fabric using the same Download PDF

Info

Publication number
JP5741225B2
JP5741225B2 JP2011123684A JP2011123684A JP5741225B2 JP 5741225 B2 JP5741225 B2 JP 5741225B2 JP 2011123684 A JP2011123684 A JP 2011123684A JP 2011123684 A JP2011123684 A JP 2011123684A JP 5741225 B2 JP5741225 B2 JP 5741225B2
Authority
JP
Japan
Prior art keywords
component
fiber
heat
propylene
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011123684A
Other languages
Japanese (ja)
Other versions
JP2012251254A (en
Inventor
博和 寺田
博和 寺田
寿克 藤原
寿克 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Fibers Corp
Original Assignee
JNC Corp
JNC Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp, JNC Fibers Corp filed Critical JNC Corp
Priority to JP2011123684A priority Critical patent/JP5741225B2/en
Priority to CN201210167177.1A priority patent/CN102808238B/en
Publication of JP2012251254A publication Critical patent/JP2012251254A/en
Application granted granted Critical
Publication of JP5741225B2 publication Critical patent/JP5741225B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)

Description

本発明は、熱融着性複合繊維とそれを用いた不織布に関する。更に詳しくは、熱融着性潜在捲縮性複合繊維と、これを用いて得られる伸縮性を有する不織布を提供するものである。 The present invention relates to a heat-fusible conjugate fiber and a nonwoven fabric using the same. More specifically, the present invention provides a heat-fusible latent crimpable composite fiber and a stretchable nonwoven fabric obtained by using the same.

伸縮性を有する不織布を得る手法としては、エラストマー樹脂をメルトブロー法にてコンベアーに積層し、熱ロールにて接着してシートを製造することが一般的である。しかし、得られたシートの嵩高性が非常に低い為、通気性が低く風合いを損なうものであった。また、エラストマー樹脂特有の摩擦により表面平滑性が悪いといった問題もある(特許文献1参照)。 As a technique for obtaining a nonwoven fabric having stretchability, it is common to produce a sheet by laminating an elastomer resin on a conveyor by a melt blow method and bonding the elastomer resin with a hot roll. However, since the bulkiness of the obtained sheet was very low, the air permeability was low and the texture was impaired. In addition, there is a problem that the surface smoothness is poor due to the friction unique to the elastomer resin (see Patent Document 1).

そこで、潜在捲縮性を有する繊維をカード法にてウェブとし、ジェット水流にて交絡させた後に熱処理することで捲縮を発現させ(収縮処理)、構造的に伸縮を付与させる方法があるが、交絡による構造のため不織布強度が低いといった問題がある(特許文献2参照)。 Therefore, there is a method in which a fiber having latent crimping property is made into a web by a card method, and is entangled by a jet water flow and then subjected to heat treatment to cause crimping (shrinkage treatment) and to give structural expansion and contraction. There is a problem that the strength of the nonwoven fabric is low due to the entangled structure (see Patent Document 2).

他の方法として、接着性と潜在捲縮性の両方を与えるため、シース部(繊維外周部)に融点80〜170℃熱可塑性樹脂を用い、コア部に融点が20℃以上高い熱収縮特性の異なる2種の熱可塑性樹脂を用いた熱接着性の潜在捲縮性複合繊維をカード法にてウェブとし、スルーエアー加工を行うことで、低温樹脂による接着性と、潜在捲縮を顕在化させて捲縮を発現させることにより不織布強度と伸縮性の両方を与える方法があるが、捲縮を発現させるコア部を接着成分となるシース部が覆うため、十分な捲縮が発現せず、伸縮性能を損なう問題がある(特許文献3参照)。 As another method, in order to provide both adhesiveness and latent crimpability, a thermoplastic resin having a melting point of 80 to 170 ° C. is used for the sheath portion (fiber outer peripheral portion), and the core portion has a heat shrinkage characteristic having a high melting point of 20 ° C. or more. By making through-air processing a heat-adhesive latent crimped composite fiber using two different thermoplastic resins using the card method and making through-air processing, the adhesiveness and latent crimp due to low-temperature resin are revealed. Although there is a method of giving both nonwoven fabric strength and stretchability by expressing crimps, the sheath part, which is an adhesive component, covers the core part that expresses crimps, so that sufficient crimps do not appear and stretch There exists a problem which impairs performance (refer patent document 3).

特開2009−256856号JP 2009-256856 A 特願平8−268951号Japanese Patent Application No. 8-268951 特願平6−280147号Japanese Patent Application No. 6-280147

本発明の課題は、特に不織布に用いたときに、嵩高性と、高い不織布強度、及び、優れた伸縮性が得られる繊維と、これを用いて得られる不織布を提供することにある。 The subject of this invention is providing the nonwoven fabric obtained by using the fiber from which bulkiness, high nonwoven fabric strength, and the outstanding elasticity are obtained especially when it uses for a nonwoven fabric.

本発明者らは、前記課題を解決するため鋭意検討を重ねた結果、繊維長軸方向と直角な繊維断面において、3種の樹脂成分を、それぞれ特定の位置に配した繊維が、前記課題を解決することを見出し、この知見に基づいて本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that fibers in which three types of resin components are arranged at specific positions in the fiber cross section perpendicular to the fiber long axis direction, Based on this finding, the present invention has been completed.

