JPH11302960A - Bulky, laminated, formed body - Google Patents

Bulky, laminated, formed body

Info

Publication number
JPH11302960A
JPH11302960A JP10124003A JP12400398A JPH11302960A JP H11302960 A JPH11302960 A JP H11302960A JP 10124003 A JP10124003 A JP 10124003A JP 12400398 A JP12400398 A JP 12400398A JP H11302960 A JPH11302960 A JP H11302960A
Authority
JP
Japan
Prior art keywords
fiber
molded article
hollow
laminated molded
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10124003A
Other languages
Japanese (ja)
Inventor
Yuji Nakajima
裕司 中嶌
Shingo Horiuchi
真吾 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP10124003A priority Critical patent/JPH11302960A/en
Publication of JPH11302960A publication Critical patent/JPH11302960A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a bulky, laminated, formed body, excellent in bulkiness and thermal insulation, and suitable for insulators and cleaning tools, e.g. wiping cloth. SOLUTION: This bulky, laminated, formed body comprises (A) a non-woven fabric composed of thermoplastic, hollow, parallel type composite long fibers of at least two components of thermoplastic resins different in melting point by at least 10 deg.C, and having an elliptic fiber section and fiber diameter of 1 to 8 d/f, and (B) a melt-blown non-woven fabric composed of at least one type of thermoplastic resin, having an average fiber diameter of 1 d/f or less, and placed at least one side of the non-woven fabric A, wherein the thermoplastic, hollow, parallel type long fiber has manifest crimps and the non-woven-fabrics A and B are joined with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、嵩高積層成形体に
関する。さらに詳しくは、嵩高性、嵩回復性、軽量性、
保温性等の特性が要求される断熱材、ワイピングクロス
等の清掃用具として好適に用いられる嵩高積層成形体に
関するものである。
[0001] The present invention relates to a bulky laminated molded article. More specifically, bulkiness, bulk recovery, lightness,
The present invention relates to a bulky laminated molded article which is suitably used as a cleaning tool such as a heat insulating material or a wiping cloth which requires characteristics such as heat retention.

【0002】[0002]

【従来の技術】従来から中空長繊維不織布は、連続した
長繊維からなるため、これを用いて研磨を行った場合に
摩擦による糸屑の脱落が殆どなく、さらに軽量性,保温
性を兼ね備えた素材として注目されていた。近年、ワイ
ピングクロス等掃除布に中空長繊維不織布を用いる検討
がなされている。この不織布を用いたワイピングクロス
は糸屑等の脱落,毛羽立ちが殆ど生じず、ある程度の捕
集が可能であったが、嵩が低いため捕集性能は満足でき
るものではなかった。また、ワイピングクロスの構成成
分中に不織布を用いる場合には、補強材で不織布を補強
する必要があり、通常はモノフィラメントネットと貼り
合わせて使用している。しかしながら、モノフィラメン
トネットを用いると、ネットの周辺部ではゴミ,屑等が
捕集されにくくなり、改良が望まれている。
2. Description of the Related Art Conventionally, hollow long-fiber non-woven fabrics are made of continuous long fibers, so that when they are polished using the same, there is almost no drop off of lint due to friction, and they have both lightness and heat retention. It was attracting attention as a material. In recent years, studies have been made to use a hollow long-fiber nonwoven fabric for a cleaning cloth such as a wiping cloth. The wiping cloth using this nonwoven fabric hardly caused the lint or the like to fall off or fluff, and was able to collect to a certain extent, but the collecting performance was not satisfactory because of its low bulk. When a nonwoven fabric is used as a component of the wiping cloth, it is necessary to reinforce the nonwoven fabric with a reinforcing material, and is usually used by being bonded to a monofilament net. However, when a monofilament net is used, it is difficult for dust and debris to be collected at the periphery of the net, and improvement is desired.

【0003】さらに特開昭62−206008号公報に
は、紡糸時にノズルから吐出された多孔中空繊維の片面
を急冷することにより、繊維に捲縮を発現させる方法が
開示されている。しかしながら、この方法によって得ら
れた多孔中空繊維は、繊維の横断面形状および表面構造
が複雑であるため、30d/f以上の太デニールの繊維
しか得られておらず、ワイパー等の清掃用資材に好適に
用いられている1〜8d/fの細デニールの捲縮を有す
る長繊維は得られず、結果として嵩高い長繊維不織布か
らなる成形体は得られていない。
Further, Japanese Patent Application Laid-Open No. 62-206008 discloses a method in which one side of a porous hollow fiber discharged from a nozzle at the time of spinning is rapidly cooled to cause the fiber to exhibit crimp. However, since the porous hollow fiber obtained by this method has a complicated cross-sectional shape and surface structure of the fiber, only a fiber with a large denier of 30 d / f or more is obtained, and is used as a cleaning material such as a wiper. A long fiber having a fine denier crimp of 1 to 8 d / f, which is suitably used, cannot be obtained, and as a result, a molded article composed of a bulky long-fiber nonwoven fabric has not been obtained.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の課題を解消し、嵩高性、嵩回復性、保温性に
優れ、かつ埃等の捕集性にも優れた嵩高積層成形体を提
供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art, and to provide a bulky laminate which is excellent in bulkiness, bulk recovery, heat retention, and excellent in collecting dust and the like. Is to provide the body.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく、鋭意検討を重ねた結果、収縮により三次元
捲縮が発現できる中空部を有する熱接着性中空並列型複
合長繊維と、メルトブロー不織布を接合することで、嵩
高性,嵩回復性及び保温性に優れ、埃等の捕集性も良好
となることを見出し、所期の目的を達成することを知
り、本課題を解決するに至った。本発明は、次の構成を
有する。 (1) 10℃以上の融点差を有する少なくとも2成分
の熱可塑性樹脂からなり、繊維断面形状が楕円形である
1〜8d/fの熱可塑性中空並列型複合長繊維からなる
不織布(A)と、該不織布の少なくとも片面に少なくと
も1成分の熱可塑性樹脂からなる平均繊維径が1d/f
以下のメルトブロー不織布(B)が積層された嵩高積層
成形体であって、該熱可塑性中空並列型複合長繊維は、
顕在捲縮を有しており、該嵩高積層成形体は接合されて
いることを特徴とする嵩高積層成形体。 (2) 前記熱可塑性中空並列型複合長繊維が、ポリオ
レフィン系複合長繊維である(1)項に記載の嵩高積層
成形体。 (3) ポリオレフィン系複合長繊維を構成する樹脂成
分の少なくとも1種が、エチレン又はエチレンと1−ブ
テンを含む結晶性プロピレン共重合体である(2)項に
記載の嵩高積層成形体。 (4) 前記熱可塑性中空並列型複合長繊維の横断面に
おける長径と短径の比が1.1〜1.6である(1)〜
(3)項のいずれかに記載の嵩高積層成形体。 (5) 中空部の断面積と外周部に囲まれた断面積の比
率(中空率)が10〜40%である(1)〜(4)項の
いずれかに記載の嵩高積層成形体。 (6) 前記嵩高積層成形体が熱圧着によって繊維交点
が接合されている(1)〜(5)項のいずれかに記載の
嵩高積層成形体。 (7) 前記嵩高積層成形体が熱融着によって繊維交点
が接合されている(1)〜(5)項のいずれかに記載の
嵩高積層成形体。 (8) (1)〜(7)項のいずれかに記載の嵩高積層
成形体を少なくとも一部に用いたワイパー。 (9) (1)〜(7)項のいずれかに記載の嵩高積層
成形体を少なくとも一部に用いた断熱材。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a heat-adhesive hollow side-by-side composite continuous fiber having a hollow portion capable of expressing a three-dimensional crimp by shrinkage. By joining the melt-blown non-woven fabric with the melt-blown non-woven fabric, it was found that the bulkiness, bulk recovery and heat retention were excellent, and the dust collecting property was also good. It came to be solved. The present invention has the following configuration. (1) a nonwoven fabric (A) consisting of a thermoplastic hollow side-by-side composite continuous fiber of 1 to 8 d / f made of at least two-component thermoplastic resin having a melting point difference of 10 ° C. or more and having an elliptical fiber cross-sectional shape; An average fiber diameter of at least one component thermoplastic resin on at least one surface of the nonwoven fabric is 1 d / f
A bulky laminated molded article obtained by laminating the following melt-blown nonwoven fabric (B), wherein the thermoplastic hollow parallel-type composite continuous fiber is
A bulky laminated molded article having an apparent crimp, wherein the bulky laminated molded article is joined. (2) The bulky laminated molded article according to (1), wherein the thermoplastic hollow side-by-side composite conjugate long fiber is a polyolefin-based conjugate long fiber. (3) The bulky laminated molded article according to (2), wherein at least one of the resin components constituting the polyolefin-based composite long fiber is ethylene or a crystalline propylene copolymer containing ethylene and 1-butene. (4) The ratio of the major axis to the minor axis in the cross section of the thermoplastic hollow side-by-side composite long fiber is 1.1 to 1.6.
(3) The bulky laminated molded article according to any one of the above items. (5) The bulky laminated molded article according to any one of (1) to (4), wherein the ratio (hollow ratio) of the cross-sectional area of the hollow portion to the cross-sectional area surrounded by the outer peripheral portion is 10 to 40%. (6) The bulky laminated molded article according to any one of (1) to (5), wherein the fiber intersections are joined by thermocompression bonding. (7) The bulky laminated molded article according to any one of (1) to (5), wherein the fiber intersection is joined to the bulky laminated molded article by heat fusion. (8) A wiper using the bulky laminated molded article according to any one of (1) to (7) at least in part. (9) A heat insulating material using at least a part of the bulky laminated molded article according to any one of (1) to (7).

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に用いられる熱可塑性中空並列型複合長繊維は、
図1に示したように10℃以上の融点差を有する少なく
とも2成分の熱可塑性樹脂1、2が繊維横断面の周縁部
分で並列型に接合された中空構造をとり、前記2成分の
熱可塑性樹脂の内側半径方向が中空部を形成した繊維横
断面形態を有する。中空部の断面積と外周部に囲まれた
断面積の比率(中空率)の範囲は10〜40%が好まし
く、より好ましくは10〜30%である。ここで中空率
が小さくなると、中空部中の空気が少量となり、保温性
を十分に発揮でき難くなり、さらに嵩回復性も低下す
る。逆に中空率が大きくなると、不織布の軽量化には効
果があるものの、複合長繊維を構成している2成分の熱
可塑性樹脂同士の接合部分の面積が小さくなるため、衝
撃等によって繊維の剥離、中空部の破壊が起こり嵩回復
性能が低下する傾向にある。加えて、紡糸時の曳糸性が
低下するため加工性にも支障をきたす。なお、繊維の中
空率は、紡糸口金における吐出口の形およびスリット
幅、使用される樹脂の吐出量および溶融粘度によって制
御される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
Thermoplastic hollow side-by-side composite long fibers used in the present invention,
As shown in FIG. 1, a hollow structure in which at least two-component thermoplastic resins 1 and 2 having a melting point difference of 10 ° C. or more are joined in parallel at the peripheral portion of the fiber cross section, and the two-component thermoplastic resin is used. The resin has a fiber cross-sectional form in which the inner radial direction forms a hollow portion. The ratio of the cross-sectional area of the hollow portion to the cross-sectional area surrounded by the outer peripheral portion (hollow ratio) is preferably 10 to 40%, more preferably 10 to 30%. Here, when the hollow ratio is small, the amount of air in the hollow portion becomes small, and it becomes difficult to sufficiently exhibit heat retention, and further, the bulk recovery is also reduced. Conversely, when the hollow ratio increases, although the effect of reducing the weight of the nonwoven fabric is effective, since the area of the joint portion between the two-component thermoplastic resins constituting the composite long fiber is reduced, the fiber is peeled off by impact or the like. In addition, there is a tendency that the hollow portion is broken and the bulk recovery performance is reduced. In addition, the spinnability at the time of spinning is reduced, which also impairs the workability. The hollowness of the fiber is controlled by the shape and slit width of the discharge port in the spinneret, the discharge amount of the resin used, and the melt viscosity.

【0007】本発明に用いられる熱可塑性中空並列型複
合長繊維を構成する融点差を有する少なくとも2成分の
熱可塑性樹脂の容積比率(繊維断面でみるとその断面の
面積比率に相当する)は、低融点成分:高融点成分の比
率で30:70〜70:30、好ましくは40:60〜
60:40である。どちらかの成分が30未満となる
と、繊維の扁平化が増すため、紡糸時に中空部分内で融
着が起こり、中空率が低下すると同時に、曳糸性が不良
になるため好ましくない。
[0007] The volume ratio (corresponding to the area ratio of the cross section of a fiber cross section) of at least two components of the thermoplastic resin having a melting point difference constituting the thermoplastic hollow parallel type composite continuous fiber used in the present invention is: 30:70 to 70:30, preferably 40:60 to low melting point component: high melting point component.
60:40. When either component is less than 30, the flattening of the fiber increases, so that fusion occurs in the hollow portion at the time of spinning, and the hollowness decreases, and the spinnability deteriorates, which is not preferable.

【0008】本発明に用いられる熱可塑性中空並列型複
合長繊維の繊維断面は楕円形構造を有しているので三次
元捲縮が良好に発現され、本発明の嵩高積層成形体を製
造するのに最も好ましく使用できる。また、繊維横断面
外周の形状が楕円形に近似した異形及び多角形等を有し
ているもので、紡糸により三次元捲縮が生じるものであ
れば、本発明の嵩高積層成形体の構成成分として用いる
ことができる。楕円形の繊維断面は、図1に示したよう
に2成分の熱可塑性樹脂とその半径方向内層に存在する
中空部分からなる中空並列構造をとり、図1に示したよ
うに横断面長径付近、つまり2成分の熱可塑性樹脂同士
が、楕円形の短径を軸として左右対称の位置で接着した
部分で、それぞれの樹脂の成形後の収縮による歪み力が
最も効果的に機能し、捲縮発現性が極めて大きくなり好
ましい。なお、楕円形は、熱可塑性複合長繊維の横断面
における長径と短径の比が1.1〜1.6の範囲のもの
が最も好ましく用いることができる。この比が小さくな
ると、三次元捲縮の発現性は、低下し、また、比が大き
くなると、紡糸段階で2成分樹脂の中空部分の扁平化が
進み、繊維形状が崩れ易くなり曳糸性が低下する傾向に
ある。ここで、中空部の形状は、円形、楕円形、三角形
以上の多角形のいずれであっても捲縮の発現を極端に低
下させなければ特に問題はなく、さらに中空部が繊維の
中心から偏心していても同様の理由により構わない。
[0008] Since the cross section of the thermoplastic hollow side-by-side conjugate continuous fiber used in the present invention has an elliptical structure, three-dimensional crimping is well exhibited, and the bulky laminated molded article of the present invention can be produced. Can be used most preferably. In addition, if the outer shape of the fiber cross-section has an irregular shape and a polygon approximate to an elliptical shape, and a three-dimensional crimp is generated by spinning, the component of the bulky laminated molded article of the present invention is used. Can be used as The elliptical fiber cross-section has a hollow parallel structure composed of a two-component thermoplastic resin and a hollow part existing in a radially inner layer thereof as shown in FIG. 1, and as shown in FIG. In other words, at the part where the two thermoplastic resins adhere to each other at a position symmetrical about the axis of the elliptical minor axis, the strain force due to shrinkage after molding of each resin functions most effectively, and crimps appear. The property is extremely large, which is preferable. The elliptical shape most preferably has a ratio of the major axis to the minor axis in the cross section of the thermoplastic composite filament in the range of 1.1 to 1.6. When this ratio decreases, the expression of three-dimensional crimps decreases, and when the ratio increases, the flattening of the hollow portion of the two-component resin proceeds in the spinning stage, the fiber shape is easily collapsed, and the spinnability is reduced. It tends to decrease. Here, the shape of the hollow portion may be any one of a circular shape, an elliptical shape, and a polygonal shape of a triangle or more, as long as crimp expression is not extremely reduced, and there is no particular problem. It does not matter if you keep in mind for the same reason.

【0009】本発明に用いられる熱可塑性中空並列型複
合長繊維を構成する樹脂としては、低密度ポリエチレ
ン、高密度ポリエチレン,ポリプロピレン等のポリオレ
フィン系結晶性重合体、ポリエチレン若しくはポリプロ
ピレンをベースにした共重合体、ポリエチレンテレフタ
レート,ポリ(エチレンテレフタレートーcoーイソフタ
レート)等のポリエステル系樹脂、ナイロン6,ナイロ
ン66等のポリアミド系樹脂等を例示することができ
る。ポリエチレンをベースにした共重合体としてはプロ
ピレン、1−ブテン、1−ペンテン、1ーヘキセン、1
−オクテン等のオレフィン類との共重合体(例えば直鎖
状低密度ポリエチレン)、エチレン酢酸ビニル共重合
体、エチレンアクリル酸エチル共重合体等を挙げること
ができる。更にポリプロピレンをベースにした共重合体
としてはエチレン、1−ブテン、1−ペンテン、1ーヘ
キセン、1−オクテン等のオレフィン類との共重合体で
ある。上述した樹脂の中では耐薬品性の面からポリオレ
フィン系の樹脂が好ましい。
The resin constituting the thermoplastic hollow side-by-side composite long fiber used in the present invention may be a polyolefin-based crystalline polymer such as low-density polyethylene, high-density polyethylene, or polypropylene, or a copolymer based on polyethylene or polypropylene. Examples thereof include a polyester resin such as polyethylene terephthalate and poly (ethylene terephthalate-co-isophthalate), and a polyamide resin such as nylon 6 and nylon 66. Polyethylene-based copolymers include propylene, 1-butene, 1-pentene, 1-hexene,
-Copolymers with olefins such as octene (for example, linear low-density polyethylene), ethylene vinyl acetate copolymer, ethylene ethyl acrylate copolymer, and the like. Further, the copolymer based on polypropylene is a copolymer with olefins such as ethylene, 1-butene, 1-pentene, 1-hexene and 1-octene. Among the above-mentioned resins, polyolefin-based resins are preferable from the viewpoint of chemical resistance.