本発明は、以下の構成を有する。
(1)第1成分、第2成分および第3成分の3種類の樹脂成分を用いて得られた複合繊維であって、第1成分は溶融または軟化によって熱接着性を有する樹脂成分であり、その融点または軟化点は、他の2成分の融点または軟化点よりも低く、第2成分は非熱収縮性であるかまたは第3成分よりも熱収縮性が低い樹脂成分であり、第3成分は熱収縮性の樹脂成分であり、当該各成分が繊維長軸に対して直角な繊維断面(以下、単に繊維断面ともいう)においてそれぞれ独立に存在しており、第2成分を中心に第1成分と第3成分が並列に配置されており、少なくとも第1成分が繊維表面の一部を繊維長さ方向に連続して占めており、かつ少なくとも第3成分の一部が繊維表面の一部を繊維長さ方向に連続して占めている熱融着性複合繊維。
(2)第1成分が低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(L-LDPE)、及び、熱可塑性エラストマーから選ばれた少なくとも1種を含む樹脂成分であり、第2成分が結晶性ポリプロピレンを含む樹脂成分であり、第3成分がプロピレン系共重合体を含む樹脂成分である、前記(1)項に記載の熱融着性複合繊維。
(3)第1成分が繊維表面の30〜80%を繊維長さ方向に連続して占めている、前記(1)または(2)項に記載の熱融着性複合繊維。
(4)第1成分の融点が70℃以上125℃以下、第3成分の融点が120℃以上147℃以下である前記(1)〜(3)項のいずれか1項に記載の熱融着性複合繊維。
(5)第1成分が、メタロセン系L−LDPEを含み、第3成分に含まれるプロピレン系共重合体が、エチレン含有量4〜10重量%、プロピレン含有量90〜96重量%からなるエチレン−プロピレン2元共重合体である、前記(2)〜(4)項のいずれか1項に記載の熱融着性複合繊維。
(6)第3成分に含まれるプロピレン系共重合体が、エチレン含有量1〜7重量%、プロピレン含有量90〜98重量%、1−ブテン含有量1〜5重量%からなるエチレン−プロピレン−ブテン−1三元共重合である前記(2)〜(4)のいずれか1項に記載の熱融着性複合繊維。
(7)前記(1)〜(6)のいずれか1項に記載の熱融着性複合繊維を用いて得られた不織布。
The present invention has the following configuration.
(1) A composite fiber obtained by using three types of resin components, a first component, a second component, and a third component, wherein the first component is a resin component having thermal adhesiveness by melting or softening; Its melting point or softening point is lower than the melting point or softening point of the other two components, the second component is a non-heat-shrinkable resin component or a heat-shrinkable resin component that is lower than the third component, and the third component Is a heat-shrinkable resin component, and each component is present independently in a fiber cross section perpendicular to the fiber long axis (hereinafter, also simply referred to as fiber cross section), and the first component centering on the second component. The component and the third component are arranged in parallel, at least the first component continuously occupies a part of the fiber surface in the fiber length direction, and at least a part of the third component is a part of the fiber surface A heat-fusible conjugate fiber that continuously occupies the fiber length direction.
(2) The first component is a resin component containing at least one selected from low density polyethylene (LDPE), linear low density polyethylene (L-LDPE), and thermoplastic elastomer, and the second component is crystalline. The heat-fusible conjugate fiber according to item (1), wherein the heat-fusible conjugate fiber is a resin component containing a conductive polypropylene, and the third component is a resin component containing a propylene-based copolymer.
(3) The heat-fusible conjugate fiber according to (1) or (2), wherein the first component continuously occupies 30 to 80% of the fiber surface in the fiber length direction.
(4) The thermal fusion according to any one of (1) to (3), wherein the melting point of the first component is 70 ° C. or higher and 125 ° C. or lower, and the melting point of the third component is 120 ° C. or higher and 147 ° C. or lower. Composite fiber.
(5) The first component contains a metallocene L-LDPE, and the propylene copolymer contained in the third component has an ethylene content of 4 to 10% by weight and a propylene content of 90 to 96% by weight. The heat-fusible conjugate fiber according to any one of (2) to (4), which is a propylene binary copolymer.
(6) An ethylene-propylene copolymer in which the propylene copolymer contained in the third component has an ethylene content of 1 to 7% by weight, a propylene content of 90 to 98% by weight, and a 1-butene content of 1 to 5% by weight. The heat-fusible conjugate fiber according to any one of (2) to (4), which is butene-1 terpolymer.
(7) A nonwoven fabric obtained using the heat-fusible conjugate fiber according to any one of (1) to (6).

本発明の熱融着性複合繊維は、高い収縮性と接着性を与えることができ、更に不織布加工後には潜在捲縮が顕在化して発現することにより、嵩高性、高い不織布強度、及び、優れた伸縮性を有する不織布となる。 The heat-fusible conjugate fiber of the present invention can give high shrinkage and adhesiveness, and further, after the nonwoven fabric processing, latent crimps are manifested and expressed, resulting in high bulkiness, high nonwoven fabric strength, and excellent A non-woven fabric having high elasticity.

本発明の熱融着性複合繊維の好ましい繊維断面の例を示す図(実施例1の態様)。The figure which shows the example of the preferable fiber cross section of the heat-fusible conjugate fiber of this invention (the aspect of Example 1). 本発明の熱融着性複合繊維の好ましい繊維断面の例を示す図(実施例2の態様)。The figure which shows the example of the preferable fiber cross section of the heat-fusible conjugate fiber of this invention (the aspect of Example 2). 本発明の熱融着性複合繊維の好ましい繊維断面の例を示す図(実施例3の態様)。The figure which shows the example of the preferable fiber cross section of the heat-fusible composite fiber of this invention (aspect of Example 3). 本発明の熱融着性複合繊維の好ましい繊維断面の例を示す図。The figure which shows the example of the preferable fiber cross section of the heat-fusible composite fiber of this invention. 本発明の熱融着性複合繊維の好ましい繊維断面の例を示す図。The figure which shows the example of the preferable fiber cross section of the heat-fusible composite fiber of this invention. 本発明に対する比較例の繊維断面の例を示す図(比較例1の態様)。The figure which shows the example of the fiber cross section of the comparative example with respect to this invention (the aspect of the comparative example 1). 本発明に対する比較例の繊維断面の例を示す図(比較例2の態様)。The figure which shows the example of the fiber cross section of the comparative example with respect to this invention (the aspect of the comparative example 2).

本発明の熱融着性複合繊維は、非熱収縮性樹脂または熱収縮性の小さい樹脂(第2成分)を中心に低融点(または低軟化点)樹脂(第1成分)と熱収縮挙動の高い樹脂(第3成分)で挟む形で並列に並んだ繊維断面を有する複合繊維である。本発明の原理は、熱収縮性の一番大きい第3成分が、熱処理されたときに収縮して複合繊維に捲縮を発現させ、捲縮の内側となり、第2および第3成分より融点(または軟化点)の低い第1成分が熱接着に関与する成分として機能し、他の2成分が捲縮を発現してもその捲縮の形状を損なうことなく捲縮の外側に溶融(または軟化)した状態を保つので、固化しても捲縮の形状を保持したまま捲縮の外側に接着点(複合繊維の捲縮の外側の接点が互いに熱溶融して接着される)を形成するというものである。 The heat-fusible conjugate fiber of the present invention has a low-melting-point (or low softening point) resin (first component) and a heat-shrinking behavior centered on a non-heat-shrinkable resin or a resin having a low heat-shrinkability (second component). It is a composite fiber having fiber cross-sections arranged in parallel so as to be sandwiched between high resins (third component). The principle of the present invention is that the third component having the largest heat shrinkage shrinks when heat-treated to express crimps in the composite fiber, becomes inside the crimps, and has a melting point (from the second and third components) The first component having a low softening point functions as a component involved in thermal bonding, and the other two components melt (or soften outside the crimp without damaging the shape of the crimp even if crimping occurs. ), The adhesive point (the contact points on the outer side of the crimp of the composite fiber are melted and bonded to each other) is formed on the outside of the crimp while maintaining the shape of the crimp even when solidified. Is.

本発明の熱融着性複合繊維の第1成分は、他の2成分よりも融点または軟化点が低く、溶融または軟化により接着点を形成する樹脂成分であれば特に限定されない。他の2成分のうち、融点(または軟化点)が低い方との融点(軟化点)差については、樹脂の入手可能性や、熱処理において他の成分を溶融(軟化)させずに第1成分を溶融(軟化)させる時の温度幅を考慮すると、5〜40℃低いものを選ぶのが好ましく、10〜35℃低いものを選んだ場合はさらに好ましい。このような第1成分として、具体的には、LDPE、L−LDPE、及び熱可塑性エラストマーから選ばれた少なくとも1種を含む樹脂成分を挙げることができる。 The first component of the heat-fusible conjugate fiber of the present invention is not particularly limited as long as it has a lower melting point or softening point than the other two components and forms a bonding point by melting or softening. Regarding the difference between the melting point (softening point) of the other two components and the lower melting point (or softening point), the first component without melting (softening) other components in the availability of the resin or heat treatment In view of the temperature range when melting (softening), it is preferable to select a material having a temperature lower by 5 to 40 ° C., and more preferably a material having a temperature lower by 10 to 35 ° C. Specific examples of such a first component include a resin component containing at least one selected from LDPE, L-LDPE, and a thermoplastic elastomer.