【0010】ポリエチレンをベースにした共重合体の具
体例としては、例えば、73〜99重量%のエチレン、
1〜27重量%の1−オクテンからなるエチレン−オク
テン共重合体(より好ましくは、75〜98重量%のエ
チレン、2〜25重量%の1−オクテンからなるエチレ
ン−オクテン共重合体)であり、ポリプロピレンをベー
スにした共重合体の具体例としては85〜99重量%の
プロピレン及び1〜15重量%のエチレンからなるエチ
レン−プロピレン共重合体;75〜99重量%のプロピ
レン、1〜25重量%の1−ブテンからなるブテン−プ
ロピレン共重合体;;84〜97重量%のプロピレン、
1〜15重量%の1−ブテン及び1〜10重量%のエチ
レンからなるエチレン−ブテン−プロピレン共重合体な
どの二元系若しくは三元系共重合体を挙げることができ
る。これらの共重合体は特有の柔らかさを発揮出来、柔
軟性や肌触り等の風合いが良好で好ましい。なお、樹脂
には,必要に応じて、例えば、顔料,艶消剤,消臭剤,
光安定剤,酸化防止剤,熱安定剤等の各種添加剤を本発
明の効果を損なわない範囲で添加することができる。し
かしながら、特にこれに限定されるものではない。
Specific examples of copolymers based on polyethylene include, for example, 73 to 99% by weight of ethylene,
An ethylene-octene copolymer composed of 1 to 27% by weight of 1-octene (more preferably, an ethylene-octene copolymer composed of 75 to 98% by weight of ethylene and 2 to 25% by weight of 1-octene). Specific examples of polypropylene-based copolymers include ethylene-propylene copolymers comprising 85-99% by weight of propylene and 1-15% by weight of ethylene; 75-99% by weight of propylene, 1-25% by weight % Of 1-butene; butene-propylene copolymer; 84-97% by weight of propylene;
Binary or ternary copolymers such as an ethylene-butene-propylene copolymer composed of 1 to 15% by weight of 1-butene and 1 to 10% by weight of ethylene can be given. These copolymers can exhibit unique softness, and have good texture and softness, and are preferable. In addition, for the resin, for example, pigment, matting agent, deodorant,
Various additives such as a light stabilizer, an antioxidant, and a heat stabilizer can be added as long as the effects of the present invention are not impaired. However, the present invention is not particularly limited to this.

【0011】本発明では10℃以上の融点差を有する2
成分の熱可塑性樹脂の組み合わせが好ましく用いられ
る。この複合長繊維の場合は中空部のない通常の複合繊
維に比べ熱可塑性樹脂同士の接合面積が極めて小さくな
るので、熱可塑性樹脂同士の相溶性が良好な組み合わせ
を選択することが最も好ましい。熱可塑性樹脂同士の相
溶性が低いと、熱可塑性樹脂接着面において層間剥離が
生じてしまい、嵩高性、保温性等の諸性能が満足できな
くなるからである。このことから、融点の異なるポリオ
レフィン系樹脂同士、ポリエステル系樹脂同士あるいは
ポリアミド系樹脂同士の組み合わせが好ましい。ポリオ
レフィン系樹脂同士の場合、ポリプロピレンとポリエチ
レンの組み合わせも可能であるが、より好ましくはホモ
ポリエチレンとポリエチレンベースの共重合体等のポリ
エチレン系樹脂同士、或いはホモポリプロピレンとポリ
プロピレンベースの共重合体との組み合わせ等のポリプ
ロピレン系樹脂同士、更にポリエチレンテレフタレート
と共重合ポリエステル等のポリエステル系樹脂同士、ナ
イロン66とナイロン6等のポリアミド系樹脂同士であ
る。これらの中では耐薬品性及び融点範囲等から総合的
に見てホモポリプロピレンとプロピレンをベースにした
共重合体、或いは融点差のあるポリプロピレンをベース
にした共重合体同士の組み合わせが特に好ましい。尚、
メルトブロー不織布用の樹脂は同様に上述した熱可塑性
樹脂を使用することができる。
[0011] In the present invention, 2 having a melting point difference of not less than 10 ° C.
A combination of the thermoplastic resin components is preferably used. In the case of this composite long fiber, the bonding area between the thermoplastic resins is extremely small as compared with a normal composite fiber having no hollow portion. Therefore, it is most preferable to select a combination having good compatibility between the thermoplastic resins. If the compatibility between the thermoplastic resins is low, delamination occurs on the thermoplastic resin bonding surface, and various properties such as bulkiness and heat retention cannot be satisfied. For this reason, combinations of polyolefin resins having different melting points, polyester resins, or polyamide resins are preferable. In the case of polyolefin resins, a combination of polypropylene and polyethylene is also possible, but more preferably a combination of polyethylene resins such as homopolyethylene and a polyethylene-based copolymer, or a combination of homopolypropylene and a polypropylene-based copolymer. And polyester resins such as polyethylene terephthalate and copolymerized polyester, and polyamide resins such as nylon 66 and nylon 6. Among these, copolymers based on homopolypropylene and propylene or a combination of copolymers based on polypropylene having a different melting point are particularly preferable in view of chemical resistance and melting point range. still,
As the resin for the melt-blown nonwoven fabric, the above-mentioned thermoplastic resin can be used similarly.

【0012】本発明でいう少なくとも2成分の熱可塑性
樹脂を使用することができる。しかし、格別の事情がな
い限り、経済性の面から2成分で十分である。融点差と
は、使用した樹脂の最大の融点と最小の融点の差であ
る。融点は不織布化を行なった後のその不織布を試料と
して示差走査型熱量計(DSC)により吸熱ピークを測
定し、その時の温度を用いた。従って、そのときに吸熱
曲線上に現れる最も高融点の吸熱ピークの温度と最も低
融点成分の吸熱ピークの温度との温度差が本発明で言う
融点差である。さらに本発明に用いられる低融点成分と
高融点成分を構成する樹脂の組み合わせとしては、それ
ぞれの樹脂の成形収縮率が異なることが好ましい。成形
収縮率とは、溶融樹脂を成形した際に生じる、成形型に
対する固化した樹脂の収縮量の割合をいい、PPでは
0.01〜0.025mm/mm、高密度ポリエチレン
では0.02〜0.05mm/mm、低密度ポリエチレ
ンでは0.015〜0.05mm/mmの範囲に入る。
特に本発明における中空並列型複合長繊維が繊維長さ方
向に連続しているため、成形収縮率が異なると、収縮の
際に生じた歪みの力が繊維の長さ方向に螺旋状に伝わ
り、捲縮が生じると考えられている。この現象は複合長
繊維の断面形状が楕円等の構造をとる場合に顕著に現れ
ている。
The thermoplastic resin of at least two components referred to in the present invention can be used. However, unless there are special circumstances, two components are sufficient from the economical aspect. The melting point difference is the difference between the maximum melting point and the minimum melting point of the resin used. As the melting point, an endothermic peak was measured by a differential scanning calorimeter (DSC) using the nonwoven fabric as a sample after forming the nonwoven fabric, and the temperature at that time was used. Therefore, the temperature difference between the temperature of the endothermic peak with the highest melting point and the temperature of the endothermic peak with the lowest melting point that appears on the endothermic curve at that time is the melting point difference referred to in the present invention. Further, as the combination of the resins constituting the low melting point component and the high melting point component used in the present invention, it is preferable that the molding shrinkage ratios of the respective resins are different. Molding shrinkage refers to the ratio of the amount of shrinkage of the solidified resin to the mold, which occurs when the molten resin is molded, and is 0.01 to 0.025 mm / mm for PP and 0.02 to 0 for high-density polyethylene. 0.05 mm / mm, and for low-density polyethylene, it falls within the range of 0.015 to 0.05 mm / mm.
In particular, since the hollow parallel type composite continuous fiber in the present invention is continuous in the fiber length direction, if the molding shrinkage ratio is different, the force of the strain generated during shrinkage is transmitted spirally in the fiber length direction, It is believed that crimping occurs. This phenomenon is remarkable when the cross section of the composite long fiber has an elliptical structure.

【0013】本発明に用いられる中空並列型複合長繊維
に好適に用いられる繊度は、1〜8d/fであるが、こ
れらの繊度は用いる素材樹脂の種類や用途に応じて適宜
その繊度を選択すればよい。例えば平均繊維径が0.0
5d/fのメルトブロー不織布と積層し、ワイピングク
ロスとして用いる場合には複合長繊維の繊維径は1〜5
d/fが好ましい。また、例えば平均繊維径が0.9d
/fのメルトブロー不織布と積層し、断熱材として用い
る場合には複合繊維の繊維径は1〜8d/f程度が好ま
しい。
The fineness suitably used for the hollow parallel type composite filament used in the present invention is 1 to 8 d / f, and these finenesses are appropriately selected according to the type and use of the material resin used. do it. For example, if the average fiber diameter is 0.0
When laminated with a 5 d / f melt blown nonwoven fabric and used as a wiping cloth, the fiber diameter of the composite long fiber is 1 to 5
d / f is preferred. Further, for example, the average fiber diameter is 0.9 d.
When laminated with a melt blown nonwoven fabric of / f and used as a heat insulating material, the fiber diameter of the conjugate fiber is preferably about 1 to 8 d / f.

【0014】本発明の嵩高長繊維不織布を構成する中空
並列型複合長繊維の捲縮数は、6山/25mm以上の捲
縮数が好ましい。6山/25mm未満の捲縮数では、得
られた不織布の嵩が低くなる。10山/25mm以上の
捲縮数がより好ましい。
The number of crimps of the hollow side-by-side conjugate long fibers constituting the bulky long-fiber nonwoven fabric of the present invention is preferably 6 crimps / 25 mm or more. When the number of crimps is less than 6 peaks / 25 mm, the bulk of the obtained nonwoven fabric is low. The number of crimps of 10 peaks / 25 mm or more is more preferable.

【0015】本発明に用いられるメルトブロー不織布
は、単一繊維、複合繊維、混繊繊維のいずれであっても
よく、また、使用される平均繊維径は1d/f以下のも
のが好適に用いられ、目付は特に限定するものではな
く、用いる熱可塑性樹脂の種類や積層する中空並列型複
合長繊維からなる不織布の繊度や用途に応じて適宜繊維
径を選択すればよい。
The melt-blown non-woven fabric used in the present invention may be any one of a single fiber, a composite fiber and a mixed fiber, and those having an average fiber diameter of 1 d / f or less are preferably used. The basis weight is not particularly limited, and the fiber diameter may be appropriately selected according to the type of thermoplastic resin to be used, the fineness of the nonwoven fabric composed of the hollow parallel type composite long fibers to be laminated, and the application.

【0016】本発明の嵩高積層成形体の構成は、使用目
的に応じて適宜選ばれる。例えばワイピングクロスとし
て用いる場合には、繊度が1〜5d/fの中空並列型複
合長繊維からなる不織布の片面に、平均繊維径が0.0
5d/fのメルトブローン不織布と積層したものを用い
ることができる。また、例えば断熱材として用いる場合
には、繊度が1〜8d/fの中空並列型複合長繊維から
なる不織布の両面に、平均繊維径が0.9d/fのメル
トブロー不織布と積層し、接合したものを用いることが
できる。
The structure of the bulky laminated molded article of the present invention is appropriately selected according to the purpose of use. For example, when used as a wiping cloth, one side of a nonwoven fabric composed of hollow parallel composite long fibers having a fineness of 1 to 5 d / f has an average fiber diameter of 0.0
What laminated | stacked with the melt blown nonwoven fabric of 5d / f can be used. When used as a heat insulating material, for example, a melt-blown non-woven fabric having an average fiber diameter of 0.9 d / f is laminated and bonded to both surfaces of a non-woven fabric composed of hollow parallel composite long fibers having a fineness of 1 to 8 d / f. Can be used.

【0017】本発明の嵩高積層成形体の目付は、使用目
的に応じて適宜選択される。ワイピングクロス等に使用
する場合においては、35g/m2 の程度が好ましく、
断熱材等の建築資材に用いられる場合には、50〜20
0g/m2 の範囲が好ましい。
The basis weight of the bulky laminated molded article of the present invention is appropriately selected according to the purpose of use. When used for a wiping cloth or the like, the weight is preferably about 35 g / m 2 ,
When used for building materials such as heat insulating materials, 50 to 20
A range of 0 g / m 2 is preferred.

【0018】本発明に用いられる中空並列型複合長繊維
からなる不織布は、以下の方法によって得られる。溶融
した融点の異なる2成分以上の熱可塑性樹脂を中空並列
型複合紡糸用口金に供給し、口金より吐出された繊維群
を繊維長方向に対してほぼ垂直に送風冷却処理を行い、
これをエアーサッカーを用い、目的繊度となるように牽
引延伸し、長繊維群を得る。続いてエアーサッカーによ
り排出された長繊維群を一対の振動する羽根状の物体の
間を通過させることによって開繊させ、これを裏面に吸
引装置を設けた無端コンベア上に捕集し、長繊維ウエブ
とした。続いて、この長繊維ウエブを無端コンベアに載
せたまま搬送し、インラインで不織布加工を施すか、長
繊維ウエブを回収したアウトラインで不織布加工を施す
方法が取られ長繊維不織布とする。
The nonwoven fabric comprising hollow parallel type composite filaments used in the present invention is obtained by the following method. The molten thermoplastic resin of two or more components having different melting points is supplied to a hollow parallel type composite spinning die, and a group of fibers discharged from the die is subjected to a blast cooling process substantially perpendicular to the fiber length direction.
This is drawn and drawn to the target fineness by using air soccer to obtain a long fiber group. Subsequently, the group of long fibers discharged by air soccer is spread by passing between a pair of vibrating wing-shaped objects, and the fibers are collected on an endless conveyor provided with a suction device on the back surface, and the long fibers are collected. Web. Subsequently, the long fiber web is conveyed while being placed on an endless conveyor, and a nonwoven fabric processing is performed in-line, or a nonwoven fabric processing is performed in an outline where the long fiber web is collected, to obtain a long fiber nonwoven fabric.

【0019】なお、長繊維ウエブの不織布加工として
は、加熱した凹凸ロールと平滑ロールからなるポイント
ボンド加工機の加圧ロール間に導入し、長繊維ウエブの
低融点成分を前記凹凸ロールの凸部に対応する区域にお
いて加圧しながら溶融または軟化させることによって長
繊維相互間が熱融着した長繊維不織布を得る熱圧着法、
熱風スルーエアー中に長繊維を入れ熱により融着させる
熱融着法、これ以外には高圧水流法、ニードルパンチ
法、超音波加熱法などで行われてもよく、これら不織布
化法の複数の組み合わせてもよい。長繊維不織布の目付
は、例えば紡糸吐出量や無端コンベアの移動速度などを
調整することにより調整することができる。また、本発
明の嵩高積層成形体を構成する中空並列型複合長繊維か
らなる不織布は上述した方法によって製造されたものに
限定されるものではないが、熱圧着法、熱融着法が引張
強度等の機械的性質に優れている不織布が容易に得ら
れ、また、インラインで行うと、溶融紡糸して得られた
長繊維を、そのまま開繊及び集積して不織布が得られる
ため生産性が非常に優れ好ましい。
As the nonwoven fabric processing of the long fiber web, a low melting point component of the long fiber web is introduced between a pressure roll of a point bonding machine consisting of a heated uneven roll and a smooth roll, and the convex portion of the uneven roll is introduced. A thermocompression bonding method of obtaining a long-fiber nonwoven fabric in which the long fibers are heat-fused by melting or softening while applying pressure in the area corresponding to
A heat fusion method in which long fibers are put into hot air through air and fused by heat, besides this, may be performed by a high pressure water flow method, a needle punch method, an ultrasonic heating method, or the like. They may be combined. The basis weight of the long-fiber nonwoven fabric can be adjusted by adjusting, for example, the spinning discharge amount or the moving speed of the endless conveyor. Further, the non-woven fabric made of hollow parallel type composite long fibers constituting the bulky laminated molded article of the present invention is not limited to those manufactured by the above-described method, but the thermocompression bonding method and the heat fusion method have tensile strengths. Non-woven fabrics with excellent mechanical properties such as non-woven fabrics can be easily obtained, and when in-line, long fibers obtained by melt-spinning can be opened and accumulated as they are to obtain non-woven fabrics, which greatly increases productivity. Excellent and preferred.

【0020】熱可塑性中空並列型複合長繊維からなる不
織布と、熱可塑性樹脂からなるメルトブロー不織布を積
層し嵩高積層成形体とする加工法としては、上述した熱
圧着法、熱融着法が好ましく用いられるが、これ以外に
は高圧水流法、ニードルパンチ法、超音波加熱法などで
行われてもよく、これら不織布化法の複数の組み合わせ
てもよい。メルトブロー不織布は該長繊維から成る不織
布の片面或いは両面に貼り合わせることができる。
As a processing method of laminating a nonwoven fabric made of a thermoplastic hollow parallel type composite long fiber and a melt blown nonwoven fabric made of a thermoplastic resin to form a bulky laminated molded article, the above-mentioned thermocompression bonding method and heat fusion method are preferably used. However, besides this, a high-pressure water flow method, a needle punch method, an ultrasonic heating method, or the like may be used, or a plurality of these nonwoven fabric methods may be combined. The melt blown nonwoven fabric can be bonded to one or both sides of the nonwoven fabric made of the long fibers.

【0021】[0021]

【実施例】以下、本発明の嵩高積層成形体とした実施例
の性能を比較例と比較しながらより詳細に説明する。た
だし、本発明は以下の実施例のみに限定されるものでは
ない。以下の実施例、比較例に用いた評価項目の測定法
は以下の通りである。 熱可塑性樹脂の融点差:熱可塑性中空並列型複合長繊維
からなる不織布の試験片は、熱圧着、熱融着等の熱履歴
が明らか大であり繊維形状の崩れが大きいところを除い
た部分を別々に集めて、繊維をデュポンインステュルメ
ンツ社のDSC(型式:サーマルアナリスト2000)を用
い、昇温速度10℃/分で測定を行った。各樹脂の融解
吸熱ピークから融点を求めた。
EXAMPLES Hereinafter, the performance of an example of a bulky laminated molded article of the present invention will be described in more detail in comparison with a comparative example. However, the present invention is not limited to only the following examples. The measuring methods of the evaluation items used in the following Examples and Comparative Examples are as follows. Melting point difference of thermoplastic resin: The test piece of non-woven fabric made of thermoplastic hollow side-by-side composite conjugate filament has a large thermal history such as thermocompression bonding and thermal fusion, and the part excluding the part where fiber shape collapse is large is excluded. The fibers were separately collected, and the fibers were measured at a heating rate of 10 ° C./min using a DSC (model: Thermal Analyst 2000) manufactured by DuPont Instruments. The melting point was determined from the melting endothermic peak of each resin.