第2成分は、非熱収性であるかまたは第3成分よりも熱収縮性が低い樹脂成分であれば特に限定されないが、具体的には結晶性ポリプロピレンを含む樹脂成分を挙げることができる。 The second component is not particularly limited as long as it is a resin component that is non-heat-absorbing or has lower heat shrinkage than the third component, and specific examples include a resin component containing crystalline polypropylene.

第3成分は熱収縮性の樹脂成分であれば特に限定されないが、具体的にはプロピレン系共重合体を含む樹脂成分を挙げることができる。 Although it will not specifically limit if a 3rd component is a heat-shrinkable resin component, Specifically, the resin component containing a propylene-type copolymer can be mentioned.

本発明においては、第1成分が熱接着性を有する樹脂成分として接着性に寄与する。第1成分として用いられるLDPEもしくはL−LDPEとして、融点が70℃以上125℃以下の範囲内のものが好ましく、更に好ましくは、95℃以上120℃以下である。第1成分に含まれるLDPEもしくはL−LDPEの融点が125℃以下であれば、第1成分が熱溶融する温度において、プロピレン系共重合体を含む第3成分の溶融による熱接着への関与を抑えることができるので、第3成分の不織布中での接着点の形成を防止することができ、不織布の伸縮性を保つことができる。この場合、不織布の強度は、第1成分の接着で十分に保たれている。第1成分の融点が70℃以上であれば、ウェブを作製するカード工程においてメタリックワイヤーのカーディング摩擦が抑えられ、ネップの発生(繊維融着)などは起こらず、地合いが良好に保たれる。さらに、L−LDPEは、低温加工性や伸び、表面平滑性の点で、メタロセン系触媒を用いて製造されたL−LDPEであることが好ましい。 In the present invention, the first component contributes to adhesion as a resin component having thermal adhesion. The LDPE or L-LDPE used as the first component preferably has a melting point in the range of 70 ° C. or higher and 125 ° C. or lower, and more preferably 95 ° C. or higher and 120 ° C. or lower. If the melting point of the LDPE or L-LDPE contained in the first component is 125 ° C. or less, it is involved in thermal bonding by melting the third component including the propylene copolymer at the temperature at which the first component is thermally melted. Since it can suppress, the formation of the adhesion point in the nonwoven fabric of the third component can be prevented, and the stretchability of the nonwoven fabric can be maintained. In this case, the strength of the nonwoven fabric is sufficiently maintained by the adhesion of the first component. If the melting point of the first component is 70 ° C. or more, carding friction of the metallic wire is suppressed in the carding process for producing the web, and the generation of nep (fiber fusion) does not occur, and the texture is kept good. . Furthermore, L-LDPE is preferably L-LDPE produced using a metallocene catalyst in terms of low-temperature processability, elongation, and surface smoothness.

第1成分として、熱可塑性エラストマーを使用してもよい。熱可塑性エラストマーを使用する場合、それが熱によって軟化することにより熱接着が行われる。熱可塑性エラストマーとしては、加工性の点で軟化点が70〜110℃であるものが好ましく、80〜100℃の範囲であるものが尚好ましい。そのような熱可塑性エラストマーとしては、水添スチレン系エラストマー(SEBS)、熱可塑性ポリウレタン(TPU)が例示できる。また、相溶性の点で、オレフィン系エラストマーも好ましい例として挙げられる。オレフィン系エラストマーとしては、エチレン−オクテン−1共重合体(ダウケミカル社製 Engage8402)を例示できる。 A thermoplastic elastomer may be used as the first component. When a thermoplastic elastomer is used, it is thermally bonded by being softened by heat. The thermoplastic elastomer preferably has a softening point of 70 to 110 ° C., more preferably 80 to 100 ° C. in terms of processability. Examples of such thermoplastic elastomers include hydrogenated styrene elastomer (SEBS) and thermoplastic polyurethane (TPU). In view of compatibility, olefin elastomers are also preferable examples. Examples of the olefin elastomer include an ethylene-octene-1 copolymer (Engage 8402 manufactured by Dow Chemical Company).

第1成分として熱可塑性エラストマーを使用すると、繊維間の接点が、このエラストマー成分を介して熱接着されることとなるため、その接着点自体が弾性を帯び、不織布に加えられる張力等に伴う変形に対する緩衝効果を有する結果、不織布に柔軟性・伸縮性が与えられると共に、エラストマー成分の持つ粘着性によって接着点の接着強度が補強される結果、接着点の接着強度も高いものとなる。 When a thermoplastic elastomer is used as the first component, the contact points between the fibers are thermally bonded via the elastomer component, so that the bonding point itself is elastic and deforms due to tension applied to the nonwoven fabric. As a result, the nonwoven fabric is given flexibility and stretchability, and the adhesive strength of the adhesive point is reinforced by the tackiness of the elastomer component. As a result, the adhesive strength of the adhesive point is also high.

第1成分として、熱可塑性エラストマーの1種または2種以上の混合物を使用でき、また、これらを、LDPEもしくはL−LDPEと混合して使用することもできる。第1成分には、溶融または軟化による熱接着効果を阻害しない範囲で、さらに他の樹脂や、滑剤や顔料、あるいは炭酸カルシウムや酸化チタンなどの無機物などの添加剤を含ませてもよい。 As the first component, one or a mixture of two or more thermoplastic elastomers can be used, and these can also be used as a mixture with LDPE or L-LDPE. The first component may further contain other resins, additives such as lubricants and pigments, or inorganic substances such as calcium carbonate and titanium oxide, as long as the thermal adhesion effect by melting or softening is not inhibited.

第3成分として例示されるプロピレン系共重合体は、プロピレンを主成分とするオレフィン共重合体である。このようなプロピレン系共重合体は、プロピレンとエチレン、もしくはプロピレンとエチレンおよびα−オレフィンとを共重合させることにより得ることができる。プロピレン系共重合体に使用するα−オレフィンとしては、ブテン−1、ペンテン−1、ヘキセン−1、ヘプテン−1、オクテン−1、4−メチル−ペンテン−1等が例示でき、またこれらのα−オレフィンのうち2種以上を併用することもできる。 The propylene-based copolymer exemplified as the third component is an olefin copolymer mainly composed of propylene. Such a propylene-based copolymer can be obtained by copolymerizing propylene and ethylene, or propylene, ethylene, and α-olefin. Examples of the α-olefin used for the propylene-based copolymer include butene-1, pentene-1, hexene-1, heptene-1, octene-1, 4-methyl-pentene-1, and the like. -Two or more of olefins may be used in combination.

このようなプロピレン系共重合体の具体例としては、エチレン−プロピレン二元共重合体、プロピレン−ブテン−1二元共重合体、エチレン−プロピレン−ブテン−1三元共重合体、プロピレン−ヘキセン−1二元共重合体、プロピレン−オクテン−1二元共重合体等およびこれらの混合物等を例示することができる。これらの共重合体はランダム共重合体であっても、ブロック共重合体であってもよい。 Specific examples of such a propylene copolymer include ethylene-propylene binary copolymer, propylene-butene-1 binary copolymer, ethylene-propylene-butene-1 terpolymer, propylene-hexene. -1 binary copolymer, propylene-octene-1 binary copolymer and the like, and mixtures thereof. These copolymers may be random copolymers or block copolymers.