【0022】紡糸性:溶融紡糸を3時間行い、糸切れの
発生回数を測定した。生産性を考慮し、糸切れ回数が3
回以下ならば紡糸性は良好であると判断した。 繊維径:50本の繊維断面を顕微鏡にて観察し、各繊維
の繊維径を測定し、平均値を求めた。 繊度:50本の繊維断面を顕微鏡にて観察し、断面の面
積を算出し、これと樹脂の密度の値とから各繊維の繊度
を求め、これらの値の平均値を繊度とした。 ワイピング性:モニター10人が、積層成形体を使用
し、実際にフローリングの掃除を行い埃等の捕集性と併
せて、肌触りが良いと感じたら1点/1人で加点した。 保温性:モニター10人が、積層成形体の触感による官
能試験を行い、保温性が良いと感じたら1点/1人で加
点した。
Spinnability: Melt spinning was performed for 3 hours, and the number of occurrences of yarn breakage was measured. Considering productivity, the number of thread breaks is 3
If the number is less than or equal to the number of times, the spinnability was judged to be good. Fiber diameter: A cross section of 50 fibers was observed with a microscope, the fiber diameter of each fiber was measured, and the average value was determined. Fineness: A cross section of 50 fibers was observed with a microscope, the area of the cross section was calculated, and the fineness of each fiber was determined from this and the value of the density of the resin. The average value of these values was defined as the fineness. Wiping property: Ten monitors used the laminated molded article, actually cleaned the flooring, and added a score of 1 point per person if the feel of the skin was good together with the ability to collect dust and the like. Warmth: Ten monitors performed a sensory test based on the tactile sensation of the laminated molded product.

【0023】嵩:不織布の見かけの体積(cm3)/不
織布の重量(g)で示した値。数値が高いほど、嵩高で
ある。 嵩回復性:不織布を10枚を重ね、その上に1kgの荷
重を乗せ1時間放置し、荷重の押圧により嵩ヘタリを生
じさせる。つぎに荷重を取り除き、そのまま1時間放置
してから不織布の嵩ヘタリを起こしている不織布の厚み
測定し、これを初期不織布の厚みとする。つぎに、この
不織布を80℃のドライヤーで5分間熱回復処理を行な
った後、厚みを測定し、これを熱回復処理後の不織布の
厚みとした。嵩回復性は、熱回復処理後の不織布の厚み
/初期不織布の厚み×100から得られた数値が高いほ
ど、嵩が回復していると判断してよい。
Bulk: Value expressed as apparent volume (cm 3 ) of nonwoven fabric / weight (g) of nonwoven fabric. The higher the value, the bulkier. Bulk recovery: Ten nonwoven fabrics are stacked, a load of 1 kg is placed on the nonwoven fabric, and left for 1 hour. Bulk settling is generated by pressing the load. Next, the load is removed, the nonwoven fabric is left to stand for 1 hour, and then the thickness of the nonwoven fabric causing bulk settling of the nonwoven fabric is measured, and this is defined as the thickness of the initial nonwoven fabric. Next, this nonwoven fabric was subjected to a heat recovery treatment with a dryer at 80 ° C. for 5 minutes, and then the thickness was measured, and this was taken as the thickness of the nonwoven fabric after the heat recovery treatment. As for the bulk recovery property, the higher the value obtained by multiplying the thickness of the nonwoven fabric after the heat recovery treatment / the thickness of the initial nonwoven fabric x 100, it may be judged that the bulk is recovered.

【0024】実施例1 1成分がポリプロピレンで、他の成分がエチレン 1
1.8重量%のエチレン−プロピレン共重合体であり、
それぞれを溶融し、容積比50:50で中空並列型複合
紡糸口金を用い、樹脂分配盤ブレーカーを調整して繊維
断面が短径を軸として左右対称に樹脂が配列するように
紡出し、冷却装置で冷却後、エアサッカーにて長繊維の
中空率が12%、繊度が2.0d/fとなるようにエア
サッカーの牽引延伸速度を調整し牽引細化し、一対の振
動する羽根状の物体の間を通過させ、移動する無端コン
ベヤー上に長繊維ウエブとして堆積させた。このとき無
端コンベヤーの移動速度を調節し、127℃で熱融着加
工し、目付20g/m2 の中空並列型複合長繊維からな
る長繊維不織布を得た。この不織布を構成している熱可
塑性樹脂の融点はそれぞれ前者が163℃、後者が11
9℃であった。紡糸は、中空断面であるためにクエンチ
による繊維の冷却効率がよく、良好な曳糸性を示した。
この長繊維不織布の片面に、目付15g/m2 の前記ポ
リプロピレンからなる平均繊維径0.05d/fのメル
トブロー不織布を積層し、127℃の熱融着加工によ
り、積層成形体とした。これらの諸物性は表1に記載し
た。
Example 1 One component was polypropylene and the other component was ethylene 1
1.8% by weight of an ethylene-propylene copolymer,
Using a hollow parallel composite spinneret with a volume ratio of 50:50, a resin distribution board breaker is adjusted and the fiber cross section is spun out so that the resin is arranged symmetrically with the short diameter as the axis. After cooling in air soccer, the drawing and stretching speed of the air soccer is adjusted and thinned by air soccer so that the hollow ratio of the long fiber becomes 12% and the fineness becomes 2.0 d / f. It was passed through a gap and deposited as a long fiber web on a moving endless conveyor. At this time, the moving speed of the endless conveyor was adjusted, and heat fusion was performed at 127 ° C. to obtain a long-fiber nonwoven fabric made of hollow parallel composite long fibers having a basis weight of 20 g / m 2 . The melting point of the thermoplastic resin constituting this nonwoven fabric is 163 ° C. for the former and 11 for the latter, respectively.
9 ° C. Since the spinning had a hollow cross section, the cooling efficiency of the fiber by the quench was good and the spinning property was good.
On one surface of the long-fiber nonwoven fabric, a melt-blown nonwoven fabric having an average fiber diameter of 0.05 d / f made of the above-mentioned polypropylene and having a basis weight of 15 g / m 2 was laminated, and was subjected to a heat-sealing process at 127 ° C. to obtain a laminated molded product. These physical properties are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例2 1成分がポリプロピレンで、他の成分がエチレン 5.
2重量%のエチレン−プロピレン共重合体であり、それ
ぞれを溶融し、容積比50:50で中空並列型複合紡糸
口金を用い実施例1と同様に紡出し、冷却装置で冷却
後、エアサッカーにて長繊維の中空率が34.6%、繊
度が1.5d/fとなるようにエアサッカーの牽引延伸
速度を調整し牽引細化し、以下、実施例1と同様な方法
を用い目付20g/m2 の中空並列型複合長繊維からな
る長繊維不織布を得た。この不織布中を構成している熱
可塑性樹脂の融点はそれぞれ前者が163℃、後者が1
41℃であった。紡糸は、中空断面であるためにクエン
チによる繊維の冷却効率がよく、良好な曳糸性を示し
た。この長繊維不織布の片面に、目付15g/m2 の前
記ポリプロピレンからなる平均繊維径0.05d/fの
メルトブロー不織布を積層し、148℃の熱融着加工に
より、積層成形体とした。これらの諸物性は表1に記載
した。
Example 2 One component is polypropylene and the other component is ethylene
2% by weight of an ethylene-propylene copolymer, each of which was melted, spun at a volume ratio of 50:50 using a hollow parallel type composite spinneret in the same manner as in Example 1, cooled with a cooling device, and then cooled with air soccer. The pulling and drawing speed of the air soccer was adjusted so that the hollow fiber ratio of the long fibers was 34.6% and the fineness was 1.5 d / f, and the drawing was made thinner. to obtain a long-fiber nonwoven fabric made of hollow parallel type conjugated filaments of m 2. The melting point of the thermoplastic resin constituting this nonwoven fabric is 163 ° C. for the former and 1 for the latter, respectively.
41 ° C. Since the spinning had a hollow cross section, the cooling efficiency of the fiber by the quench was good and the spinning property was good. A melt-blown nonwoven fabric of the above-mentioned polypropylene having a basis weight of 15 g / m 2 and an average fiber diameter of 0.05 d / f was laminated on one surface of the long-fiber nonwoven fabric, and was subjected to a heat-sealing process at 148 ° C to obtain a laminated molded product. These physical properties are shown in Table 1.