このようなプロピレン系共重合体として、さらに好ましい具体例は、低温熱収縮性の点でエチレン−プロピレン二元共重合体、エチレン−プロピレン−ブテン−1三元共重合体を挙げることができ、さらに、低温熱収縮性、コストの点で、エチレン含有量4〜10重量%、プロピレン含有量90〜96重量%からなるエチレン−プロピレン2元共重合体、エチレン含有量1〜7重量%、プロピレン含有量90〜98重量%、1−ブテン含有量1〜5重量%からなるエチレン−プロピレン−ブテン−1三元共重合を挙げることができる。 More preferable specific examples of such a propylene-based copolymer include an ethylene-propylene binary copolymer and an ethylene-propylene-butene-1 terpolymer in terms of low-temperature heat shrinkability. Furthermore, in terms of low temperature heat shrinkability and cost, ethylene-propylene binary copolymer comprising ethylene content 4 to 10% by weight and propylene content 90 to 96% by weight, ethylene content 1 to 7% by weight, propylene Mention may be made of ethylene-propylene-butene-1 terpolymers having a content of 90 to 98% by weight and a 1-butene content of 1 to 5% by weight.

第3成分のプロピレン系共重合体の融点としては、第1成分より高い融点であることを条件として、120℃以上147℃以下が好ましく、より好ましくは125℃以上140℃以下の範囲である。融点が120℃以上であれば、先に述べた第1成分との融点差を十分に取ることができ、第1成分の溶融または軟化と同時に第3成分が溶融することを抑えることができる。第3成分の溶融を抑えることができれば、接着点は熱処理によって発現する捲縮の外側(第1成分側)に形成されることになるので、不織布が柔らかくなり、第3成分自体の熱収縮も接着によって阻害されずに効率的に発現させることができるので、伸縮性に富んだ不織布を製造することができる。また、融点が147℃以下であれば、後に述べる第2成分に用いる結晶性ポリプロピレンとの融点差を大きく取ることができるため、効率的に捲縮を発現させることができ、好ましい。 The melting point of the propylene-based copolymer of the third component is preferably 120 ° C. or higher and 147 ° C. or lower, more preferably 125 ° C. or higher and 140 ° C. or lower, provided that the melting point is higher than that of the first component. If the melting point is 120 ° C. or higher, a sufficient difference in melting point from the first component described above can be taken, and melting of the third component can be suppressed simultaneously with melting or softening of the first component. If the melting of the third component can be suppressed, the adhesion point will be formed outside the crimp (first component side) developed by the heat treatment, so the nonwoven fabric becomes soft and the thermal contraction of the third component itself also occurs. Since it can be efficiently expressed without being inhibited by adhesion, a nonwoven fabric rich in stretchability can be produced. Moreover, if melting | fusing point is 147 degrees C or less, since melting | fusing point difference with the crystalline polypropylene used for the 2nd component mentioned later can be taken large, a crimp can be expressed efficiently and it is preferable.

第3成分の融点は、不織布加工性の点から第1成分より高いことが好ましく、第3成分と第1成分の融点差(第3成分の融点−第1成の分融点)が10〜70℃の範囲であるのが更に好ましく、20〜40℃の範囲であるのが尚好ましい。 The melting point of the third component is preferably higher than that of the first component from the viewpoint of nonwoven fabric processability, and the difference between the melting points of the third component and the first component (the melting point of the third component minus the first component melting point) is 10 to 70. More preferably, it is in the range of 20 ° C., more preferably in the range of 20-40 ° C.

第3成分のメルトマスフローレートとしては、紡糸性、加工性の点から、JIS−K7210の条件14で、0.1〜80g/10minが好ましく、3〜40g/10minが更に好ましい。
第3成分は、これらの効果を阻害しない範囲で、他の樹脂、滑剤や顔料、あるいは炭酸カルシウムや酸化チタンなどの無機物などの添加剤を含んでいてもよい。
The melt mass flow rate of the third component is preferably 0.1 to 80 g / 10 min, more preferably 3 to 40 g / 10 min under the condition 14 of JIS-K7210 from the viewpoint of spinnability and workability.
The third component may contain additives such as other resins, lubricants and pigments, or inorganic substances such as calcium carbonate and titanium oxide, as long as these effects are not impaired.

第2成分に用いられる結晶性ポリプロピレンとは、プロピレン単独重合体もしくはプロピレンと少量の、通常は2重量%以下のエチレンまたはα−オレフィンとの共重合体である。このような結晶性ポリプロピレンとしては、汎用のチーグラー・ナッタ触媒やメタロセン触媒から得られる結晶性ポリプロピレンを例示することができる。第2成分の融点としては、第3成分の融点よりも高いことが収縮加工性の点で好ましく、それらの融点差は、好ましくは15〜45℃の範囲であり、更に好ましいのは20〜30℃の範囲である。
第2成分のメルトマスフローレートとしては、紡糸性、加工性の点から、JIS−K7210の条件14で0.1〜80g/10minが好ましく、3〜40g/10minが更に好ましい。
The crystalline polypropylene used for the second component is a propylene homopolymer or a copolymer of propylene and a small amount, usually 2% by weight or less of ethylene or α-olefin. As such a crystalline polypropylene, a crystalline polypropylene obtained from a general-purpose Ziegler-Natta catalyst or a metallocene catalyst can be exemplified. The melting point of the second component is preferably higher than the melting point of the third component from the viewpoint of shrinkage workability, and the melting point difference is preferably in the range of 15 to 45 ° C., more preferably 20 to 30. It is in the range of ° C.
The melt mass flow rate of the second component is preferably 0.1 to 80 g / 10 min, more preferably 3 to 40 g / 10 min under the condition 14 of JIS-K7210 from the viewpoint of spinnability and processability.

本発明の熱融着性複合繊維の繊維断面(繊維長軸に対して直角な断面)においては、各成分が繊維断面においてそれぞれ独立に存在しており、第2成分を中心に第1成分と第3成分が並列に配置されており、少なくとも第1成分が繊維表面の一部を繊維長さ方向に連続して占めており、かつ少なくとも第3成分の一部が繊維表面の一部を繊維長さ方向に連続して占めている。このような態様の具体例は、図1〜図5に示すような繊維断面を挙げることができる。これらの各図に示したように、繊維断面においては、各成分はそれぞれ独立に存在しており、各図では第2成分を中心として左側に第1成分、右側に第3成分が配置されている。 In the fiber cross section (cross section perpendicular to the fiber long axis) of the heat-fusible conjugate fiber of the present invention, each component exists independently in the fiber cross section, and the first component and the second component are the center. The third component is arranged in parallel, at least the first component continuously occupies a part of the fiber surface in the fiber length direction, and at least a part of the third component is a part of the fiber surface. Occupies continuously in the length direction. Specific examples of such an embodiment can include fiber cross sections as shown in FIGS. As shown in each of these figures, in the fiber cross section, each component exists independently. In each figure, the first component on the left side and the third component on the right side are arranged with the second component as the center. Yes.

接着成分となる第1成分が繊維長さ方向に連続し表面にあること、特に、繊維表面の30〜80%を繊維長さ方向に連続して占めていることで、繊維同士の自己接着性および他素材との適度な接着性を示し、第2成分と第3成分の並列により高い潜在捲縮性を持つ繊維が得られる。特に、第1成分が繊維表面の30〜80%を繊維長さ方向に連続して占めていることが、接着性の点で尚好ましい。 Self-adhesiveness between fibers by having the first component serving as an adhesive component continuously on the surface in the fiber length direction, in particular, occupying 30 to 80% of the fiber surface in the fiber length direction. And the fiber which shows moderate adhesiveness with other raw materials, and has a high latent crimp property by paralleling a 2nd component and a 3rd component is obtained. In particular, it is more preferable in terms of adhesiveness that the first component continuously occupies 30 to 80% of the fiber surface in the fiber length direction.

繊維長軸と直角する繊維断面において、並列に配置されてなる3成分間の各境界線は、それぞれ独立して直線であっても曲線であっても構わない。特に、図1〜3に示すように、少なくとも、第2成分と第3成分の境界線が第3成分側(図1〜3において右側)に向かい凹状の弧を描く(図1〜3において左側に張り出すように弧を描く)ように配列している場合や繊維長軸と直角する繊維断面において、3成分の各境界線が、第1成分が露出していない繊維表面側(図1〜3において右側)に向かい、それぞれ凹状の弧(同様に図1〜3において左側に張り出す)を描くように配置されてなる並列構造を形成しているのも、本発明の繊維の好ましい形態の一つである。このような並列構造をとることによって、繊維間が、熱接着性を有する第1成分を介して接触する機会が多くなり、効率的に熱接着が達成できるために不織布加工後の不織布強力の点で好ましい。また、本発明は、図4や図5に示す繊維断面の態様も含む。 In the fiber cross section perpendicular to the fiber long axis, each boundary line between the three components arranged in parallel may be a straight line or a curved line independently. In particular, as shown in FIGS. 1 to 3, at least the boundary line between the second component and the third component draws a concave arc toward the third component side (right side in FIGS. 1 to 3) (left side in FIGS. 1 to 3). In the fiber cross section perpendicular to the fiber long axis, the boundary lines of the three components are on the fiber surface side where the first component is not exposed (FIG. 1 to FIG. 1). It is also a preferred form of the fiber of the present invention that a parallel structure is formed which is arranged to draw a concave arc (similarly protruding to the left in FIGS. 1 to 3). One. By taking such a parallel structure, there are many opportunities for the fibers to contact each other via the first component having thermal adhesiveness, and the thermal bonding can be efficiently achieved. Is preferable. The present invention also includes the fiber cross-section shown in FIGS.

第1成分、第2成分および、第3成分の断面積比としては、第2成分と第3成分の面積比率を40:60〜60:40の範囲とし、第2成分と第3成分の合計面積に対する第1成分の面積の割合が1/3〜1の範囲であるのが尚好ましい。接着成分となる第1成分の第2成分と第3成分の合計面積に対する面積比が1/3以上であれば、第1成分による接着力が十分に保持され、また、同面積比が1以下であれば、第1成分の量が第3成分の熱収縮を妨げる可能性を完全に排除できる範囲に保たれるので、捲縮発現性が良好である。 As the cross-sectional area ratio of the first component, the second component, and the third component, the area ratio of the second component and the third component is in the range of 40:60 to 60:40, and the total of the second component and the third component More preferably, the ratio of the area of the first component to the area is in the range of 1/3 to 1. If the area ratio of the first component that is the adhesive component to the total area of the second component and the third component is 1/3 or more, the adhesive force by the first component is sufficiently maintained, and the area ratio is 1 or less. If it is, since the quantity of the 1st component is maintained in the range which can eliminate completely the possibility of preventing the thermal contraction of the 3rd component, crimp expression is favorable.

このような繊維長軸と直角する繊維断面を得るには、特願平2−172718に示す三成分並列型複合紡糸口金を用いることにより得ることができる。この文献に記載されたものと同じ金型を用いて、例えば樹脂の流動性をコントロール(溶融温度、MFR)することにより、成分間の境界線が第3成分側に凹状に弧を描く断面形状の繊維を効率的に製造することができる。例えば、流動性の同じ樹脂の場合、得られる断面は半月状となるが、一方の樹脂の流動性を上げていくと流動性の低い樹脂を覆うような断面へと変化していく。このことを利用することで、三成分間の断面形状を変化させることができる。 In order to obtain such a fiber cross section perpendicular to the fiber major axis, it can be obtained by using a three-component parallel type composite spinneret shown in Japanese Patent Application No. 2-172718. Using the same mold as described in this document, for example, by controlling the fluidity of the resin (melting temperature, MFR), the cross-sectional shape in which the boundary line between the components forms a concave arc on the third component side Can be efficiently produced. For example, in the case of a resin having the same fluidity, the obtained cross-section becomes a half-moon shape, but as the fluidity of one resin is increased, it changes to a cross-section that covers a resin having low fluidity. By utilizing this fact, the cross-sectional shape between the three components can be changed.

本発明の熱融着性複合繊維の繊度は、特に限定されないが、1.0dtex〜20dtexの範囲が好ましく、より好ましくは1.5dtex〜10dtex、更に好ましくは、2.2dtex〜6.6dtexである。繊度が1.0dtex以上であれば、カード工程においてネップの発生などを完全に防止することができるので、不織布の地合いは良好となる。20dtex以下であれば、捲縮を十分に発現させることができる。 The fineness of the heat-fusible conjugate fiber of the present invention is not particularly limited, but is preferably in the range of 1.0 dtex to 20 dtex, more preferably 1.5 dtex to 10 dtex, and still more preferably 2.2 dtex to 6.6 dtex. . If the fineness is 1.0 dtex or more, it is possible to completely prevent the occurrence of neps in the carding process, and the texture of the nonwoven fabric is good. If it is 20 dtex or less, crimp can be fully expressed.

本発明の熱融着性複合繊維は、目付100g/m程度のウェブとし、これを、125℃オーブン内で5分間の熱放置をしたときに、容易に50%以上の収縮率を発現することができ、さらには、好適に、60%以上の収縮率を発現することもできる。
収縮率が50%以上であれば、不織布に十分な伸縮性を与えることができ、柔らかい不織布となる。
The heat-fusible conjugate fiber of the present invention is a web having a basis weight of about 100 g / m 2 , and when this is left in a 125 ° C. oven for 5 minutes, it easily exhibits a shrinkage ratio of 50% or more. Furthermore, preferably, a shrinkage rate of 60% or more can be expressed.
When the shrinkage rate is 50% or more, the nonwoven fabric can be provided with sufficient stretchability and becomes a soft nonwoven fabric.

本発明の熱融着性複合繊維に、例えば、別の潜在捲縮複合繊維等、他の繊維を混綿しても構わない。別の潜在捲縮複合繊維とは、本発明の第2成分と第3成分のみからなる並列もしくは偏心の断面を有する繊維などが挙げられる。 For example, another fiber such as another latent crimped conjugate fiber may be blended with the heat-fusible conjugate fiber of the present invention. Another latent crimped composite fiber includes a fiber having a parallel or eccentric cross section composed of only the second component and the third component of the present invention.

本発明の熱融着性複合繊維を用い不織布を製造する方法を以下に述べる。
本発明の繊維は、繊維の熱融着による不織布化と、同繊維の潜在捲捲縮の発現とを一工程で行うこともできるし、先に不織布化工程を実施した後に、潜在捲縮の発現工程を実施することもできる。特に、後者の方法で実施すれば、不織布加工後、無張力化で熱を与えることのできるシュリンクドライヤーなどを使用することが可能となり、より均一に高い収縮を与えることが可能となる。
A method for producing a nonwoven fabric using the heat-fusible conjugate fiber of the present invention will be described below.
The fiber of the present invention can be formed into a non-woven fabric by heat-sealing the fibers and the latent crimp of the fiber can be developed in one step. An expression step can also be performed. In particular, if the latter method is used, it becomes possible to use a shrink dryer or the like that can apply heat without forming a tension after processing the nonwoven fabric, and it is possible to give higher shrinkage more uniformly.