【0027】実施例3 1成分がポリプロピレンで、他の成分がエチレンが6.
1重量%のエチレン−プロピレン共重合体であり、それ
ぞれを溶融し、容積比50:50で中空並列型複合紡糸
口金を用い実施例1と同様に紡出し、冷却装置で冷却
後、エアサッカーにて長繊維の中空率が16.4%、繊
度が1.9d/fとなるようにエアサッカーの牽引延伸
速度を調整し牽引細化し、以下、実施例1と同様な方法
を用い目付20g/m2 の中空並列型複合長繊維からな
る長繊維不織布を得た。この不織布を構成している熱可
塑性樹脂の融点はそれぞれ前者が163℃、後者が13
2℃であった。紡糸は、中空断面であるためにクエンチ
による繊維の冷却効率がよく、良好な曳糸性を示した。
この長繊維不織布の片面に、目付15g/m2 の前記ポ
リプロピレンからなる平均繊維径0.05d/fのメル
トブロー不織布を積層し、140℃の熱融着加工によ
り、積層成形体とした。これらの諸物性は表1に記載し
た。
Example 3 One component was polypropylene and the other component was ethylene.
1% by weight of an ethylene-propylene copolymer, each of which was melted, spun out in a volume ratio of 50:50 using a hollow parallel composite spinneret in the same manner as in Example 1, cooled by a cooling device, and then air-sucked. The draw ratio of the air soccer was adjusted so that the hollow ratio of the long fibers became 16.4% and the fineness became 1.9 d / f, and the drawing was made thinner by the same method as in Example 1. to obtain a long-fiber nonwoven fabric made of hollow parallel type conjugated filaments of m 2. The melting point of the thermoplastic resin constituting this nonwoven fabric is 163 ° C. for the former and 13 ° C. for the latter, respectively.
2 ° C. Since the spinning had a hollow cross section, the cooling efficiency of the fiber by the quench was good and the spinning property was good.
A melt-blown nonwoven fabric of the above-mentioned polypropylene having a basis weight of 15 g / m 2 and an average fiber diameter of 0.05 d / f was laminated on one surface of the long-fiber nonwoven fabric, and was subjected to a heat-sealing process at 140 ° C to obtain a laminated molded product. These physical properties are shown in Table 1.

【0028】実施例4 1成分がポリプロピレンで、他の成分がエチレン 1
1.8重量%のエチレン−プロピレン共重合体であり、
それぞれを溶融し、容積比60:40で中空並列型複合
紡糸口金を用い実施例1と同様に紡出し、冷却装置で冷
却後、エアサッカーにて長繊維の中空率が12.1%、
繊度が2.0d/fとなるようにエアサッカーの牽引延
伸速度を調整し牽引細化し、以下、実施例1と同様な方
法を用い目付20g/m2 の中空並列型複合長繊維から
なる長繊維不織布を得た。この不織布を構成している熱
可塑性樹脂の融点はDSCの測定値で、それぞれ融点1
63℃、119℃であった。紡糸は、中空断面であるた
めにクエンチによる繊維の冷却効率がよく、良好な曳糸
性を示した。この長繊維不織布の片面に、目付15g/
2 の前記ポリプロピレンからなる平均繊維径0.05
d/fのメルトブロー不織布を積層し、128℃の熱融
着加工により、積層成形体とした。これらの諸物性は表
1に記載した。
Example 4 One component was polypropylene and the other component was ethylene 1
1.8% by weight of an ethylene-propylene copolymer,
Each was melted and spun out in the same manner as in Example 1 using a hollow parallel composite spinneret at a volume ratio of 60:40. After cooling with a cooling device, the hollow fiber hollow fiber was 12.1% in air soccer.
The drawing and drawing speed of the air soccer is adjusted so that the fineness becomes 2.0 d / f, and the drawing is made thinner. Thereafter, using the same method as in Example 1, the length of the hollow parallel type composite filament having a basis weight of 20 g / m 2 is used. A fibrous nonwoven fabric was obtained. The melting point of the thermoplastic resin constituting this nonwoven fabric was measured by DSC, and the melting point was 1
63 ° C, 119 ° C. Since the spinning had a hollow cross section, the cooling efficiency of the fiber by the quench was good and the spinning property was good. On one side of this long-fiber nonwoven fabric, a basis weight of 15 g /
m 2 The average fiber diameter of the polypropylene is 0.05
A melt-blown nonwoven fabric of d / f was laminated, and a heat-sealing process at 128 ° C. was performed to obtain a laminated molded body. These physical properties are shown in Table 1.

【0029】実施例5 1成分がポリプロピレンで、他の成分が直鎖状低密度ポ
リエチレンであり、それぞれを溶融し、容積比50:5
0で中空中空並列型複合紡糸口金を用い実施例1と同様
に紡出し、冷却装置で冷却後、エアサッカーにて長繊維
の中空率が34.6%、繊度が1.5d/fとなるよう
にエアサッカーで牽引延伸速度を調整し牽引細化し、実
施例1と同様の手段を用いて無端コンベヤー上に長繊維
ウエブとして堆積させ、さらに127℃の熱融着加工に
より、目付20g/m2 の中空並列型複合長繊維からな
る長繊維不織布を得た。この不織布を構成している熱可
塑性樹脂の融点はそれぞれ前者が160℃、後者が12
5℃であった。紡糸は、中空断面であるためにクエンチ
による繊維の冷却効率がよく、良好な曳糸性を示した
が、樹脂同士の相溶性がコポリマーを用いた場合に比べ
低いためか、わずかに長繊維に裂化が見られた。この長
繊維不織布の片面に、目付15g/m2 の前記ポリプロ
ピレンからなる平均繊維径0.05d/fのメルトブロ
ー不織布を積層し、130℃の熱融着加工により、積層
成形体とした。これらの諸物性は表1に記載した。
Example 5 One component was polypropylene and the other component was a linear low-density polyethylene.
At 0, spinning was performed in the same manner as in Example 1 using a hollow hollow parallel type composite spinneret, and after cooling with a cooling device, the hollow fiber was 34.6% in hollow fiber and the fineness was 1.5 d / f by air sucker. The drawing and drawing speed was adjusted by air soccer so that the drawing was made thinner, and deposited as a long fiber web on an endless conveyor using the same means as in Example 1. to obtain a long-fiber nonwoven fabric made of hollow parallel type conjugated filaments of m 2. The melting point of the thermoplastic resin constituting this nonwoven fabric is 160 ° C. for the former and 12 ° C. for the latter, respectively.
5 ° C. Spinning has a hollow cross section, so the cooling efficiency of the fiber by quenching is good and good spinnability was shown, but the compatibility between the resins is lower than when using a copolymer, or it is slightly longer fiber. Cleavage was observed. A melt-blown non-woven fabric having an average fiber diameter of 0.05 d / f made of the above-mentioned polypropylene and having a basis weight of 15 g / m 2 was laminated on one surface of the long-fiber non-woven fabric, and a heat-sealing process at 130 ° C. was performed to obtain a laminated molded body. These physical properties are shown in Table 1.

【0030】実施例6 1成分がポリプロピレンで、他の成分がエチレン 1
3.2重量%、1−ブテンが1.1重量%のエチレン−
ブテン−プロピレン共重合体であり、それぞれを溶融
し、容積比70:30で中空並列型複合紡糸口金を用い
実施例1と同様に紡出し、冷却装置で冷却後、エアサッ
カーにて長繊維の中空率が15.0%、繊度が2.0d
/fとなるようにエアサッカーの牽引延伸速度を調整し
牽引細化し、以下、実施例1と同様な方法を用い目付2
0g/m2 の中空並列型複合長繊維からなる長繊維不織
布を得た。この不織布を構成している熱可塑性樹脂の融
点はそれぞれ前者が163℃、後者が131℃であっ
た。紡糸は、中空断面であるためにクエンチによる繊維
の冷却効率がよく、良好な曳糸性を示した。さらに樹脂
同士の相溶性が良好なため、繊維の裂化もみられなかっ
た。この長繊維不織布の片面に、目付15g/m2 の前
記ポリプロピレンからなる平均繊維径0.05d/fの
メルトブロー不織布を積層し、137℃の熱融着加工に
より、積層成形体とした。これらの諸物性は表1に記載
した。
Example 6 One component was polypropylene and the other component was ethylene 1
3.2% by weight, ethylene 1-butene 1.1% by weight
A butene-propylene copolymer, each of which was melted, spun out in the same manner as in Example 1 using a hollow parallel composite spinneret with a volume ratio of 70:30, cooled with a cooling device, and then cooled with air soccer to obtain long fibers. Hollow ratio is 15.0%, fineness is 2.0d
/ F is adjusted by adjusting the drawing / drawing speed of the air soccer so as to obtain the following formula.
A long-fiber nonwoven fabric made of hollow parallel type composite long fibers of 0 g / m 2 was obtained. The melting points of the thermoplastic resins constituting this nonwoven fabric were 163 ° C. for the former and 131 ° C. for the latter, respectively. Since the spinning had a hollow cross section, the cooling efficiency of the fiber by the quench was good and the spinning property was good. Further, since the compatibility between the resins was good, the fibers were not split. On one surface of the long-fiber nonwoven fabric, a melt-blown nonwoven fabric made of the polypropylene having a basis weight of 15 g / m 2 and having an average fiber diameter of 0.05 d / f was laminated, and was subjected to a heat-sealing process at 137 ° C. to form a laminated molded product. These physical properties are shown in Table 1.