前者の場合の製造例としては、本発明の熱融着性複合繊維をカード法により処理してウェブとし、第1成分の融点以上で、かつ繊維に収縮が発生する加工温度にて熱風循環式熱処理機(スルーエアー機)を通し、接着と収縮を同時に行う方法を挙げることができる。後者の場合の製造例は、本発明の熱融着性複合繊維をカード法を用いてウェブとし、第1成分の融点以上、かつ繊維の収縮開始温度以下の加工温度で熱風循環式熱処理機(スルーエアー機)を通し不織布とした後、収縮開始温度以上、第3成分融点以下の加工温度でシュリンクドライヤーにて熱処理する方法を挙げることができる。 As a production example in the former case, the heat-fusible conjugate fiber of the present invention is processed by a card method to form a web, and the hot-air circulation type at a processing temperature that is higher than the melting point of the first component and the fiber shrinks. A method of performing adhesion and shrinkage simultaneously through a heat treatment machine (through air machine) can be mentioned. In the latter case, the heat fusible conjugate fiber of the present invention is made into a web using the card method, and a hot air circulation type heat treatment machine (with a processing temperature not lower than the melting point of the first component and not higher than the shrinkage start temperature of the fiber) ( A method of heat-treating with a shrink dryer at a processing temperature not lower than the shrinkage start temperature and not higher than the third component melting point can be mentioned.

以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定される物ではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not a thing limited to these Examples.

<繊維>
第1成分に融点98℃、MI30g/10minのエラストマー樹脂(品名:Engage8402 ダウケミカル社製)、第2成分に融点160℃、MFR16g/10minのホモポリプロピレン樹脂(日本ポリプロ社製、SA2E)、第3成分に融点130℃エチレン含量4重量%、ブテン−1含量2.7重量%、MFR16g/10minのプロピレン共重合体(日本ポリプロ社製、SG02)を使用し、第2成分を中心とし、第1成分と第3成分が挟む形で吐出する230ホールの口金を用い任意の加工温度で押出すことにより断面積比を変更し繊維を得た。
この繊維を、90℃の延伸ローラーにて2.5倍に延伸し、2.2dtex、カット長51mmの原綿を得た。
<Fiber>
The first component is an elastomer resin (product name: Engage 8402, manufactured by Dow Chemical Co.) with a melting point of 98 ° C. and MI 30 g / 10 min. The second component is a homopolypropylene resin (manufactured by Nippon Polypro, SA2E) with a melting point of 160 ° C. and MFR 16 g / 10 min. As a component, a propylene copolymer having a melting point of 130 ° C. and an ethylene content of 4% by weight, a butene-1 content of 2.7% by weight and MFR of 16 g / 10 min (manufactured by Nippon Polypro Co., Ltd., SG02) is used. Fibers were obtained by changing the cross-sectional area ratio by extruding at a desired processing temperature using a 230-hole die discharged in a form sandwiched between the component and the third component.
This fiber was stretched 2.5 times with a stretching roller at 90 ° C. to obtain a raw cotton having 2.2 dtex and a cut length of 51 mm.

<収縮率測定法>
複合繊維を下記の各実施例で示す方法により不織布に加工し、熱処理前のサンプルをMD方向(不織布製造の機械の流れ方向)の各中央とその両端3ヶ所の長さを測定しその平均を(A)値とする。次いで、熱処理後についても同様に測定しその平均を(B)値とし、以下の式により収縮率とした。熱処理は温度100℃、および125℃のオーブンで行い、その結果を測定した。
収縮率(%)=((A)−(B))/(A)×100
<Shrinkage measurement method>
The composite fiber is processed into a non-woven fabric by the method shown in each of the following examples, and the length of each center in the MD direction (the flow direction of the machine for manufacturing the non-woven fabric) and its three ends are measured on the sample before the heat treatment. (A) Value. Next, after the heat treatment, the same measurement was made, and the average was taken as the value (B), and the shrinkage was obtained by the following formula. The heat treatment was performed in an oven at temperatures of 100 ° C. and 125 ° C., and the results were measured.
Shrinkage rate (%) = ((A) − (B)) / (A) × 100

実施例1
繊維断面における第2成分と第3成分の面積比率が50:50、第2成分と第3成分の合計面積に対する第1成分の面積の割合が1/2の繊維を用いた。繊維は図1のような断面を有しており、第1成分が、繊維長軸を直角する方向の断面において、繊維表面の33%を繊維長さ方向に連続して占めていた。オーブン100℃での収縮率測定において3%、オーブン125℃での収縮率測定で70%の収縮率であった。
この繊維をミニチュアカード機で、目付30g/mのウェブを作製し、加工温度100℃のエアスルー機にて不織布とした。次に加工温度125℃にてエアスルー加工をし、熱収縮処理を行った。
得られた不織布は、柔軟で高い強度と伸縮性を示した。
Example 1
A fiber in which the area ratio of the second component and the third component in the fiber cross section is 50:50 and the ratio of the area of the first component to the total area of the second component and the third component is ½ is used. The fiber had a cross section as shown in FIG. 1, and the first component continuously occupied 33% of the fiber surface in the fiber length direction in the cross section perpendicular to the fiber major axis. The shrinkage rate was 3% in the measurement of the shrinkage rate at 100 ° C. in the oven, and the shrinkage rate was 70% in the measurement of the shrinkage rate in the oven 125 ° C.
A web having a basis weight of 30 g / m 2 was produced from this fiber using a miniature card machine, and a nonwoven fabric was formed using an air-through machine having a processing temperature of 100 ° C. Next, air-through processing was performed at a processing temperature of 125 ° C., and thermal shrinkage treatment was performed.
The obtained nonwoven fabric was flexible and exhibited high strength and stretchability.

実施例2
繊維断面における第2成分と第3成分の面積比率が40:60、第2成分と第3成分の合計面積に対する第1成分の面積の割合が1/3の繊維を用いた。繊維は図2のような断面を有しており、第1成分が、繊維長軸を直角する方向の断面において、繊維表面の20%を繊維長さ方向に連続して占めていた。オーブン100℃での収縮率測定において7%、オーブン125℃での収縮率測定で78%の収縮率であった。
この繊維をミニチュアカード機で、目付30g/mのウェブを作製し、加工温度100℃のエアスルー機にて不織布とした。次に加工温度125℃にてエアスルー加工をし、熱収縮処理を行った。
得られた不織布は、柔軟で高い伸縮性を示した。
Example 2
A fiber in which the area ratio of the second component and the third component in the fiber cross section is 40:60 and the ratio of the area of the first component to the total area of the second component and the third component is 1/3 was used. The fiber had a cross section as shown in FIG. 2, and the first component continuously occupied 20% of the fiber surface in the fiber length direction in the cross section in the direction perpendicular to the fiber major axis. The shrinkage rate was 7% in the measurement of the shrinkage rate at 100 ° C. in the oven, and 78% in the measurement of the shrinkage rate in the oven 125 ° C.
A web having a basis weight of 30 g / m 2 was produced from this fiber using a miniature card machine, and a nonwoven fabric was formed using an air-through machine having a processing temperature of 100 ° C. Next, air-through processing was performed at a processing temperature of 125 ° C., and thermal shrinkage treatment was performed.
The obtained non-woven fabric was soft and highly stretchable.