【0031】実施例7 1成分がポリプロピレンであり、他の成分がエチレン
8.0重量%、1−ブテンが5.2重量%のエチレン−
ブテン−プロピレン共重合体であり、それぞれを溶融
し、容積比50:50で中空中空並列型複合紡糸口金を
用い実施例1と同様に紡出し、冷却装置で冷却後、エア
サッカーにて長繊維の中空率が13.1%、長短径比が
1.5、繊度が2.0d/fとなるようにエアサッカー
の牽引延伸速度を調整し牽引細化し、以下、実施例1と
同様な方法を用い目付20g/m2の中空並列型複合長
繊維からなる長繊維不織布を得た。この不織布を構成し
ている熱可塑性樹脂の融点はそれぞれ前者が163℃、
後者が129℃であった。長短径比が1.2のものと比
較して、繊維に捲縮がかかっており、不織布の嵩も高く
なっていた。この長繊維不織布の片面に、目付15g/
2 の前記ポリプロピレンからなる平均繊維径0.05
d/fのメルトブロー不織布を積層し、137℃の熱融
着加工により、積層成形体とした。これらの諸物性は表
1に記載した。
Example 7 One component is polypropylene and the other component is ethylene.
8.0% by weight, 5.2% by weight of 1-butene in ethylene
It is a butene-propylene copolymer, each of which is melted, spun out at a volume ratio of 50:50 using a hollow hollow parallel type composite spinneret in the same manner as in Example 1, cooled by a cooling device, and then lengthened by air soccer. The drawing / drawing speed of the air soccer is adjusted so that the hollow ratio of the fiber is 13.1%, the ratio of the major axis to the minor axis is 1.5, and the fineness is 2.0 d / f. Using the method, a long-fiber nonwoven fabric composed of hollow parallel type composite long fibers having a basis weight of 20 g / m 2 was obtained. The melting point of the thermoplastic resin constituting this nonwoven fabric is 163 ° C. for the former,
The latter was at 129 ° C. The fiber was crimped, and the bulk of the nonwoven fabric was higher than that having a ratio of major axis to minor axis of 1.2. On one side of this long-fiber nonwoven fabric, a basis weight of 15 g /
m 2 The average fiber diameter of the polypropylene is 0.05
A melt-blown nonwoven fabric of d / f was laminated, and was subjected to a heat-sealing process at 137 ° C. to form a laminated molded body. These physical properties are shown in Table 1.

【0032】実施例8 1成分がポリエチレンテレフタレートであり、他の成分
が高密度ポリエチレンであり、それぞれを溶融し、容積
比50:50で中空並列型複合紡糸口金を用い実施例1
と同様に紡出し、冷却装置で冷却後、長繊維の中空率が
13.1%、長短径比が1.5、繊度が2.0d/fと
なるようにエアサッカーの牽引延伸速度を調整し牽引細
化し、以下、実施例1と同様な方法を用い目付20g/
2 の中空並列型複合長繊維からなる長繊維不織布を得
た。この不織布を構成している熱可塑性樹脂の融点はそ
れぞれ前者が260℃、後者が129℃であった。紡糸
は、中空断面であるためにクエンチによる繊維の冷却効
率がよく、良好な曳糸性を示した。この長繊維不織布の
片面に、目付15g/m2 の前記ポリプロピレンからな
る平均繊維径0.05d/fのメルトブロー不織布を積
層し、137℃の熱融着加工により、積層成形体とし
た。これらの諸物性は表1に記載した。
Example 8 One component was polyethylene terephthalate and the other component was high-density polyethylene, each of which was melted and used in a hollow parallel type composite spinneret at a volume ratio of 50:50.
After spinning in the same manner as described above and cooling with a cooling device, the drawing / drawing speed of the air sucker is adjusted so that the hollow fiber hollow fiber ratio is 13.1%, the major / short diameter ratio is 1.5, and the fineness is 2.0 d / f. Then, using the same method as in Example 1, the basis weight is 20 g /
to obtain a long-fiber nonwoven fabric made of hollow parallel type conjugated filaments of m 2. The melting points of the thermoplastic resins constituting this nonwoven fabric were 260 ° C. for the former and 129 ° C. for the latter, respectively. Since the spinning had a hollow cross section, the cooling efficiency of the fiber by the quench was good and the spinning property was good. On one surface of the long-fiber nonwoven fabric, a melt-blown nonwoven fabric made of the polypropylene having a basis weight of 15 g / m 2 and having an average fiber diameter of 0.05 d / f was laminated, and was subjected to a heat-sealing process at 137 ° C. to form a laminated molded product. These physical properties are shown in Table 1.

【0033】比較例1 中空率が45%、単糸繊度が1.3d/f、中空同心鞘
芯型紡糸口金を用いた以外は、実施例1と同様な樹脂、
加工条件で目付20g/m2 の同心鞘芯型複合繊維から
なる長繊維不織布を得た。繊維の捲縮の発現が低く、さ
らに繊維の裂化がみられた。この長繊維不織布の片面
に、目付15g/m2 の前記ポリプロピレンからなる平
均繊維径0.05d/fのメルトブロー不織布を積層
し、127℃の熱融着加工により、積層成形体とした。
これらの諸物性は表1に記載した。
Comparative Example 1 The same resin as in Example 1 except that the hollow ratio was 45%, the single-fiber fineness was 1.3 d / f, and a hollow concentric sheath-core type spinneret was used.
Under the processing conditions, a long-fiber nonwoven fabric composed of concentric sheath-core composite fibers having a basis weight of 20 g / m 2 was obtained. The expression of crimp of the fiber was low, and further the fiber was split. On one surface of the long-fiber nonwoven fabric, a melt-blown nonwoven fabric having an average fiber diameter of 0.05 d / f made of the above-mentioned polypropylene and having a basis weight of 15 g / m 2 was laminated, and was subjected to a heat-sealing process at 127 ° C. to obtain a laminated molded product.
These physical properties are shown in Table 1.

【0034】比較例2 容積比50:50で中空同心鞘芯型紡糸口金を用いた以
外は、実施例3と同様な樹脂、加工条件で目付20g/
2 の同心鞘芯型複合繊維からなる長繊維不織布を得
た。紡糸は、中空断面であるためにクエンチによる繊維
の冷却効率がよく、繊維同士の融着も起こらず良好な曳
糸性を示したが、捲縮の発現がほぼ同条件の実施例3と
比較して、低かった。この長繊維不織布の片面に、目付
15g/m2 の前記ポリプロピレンからなる平均繊維径
0.05d/fのメルトブロー不織布を積層し、140
℃の熱融着加工により、積層成形体とした。これらの諸
物性は表1に記載した。
Comparative Example 2 The same resin and processing conditions as in Example 3 were used except that a hollow concentric sheath-core type spinneret was used at a volume ratio of 50:50, and the basis weight was 20 g /
to obtain a long-fiber nonwoven fabric consisting of concentric sheath-core type composite fibers of m 2. Since the spinning had a hollow cross section, the cooling efficiency of the fibers by quenching was good, and the fibers did not fuse with each other, and showed good spinnability. However, the appearance of crimping was almost the same as that of Example 3 under the same conditions. And it was low. On one surface of the long-fiber nonwoven fabric, a melt-blown nonwoven fabric having an average fiber diameter of 0.05 d / f made of the polypropylene having a basis weight of 15 g / m 2 was laminated.
A laminated molded article was obtained by heat fusion processing at a temperature of ℃. These physical properties are shown in Table 1.

【0035】比較例3 同心鞘芯型の紡糸口金を用いた以外は、実施例3と同様
に加工を施し、目付20g/m2 の同心鞘芯型複合繊維
からなる長繊維不織布を得た。繊維には捲縮が見られな
かった。この長繊維不織布の片面に、目付15g/m2
の前記ポリプロピレンからなる平均繊維径0.05d/
fのメルトブロー不織布を積層し、140℃の熱融着加
工により、積層成形体とした。これらの諸物性は表1に
記載した。
Comparative Example 3 Processing was performed in the same manner as in Example 3 except that a concentric sheath-core type spinneret was used, to obtain a long-fiber nonwoven fabric made of a concentric sheath-core composite fiber having a basis weight of 20 g / m 2 . No crimps were seen in the fibers. On one side of this long-fiber nonwoven fabric, a basis weight of 15 g / m 2
Average fiber diameter of 0.05 d /
The melt-blown nonwoven fabric of No. f was laminated and subjected to a heat-sealing process at 140 ° C. to obtain a laminated molded body. These physical properties are shown in Table 1.

【0036】実施例9 実施例3と製造方法及び熱可塑性樹脂を同様にし、目付
のみ285g/m2とした中空並列型複合長繊維からな
る長繊維不織布の片面に、目付15g/m2 の前記ポリ
プロピレンからなる平均繊維径0.05d/fのメルト
ブロー不織布を積層し、140℃の熱融着加工により、
成形し嵩高な断熱材を製造した。この断熱材の保温性を
触感による官能試験で検討したところ、10点の評価と
なった。これにより、非常に保温性が良好であり、断熱
材に適していることが判明した。
Example 9 The same manufacturing method and thermoplastic resin as in Example 3 were used, and only one surface of a long-fiber non-woven fabric made of hollow parallel type composite long fibers having a basis weight of 285 g / m 2 was coated with a basis weight of 15 g / m 2 . A melt-blown nonwoven fabric having an average fiber diameter of 0.05 d / f made of polypropylene is laminated and subjected to a heat-sealing process at 140 ° C.
It was molded to produce a bulky heat insulating material. When the heat insulating property of this heat insulating material was examined by a sensory test by touch, it was evaluated as 10 points. Thereby, it turned out that heat retention was very good and it was suitable for a heat insulating material.