実施例3
繊維断面における第2成分と第3成分の面積比率が60:40、第2成分と第3成分の合計面積に対する第1成分の面積の割合が1/2の繊維を用いた。繊維は図3のような断面を有しており、第1成分が、繊維長軸を直角する方向の断面において、繊維表面の48%を繊維長さ方向に連続して占めていた。オーブン100℃での収縮率測定において1%、オーブン125℃での収縮率測定で68%の収縮率であった。
この繊維をミニチュアカード機で、目付30g/mのウェブを作製し、加工温度100℃のエアスルー機にて不織布とした。次に加工温度125℃にてエアスルー加工をし、熱収縮処理を行った。
得られた不織布は、柔軟で伸縮性を示した。
Example 3
A fiber in which the area ratio of the second component and the third component in the fiber cross section is 60:40, and the ratio of the area of the first component to the total area of the second component and the third component is 1/2. The fiber had a cross section as shown in FIG. 3, and the first component continuously occupied 48% of the fiber surface in the fiber length direction in the cross section perpendicular to the fiber major axis. The shrinkage ratio measured at an oven of 100 ° C. was 1%, and the shrinkage ratio measured at an oven of 125 ° C. was 68%.
A web having a basis weight of 30 g / m 2 was produced from this fiber using a miniature card machine, and a nonwoven fabric was formed using an air-through machine having a processing temperature of 100 ° C. Next, air-through processing was performed at a processing temperature of 125 ° C., and thermal shrinkage treatment was performed.
The obtained nonwoven fabric was soft and stretchable.

比較例1
第2成分と第3成分がサイド・バイ・サイド(並列)に配置され、繊維断面におけるそれらの面積比率が50:50、第2成分と第3成分の合計面積に対する第1成分の面積の割合が1/3で外周を取り巻く図6に示す繊維を用いた。オーブン100℃での収縮率測定において0%、オーブン125℃での収縮率測定で40%の収縮率であった。
この繊維をミニチュアカード機で、目付30g/mのウェブを作製し、加工温度100℃のエアスルー機にて不織布とし、次に加工温度125℃にてエアスルー加工をし、熱収縮処理を行ったが、収縮が小さく得られた不織布の伸縮性が低いものとなった。
Comparative Example 1
The second component and the third component are arranged side-by-side (in parallel), and the area ratio in the fiber cross section is 50:50, the ratio of the area of the first component to the total area of the second component and the third component Was 1/3 and the fiber shown in FIG. 6 surrounding the outer periphery was used. The shrinkage rate was 0% in the measurement of the shrinkage rate at 100 ° C. in the oven, and the shrinkage rate was 40% in the measurement of the shrinkage rate in the oven 125 ° C.
A web having a basis weight of 30 g / m 2 was produced from this fiber using a miniature card machine, and a nonwoven fabric was formed using an air-through machine having a processing temperature of 100 ° C., and then air-through processing was performed at a processing temperature of 125 ° C. However, the stretchability of the nonwoven fabric obtained with small shrinkage was low.

比較例2
第2成分と第3成分がサイド・バイ・サイドに配置され、繊維断面におけるそれらの面積比率が50:50、第2成分と第3成分の合計面積に対する第1成分の面積の割合が1/3で外周を取り巻く偏心構造(図7)の繊維を用いた。オーブン100℃での収縮率測定において30%、オーブン125℃での収縮率測定で50%の収縮率であった。
この繊維をミニチュアカード機で、目付30g/mのウェブを作製し、加工温度100℃のエアスルー機にて不織布としたところ、不織布に収縮による地合不良が目立った。次に加工温度125℃にてエアスルー加工をし、熱収縮処理を行ったが先の地合不良のため均一に収縮されず不織布に粗密が見られた。その為、得られた不織布は伸縮性が低いものであった。
Comparative Example 2
The second component and the third component are arranged side-by-side, the area ratio in the fiber cross section is 50:50, and the ratio of the area of the first component to the total area of the second component and the third component is 1 / No. 3, fibers having an eccentric structure surrounding the outer periphery (FIG. 7) were used. The shrinkage rate was 30% in the measurement of the shrinkage rate at 100 ° C. in the oven, and the shrinkage rate was 50% in the measurement of the shrinkage rate in the oven 125 ° C.
When a web having a basis weight of 30 g / m 2 was produced from this fiber with a miniature card machine and made into a nonwoven fabric with an air-through machine having a processing temperature of 100 ° C., formation defects due to shrinkage were noticeable in the nonwoven fabric. Next, an air-through process was performed at a processing temperature of 125 ° C., and a heat shrink process was performed. Therefore, the obtained nonwoven fabric had low stretchability.

以上の実施例および比較例の結果を表1にまとめて示す。   The results of the above examples and comparative examples are summarized in Table 1.

Figure 0005741225
Figure 0005741225

本発明の効果は、高い収縮性と接着性を与えることができ、更に不織布加工後には潜在捲縮の発現により、嵩高性、高い不織布強度、及び、優れた伸縮性を有する不織布が得られることから、例えば、ハップ剤基布、オムツの伸縮素材、シュリンク不織布などに利用することができる。 The effect of the present invention is that high shrinkability and adhesiveness can be given, and further, after processing of the nonwoven fabric, a non-woven fabric having high bulkiness, high nonwoven fabric strength, and excellent stretchability can be obtained due to the development of latent crimps. From, for example, it can be used for a haptic base fabric, a diaper stretch material, a shrink nonwoven fabric, and the like.

Claims (4)