【0037】比較例4 比較例2と製造方法及び熱可塑性樹脂を同様にし、目付
のみ285g/m2とした中空同心鞘芯型複合長繊維か
らなる長繊維不織布の片面に、目付15g/m2 の前記
ポリプロピレンからなる平均繊維径0.05d/fのメ
ルトブロー不織布を積層し、140℃の熱融着加工によ
り、成形し断熱材を製造した。この断熱材は、嵩が低
く、さらに保温性を触感による官能試験で検討したとこ
ろ、6点の評価となった。これにより、中空同心鞘芯型
複合長繊維からなる長繊維不織布を断熱材に用いた場合
には保温性能が低いことが判明した。
[0037] in the same manner as in Comparative Example 4 Comparative Example 2 The manufacturing method and a thermoplastic resin, on one side of the long-fiber nonwoven fabric made of hollow concentric sheath-core type conjugated filaments having a basis weight only 285 g / m 2, the basis weight 15 g / m 2 A melt-blown nonwoven fabric made of the above polypropylene and having an average fiber diameter of 0.05 d / f was laminated and formed by heat fusion at 140 ° C. to produce a heat insulating material. This heat insulating material was low in bulk, and the heat retention was evaluated by a sensory test based on tactile sensation. Thus, it was found that when a long-fiber nonwoven fabric made of a hollow concentric sheath-core composite long fiber was used as a heat insulating material, the heat retention performance was low.

【0038】尚、本実施例では熱融着による接合のみに
付いて記載したが、熱圧着でも同様な結果が得られる。
In this embodiment, only the joining by heat fusion is described, but the same result can be obtained by thermocompression bonding.

【0039】[0039]

【発明の効果】本発明の嵩高積層成形体は糸屑の脱落が
ほとんどなく、同時に嵩高性、嵩回復性等の課題を解決
すると同時にワイピング性、保温性にも優れた成形体で
あり、清掃用具或いは断熱材として好適に使用すること
ができる。
The bulky laminated molded article of the present invention is a molded article which hardly loses lint, solves problems such as bulkiness and bulk recovery, and also has excellent wiping properties and heat retention properties. It can be suitably used as a tool or a heat insulating material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の嵩高積層成形体に使用される中空並列
型複合繊維の横断面図である。
FIG. 1 is a cross-sectional view of a hollow side-by-side conjugate fiber used for a bulky laminated molded article of the present invention.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 10℃以上の融点差を有する少なくとも
2成分の熱可塑性樹脂からなり、繊維断面形状が楕円形
である1〜8d/fの熱可塑性中空並列型複合長繊維か
らなる不織布(A)と、該不織布の少なくとも片面に少
なくとも1成分の熱可塑性樹脂からなる平均繊維径が1
d/f以下のメルトブロー不織布(B)が積層された嵩
高積層成形体であって、該熱可塑性中空並列型複合長繊
維は、顕在捲縮を有しており、該嵩高積層成形体は接合
されていることを特徴とする嵩高積層成形体。
1. A non-woven fabric (A) made of at least two-component thermoplastic resin having a melting point difference of 10 ° C. or more, and made of 1 to 8 d / f thermoplastic hollow side-by-side composite long fibers having an elliptical fiber cross-sectional shape. ) And the average fiber diameter of at least one component thermoplastic resin on at least one surface of the nonwoven fabric is 1
d / f or less melt-blown nonwoven fabric (B) is laminated, the thermoplastic hollow parallel-type composite continuous fiber has an apparent crimp, and the bulky laminated molded body is joined. A bulky laminated molded article characterized in that:
【請求項2】 前記熱可塑性中空並列型複合長繊維が、
ポリオレフィン系複合長繊維である請求項1に記載の嵩
高積層成形体。
2. The thermoplastic hollow side-by-side composite long fiber,
The bulky laminated molded article according to claim 1, which is a polyolefin-based composite continuous fiber.
【請求項3】 ポリオレフィン系複合長繊維を構成する
樹脂成分の少なくとも1種が、エチレン又はエチレンと
1−ブテンを含む結晶性プロピレン共重合体である請求
項2に記載の嵩高積層成形体。
3. The bulky laminated molded article according to claim 2, wherein at least one of the resin components constituting the polyolefin-based composite long fiber is ethylene or a crystalline propylene copolymer containing ethylene and 1-butene.
【請求項4】 前記熱可塑性中空並列型複合長繊維の横
断面における長径と短径の比が1.1〜1.6である請
求項1〜3のいずれかに記載の嵩高積層成形体。
4. The bulky laminated molded article according to claim 1, wherein a ratio of a major axis to a minor axis in a cross section of the thermoplastic hollow side-by-side composite long fiber is 1.1 to 1.6.
【請求項5】 中空部の断面積と外周部に囲まれた断面
積の比率(中空率)が10〜40%である請求項1〜4
のいずれかに記載の嵩高積層成形体。
5. The ratio of the cross-sectional area of the hollow portion to the cross-sectional area surrounded by the outer peripheral portion (hollow ratio) is 10 to 40%.
A bulky laminated molded article according to any one of the above.
【請求項6】 前記嵩高積層成形体が熱圧着によって繊
維交点が接合されている請求項1〜5のいずれかに記載
の嵩高積層成形体。
6. The bulky laminated molded article according to claim 1, wherein the fiber intersection is joined to the bulky laminated molded article by thermocompression bonding.
【請求項7】 前記嵩高積層成形体が熱融着によって繊
維交点が接合されている請求項1〜5のいずれかに記載
の嵩高積層成形体。
7. The bulky laminated molded article according to claim 1, wherein the fiber intersection is joined to the bulky laminated molded article by heat fusion.
【請求項8】 請求項1〜7のいずれかに記載の嵩高積
層成形体を少なくとも一部に用いたワイパー。
8. A wiper using at least a part of the bulky laminated molded article according to claim 1.
【請求項9】 請求項1〜7のいずれかに記載の嵩高積
層成形体を少なくとも一部に用いた断熱材。
9. A heat insulating material using at least a part of the bulky laminated molded article according to claim 1.
JP10124003A 1998-04-17 1998-04-17 Bulky, laminated, formed body Pending JPH11302960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10124003A JPH11302960A (en) 1998-04-17 1998-04-17 Bulky, laminated, formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10124003A JPH11302960A (en) 1998-04-17 1998-04-17 Bulky, laminated, formed body

Publications (1)

Publication Number Publication Date
JPH11302960A true JPH11302960A (en) 1999-11-02

Family

ID=14874639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10124003A Pending JPH11302960A (en) 1998-04-17 1998-04-17 Bulky, laminated, formed body

Country Status (1)

Country Link
JP (1) JPH11302960A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105908375A (en) * 2016-05-05 2016-08-31 武汉纺织大学 Polyphenylene sulfide melt-blown composite fiber oil absorption non-woven fabric and preparation method thereof
CN112323258A (en) * 2020-10-10 2021-02-05 佛山市裕丰无纺布有限公司 Hot air fluffy cloth manufacturing process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105908375A (en) * 2016-05-05 2016-08-31 武汉纺织大学 Polyphenylene sulfide melt-blown composite fiber oil absorption non-woven fabric and preparation method thereof
CN112323258A (en) * 2020-10-10 2021-02-05 佛山市裕丰无纺布有限公司 Hot air fluffy cloth manufacturing process
CN112323258B (en) * 2020-10-10 2023-12-19 佛山市裕丰无纺布有限公司 Manufacturing process of hot air fluffy cloth

Similar Documents

Publication Publication Date Title
JP3658884B2 (en) Method for producing composite long-fiber nonwoven fabric
JP3110534B2 (en) Laminated nonwoven fabric and method for producing the same
JP2001502388A (en) Thermal adhesive composite fiber and nonwoven fabric using the same
PL182110B1 (en) Non-woven fabric made of low-density microfibre
JPH09316765A (en) Unidirectionally stretchable nonwoven fabric and its production
JP2001140158A (en) Stretchable composite nonwoven fabric and absorbing article using the same
WO2000036200A1 (en) Composite-fiber nonwoven fabric
JP3736014B2 (en) Laminated nonwoven fabric
CN113677516A (en) Nonwoven fabric laminate and sanitary product
JP7156033B2 (en) CRIMPED FIBERS, SPUNBOND NONWOVENS AND METHOD OF MANUFACTURE THEREOF
JPH10266056A (en) Conjugate polyolefin filament nonwoven fabric and its production
JPH07197367A (en) Filament-laminated spun-bonded nonwoven fabric
JPH11302960A (en) Bulky, laminated, formed body
JPH10110372A (en) Bulky long-fiber non-woven fabric and absorptive product using the same
JP5102723B2 (en) Crimpable composite fiber and fiber structure using the same
JP3161588B2 (en) Stretchable long-fiber nonwoven fabric and method for producing the same
JPH11140766A (en) Polyolefin conjugated continuous filament nonwoven fabric
JPH05263344A (en) Stretchable nonwoven fabric of filament and its production
JP3055288B2 (en) Stretchable long-fiber nonwoven fabric and method for producing the same
JP3970624B2 (en) Differentiating sheet and manufacturing method thereof
JPH09291457A (en) Laminated nonwoven fabric of conjugate long fiber
JP2971919B2 (en) Thermal adhesive fiber
JP3712511B2 (en) Flexible nonwoven fabric
JP4330687B2 (en) Elastic nonwoven fabric
JPH07207566A (en) Laminated nonwoven fabric and its production