第1成分、第2成分および第3成分の3種類の樹脂成分を用いて得られた複合繊維であって、第1成分は溶融または軟化によって熱接着性を有する樹脂成分であり、その融点または軟化点は、他の2成分の融点または軟化点よりも低く、第2成分は非熱収縮性であるかまたは第3成分よりも熱収縮性が低い樹脂成分であり、第3成分は熱収縮性の樹脂成分であり、第1成分が低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(L-LDPE)、及び、熱可塑性エラストマーから選ばれた少なくとも1種を含む樹脂成分であり、第2成分が結晶性ポリプロピレンを含む樹脂成分であり、第3成分がプロピレン系共重合体を含む樹脂成分であり、
(1)第1成分が、メタロセン系触媒により重合されたL−LDPEを含み、第3成分に含まれるプロピレン系共重合体が、エチレン含有量4〜10重量%、プロピレン含有量90〜96重量%のエチレン−プロピレン2元共重合体であるか、または、
(2)第3成分に含まれるプロピレン系共重合体が、エチレン含有量1〜7重量%、プロピレン含有量90〜98重量%、1−ブテン含有量1〜5重量%のエチレン−プロピレン−ブテン−1三元共重合である、
当該各成分が繊維長軸に対して直角な繊維断面においてそれぞれ独立に存在しており、第2成分を中心に第1成分と第3成分が並列に配置されており、少なくとも第1成分が繊維表面の一部を繊維長さ方向に連続して占めており、かつ少なくとも第3成分の一部が繊維表面の一部を繊維長さ方向に連続して占めている熱融着性複合繊維。
A composite fiber obtained by using three types of resin components, a first component, a second component, and a third component, wherein the first component is a resin component having thermal adhesiveness by melting or softening, and its melting point or The softening point is lower than the melting point or softening point of the other two components, the second component is a resin component that is non-heat-shrinkable or has a lower heat-shrinkability than the third component, and the third component is heat-shrinkable The first component is a resin component containing at least one selected from low density polyethylene (LDPE), linear low density polyethylene (L-LDPE), and thermoplastic elastomer, The two components are resin components containing crystalline polypropylene, the third component is a resin component containing a propylene-based copolymer,
(1) The first component contains L-LDPE polymerized with a metallocene catalyst, and the propylene copolymer contained in the third component has an ethylene content of 4 to 10% by weight and a propylene content of 90 to 96%. % Ethylene-propylene binary copolymer, or
(2) An ethylene-propylene-butene having a propylene-based copolymer contained in the third component having an ethylene content of 1 to 7 wt%, a propylene content of 90 to 98 wt%, and a 1-butene content of 1 to 5 wt% -1 terpolymerization,
The respective components are present independently in the fiber cross section perpendicular to the fiber long axis, the first component and the third component are arranged in parallel around the second component, and at least the first component is a fiber. A heat-fusible conjugate fiber that occupies a part of the surface continuously in the fiber length direction and at least a part of the third component occupies a part of the fiber surface continuously in the fiber length direction.
第1成分が繊維表面の30〜80%を繊維長さ方向に連続して占めている、請求項1に記載の熱融着性複合繊維。 The heat-fusible conjugate fiber according to claim 1, wherein the first component continuously occupies 30 to 80% of the fiber surface in the fiber length direction. 第1成分の融点が70℃以上125℃以下、第3成分の融点が120℃以上147℃以下である請求項1〜のいずれか1項に記載の熱融着性複合繊維。 The first component melting point of 70 ° C. or higher 125 ° C. or less, heat-fusible composite fiber according to any one of claims 1-2 melting point of the third component is 120 ° C. or higher 147 ° C. or less. 請求項1〜のいずれか1項記載の熱融着性複合繊維を用いて得られた不織布。 A nonwoven fabric obtained using the heat-fusible conjugate fiber according to any one of claims 1 to 3 .
JP2011123684A 2011-06-01 2011-06-01 Heat-fusible composite fiber and non-woven fabric using the same Expired - Fee Related JP5741225B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011123684A JP5741225B2 (en) 2011-06-01 2011-06-01 Heat-fusible composite fiber and non-woven fabric using the same
CN201210167177.1A CN102808238B (en) 2011-06-01 2012-05-25 Heat sealability composite fibre and the nonwoven fabric using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123684A JP5741225B2 (en) 2011-06-01 2011-06-01 Heat-fusible composite fiber and non-woven fabric using the same

Publications (2)

Publication Number Publication Date
JP2012251254A JP2012251254A (en) 2012-12-20
JP5741225B2 true JP5741225B2 (en) 2015-07-01

Family

ID=47232105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123684A Expired - Fee Related JP5741225B2 (en) 2011-06-01 2011-06-01 Heat-fusible composite fiber and non-woven fabric using the same

Country Status (2)

Country Link
JP (1) JP5741225B2 (en)
CN (1) CN102808238B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264134B (en) 2013-03-12 2019-07-30 博爱无纺布公司 Extendible adhesive-bonded fabric
CN104451926B (en) * 2014-12-23 2016-11-30 浙江依爱夫游戏装文化产业有限公司 Composite antibacterial fibre
US20180355516A1 (en) * 2015-11-25 2018-12-13 Dow Global Technologies Llc Bicomponent filaments
KR102053562B1 (en) * 2016-01-26 2019-12-06 후지필름 가부시키가이샤 Nano Fibers and Nonwovens
WO2018211843A1 (en) 2017-05-16 2018-11-22 出光興産株式会社 Crimped fibers and nonwoven fabric
CN107419431A (en) * 2017-09-26 2017-12-01 昆山盛纺非织造材料研发中心有限公司 A kind of compound loft nonwoven material of multicomponent and its manufacture method
CN111763997A (en) * 2020-07-16 2020-10-13 常州纺兴精密机械有限公司 Three-component composite hollow fiber and spinning assembly thereof
CN111763998A (en) * 2020-07-16 2020-10-13 常州纺兴精密机械有限公司 Three-component parallel composite fiber and spinning assembly thereof
CN112746390B (en) * 2021-01-28 2022-04-12 广东春夏新材料科技股份有限公司 Hot-air cloth for sanitary towel and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2807057B2 (en) * 1990-07-02 1998-09-30 チッソ株式会社 Three-component parallel compound spinneret
JP2988818B2 (en) * 1993-11-24 1999-12-13 鐘紡株式会社 Polyolefin-based conductive composite fiber
JPH08170256A (en) * 1994-12-14 1996-07-02 Toray Ind Inc Yarn mixture, molded article of yarn and production of molded article of yarn
JP2000073267A (en) * 1998-08-28 2000-03-07 Unitika Ltd Conjugated nonwoven fabric and its production
WO2003046266A1 (en) * 2001-11-30 2003-06-05 Teijin Limited Machine crimped synthetic fiber having latent three-dimensional crimpability and method for production thereof
CN1676685B (en) * 2005-04-15 2011-02-16 绍兴九洲化纤有限公司 Method for producing three-component self-crimped filament yarn
JP2008057099A (en) * 2006-08-29 2008-03-13 Mmi-Ipco Llc Temperature responsive smart textile
JP2008169509A (en) * 2007-01-11 2008-07-24 Teijin Fibers Ltd Heat-bonding conjugated fiber and method for producing the same
JP5037964B2 (en) * 2007-02-13 2012-10-03 Esファイバービジョンズ株式会社 Wet non-woven fabric
PL1959034T3 (en) * 2007-02-16 2014-11-28 Hills Inc Method and apparatus for producing polymer fibers and fabrics including multiple polymer components in a closed system
CN101457500A (en) * 2007-12-12 2009-06-17 孙显林 Light angle color change anti-counterfeiting fiber and anti-counterfeiting material
CN101519857B (en) * 2008-02-29 2011-08-24 上海柯斯造纸防伪技术有限公司 Anti-counterfeiting fiber with fluorescence fiber color changing with the change of optic angle of exciting light and anti-counterfeiting material

Also Published As

Publication number Publication date
CN102808238B (en) 2016-01-20
JP2012251254A (en) 2012-12-20
CN102808238A (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5741225B2 (en) Heat-fusible composite fiber and non-woven fabric using the same
JP3995697B2 (en) Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
JP5796336B2 (en) Uneven stretch nonwoven fabric
KR101259968B1 (en) Conjugate fiber having low-temperature processability, nonwoven fabric and formed article using the conjugate fiber
US9422652B2 (en) Stretchable bulky nonwoven fabric and method for manufacturing same
JP4468208B2 (en) Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
WO2018092666A1 (en) Laminated nonwoven fabric sheet
JP4928214B2 (en) Crimpable composite fiber and non-woven fabric using the same
JP2008179939A (en) Crimped conjugated fiber, method for production thereof, and nonwoven fabric using the crimped conjugated fiber
JP2007177335A (en) Latently crimpable fiber
JP2008144321A (en) Nonwoven fabric
JP2002348737A (en) Hot melt adhesive composite fiber and fibrous formed material by using the same
TWI573906B (en) Elastic nonwoven fabric and method for producing thereof
JPH02182963A (en) Heat-shrinkable filament nonwoven sheet and production thereof
JP3790459B2 (en) Thermal adhesive composite fiber and method for producing the same, and nonwoven fabric and synthetic paper using the same
JP6587568B2 (en) Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
JP2017226944A (en) Granular cotton compact and manufacturing method thereof
JP2019007112A (en) Stretchable nonwoven fabric and method for producing the same
JP5416197B2 (en) Crimpable composite fiber and non-woven fabric using the same
JPH11302960A (en) Bulky, laminated, formed body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5741225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees