JPS6229526B2 - - Google Patents

Info

Publication number
JPS6229526B2
JPS6229526B2 JP60184980A JP18498085A JPS6229526B2 JP S6229526 B2 JPS6229526 B2 JP S6229526B2 JP 60184980 A JP60184980 A JP 60184980A JP 18498085 A JP18498085 A JP 18498085A JP S6229526 B2 JPS6229526 B2 JP S6229526B2
Authority
JP
Japan
Prior art keywords
conductive
polymer
oxide
weight
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60184980A
Other languages
Japanese (ja)
Other versions
JPS61201014A (en
Inventor
Masao Matsui
Hiroshi Naito
Taneo Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Kanebo Gohsen Ltd
Original Assignee
Kanebo Ltd
Kanebo Gohsen Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd, Kanebo Gohsen Ltd filed Critical Kanebo Ltd
Priority to JP18498085A priority Critical patent/JPS61201014A/en
Publication of JPS61201014A publication Critical patent/JPS61201014A/en
Publication of JPS6229526B2 publication Critical patent/JPS6229526B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は導電性複合繊維の製造方法に関するも
のである。 (従来の技術) 導電性粒子例えば金属粒子、カーボンブラツク
などを混合したポリマーからなる導電層と繊維形
成性ポリマーからなる非導電層とを接合された複
合繊維は周知であり、他の繊維に混用し制電性を
付与する目的などに用いられている。 カーボンブラツクを含有する複合繊維としては
例えば特開昭52−107350号公報、特開昭55−6540
号公報に記載のものが挙げられ、金属粒子として
は酸化第二錫で表面をコーテイングした酸化チタ
ンを3〜20重量%含有する制電性合成重合体組成
物を紡出して繊維を製造することが特開昭53−
92854号公報に記載されている。 (発明が解決しようとする問題点) しかしながらカーボンブラツクを混合した繊維
は黒色又は灰色に着色しているという欠点を有
し、更にカーボンブラツクを紡糸材に多量に(導
電性を与えるほど)混すると構造粘性を示し流動
性が著しく低下するだけでなく、紡糸装置内にカ
ーボンブラツクが沈着し長時間安定に紡糸するこ
とが困難である。 一方金属粒子については、粒径1μm以下、特
に0.5μm以下のものを製造することは非常に困
難で超微粒子は極めて高価で実用性が乏しい。更
に金属粒子は粒径の小さいものほど溶融混練や溶
融紡糸時の高温高圧により相互に融着(焼結)し
粗大化又は金属塊として析出する傾向があり、3
〜20重量%程度の量ならともかく、それよりも多
量に含有する混合物を溶融紡糸することは非常に
困難である。しかも金属粒子の場合、カーボンブ
ラツクと異なり3〜20重量%程度含有せしめたの
では所望の導電効果が得られない。 本発明の目的は、着色が少なく且つ優れた導電
性を有する導電性複合繊維を提供するにある。他
の目的は斯かる導電性複合繊維を工業的容易且つ
安価に製造する方法を提供するにある。 (問題点を解決するための手段) 本発明の目的は繊維形成性重合体からなる非導
電層成分と、該繊維形成性重合体より少なくとも
30℃低い融点を有する熱加塑性重合体50〜15重量
%と下記の導電性皮膜を有する酸化チタン粒子50
〜85重量%とからなる導電層成分とを複合紡糸
後、前記熱可塑性重合体の融点よりも高く、繊維
形成性重合体の融点よりも低い温度に加熱した後
冷却し、導電層内に導電性構造を成長させること
を特徴とする導電性複合繊維の製造方法により達
成される。 {前記導電性被膜が50重量%以上の金属酸化物と
50重量%以下の金属及び/又は該金属酸化物と異
なる金属酸化物とより形成されている。} 本発明では導電性粒子として導電性皮膜を有す
る酸化チタンを用いる。導電性皮膜としては、金
属皮膜もあるが、金属皮膜は酸化等によつて劣化
変性し易く不安定という欠点がある。金属酸化物
の中には安定で導電性を有するものがあり、例え
ば酸化銅、酸化銀、酸化亜鉛、酸化カドミウム、
酸化錫、酸化鉛、酸化マンガンなどがあげられ
る。特に、これら金属酸化物を主成分(50%以
上、特に75%以上)とし、それに少量(50%以
下)の第2成分を添加することにより導電性を著
しく高く(例えば103Ω・cm程度以下に)するこ
とが出来る。 上記第2成分としては、例えば異種金属の酸化
物及び/又は同種・異種金属などがあげられる。
例えば酸化銅/銅、酸化亜鉛/酸化アルミニウ
ム、酸化錫/酸化アンチモン、酸化亜鉛/亜鉛/
酸化アルミニウム/アルミニウム、酸化錫/錫/
酸化アンチモン/アンチモン及びそれらの酸化物
の1部が還元されたものを含有するものなどが好
適である。第2成分(導電性向上成分)の混入法
や混入量は多様であるが、導電性向上に有効且つ
安定であれば上記のものに限定されない。 導電性金属酸化物皮膜を有する酸化チタンは、
粉末状での比抵抗が104Ω・cm程度(オーダー)
以下、特に102Ω・cm程度以下が好ましく、101
Ω・cm程度以下が最も好ましい。実際に102Ω・
cm〜10-2Ω・cm程度のものが得られており、本発
明の目的に好適に応用することが出来る。(更に
優れた導電性のものは一層好ましい)。 粉末の比抵抗は、直径1cmの円筒に試料を10gr
詰め上部からピストンによつて200Kgの圧力を加
え直流(0.1〜1000V)を印加して測定する。 導電性粒子の粒径は小さいものが可紡性及び導
電性の見地から望ましい。例えば平均粒径1μm
以下、特に0.7μm以下、最も好ましくは0.5〜
0.01μmのものが使用される。一般に粒径が小さ
いほどポリマーと混合した時、混合物の導電性が
優れている。粒径1μm以上のものも使用不可能
ではないが著しく性能が劣る。通常、酸化チタン
は粒経0.2μm以下のものが白色顔料として商業
生産されており、これに導電性皮膜を付加して粒
径0.3μm程度以下のものを得ることが出来る。
導電皮膜は、例えば真空蒸着法や金属化合物(例
えば有機酸塩)を付着させ、焼成して酸化物にす
ることやそれを部分還元することで形成すること
が出来る。導電皮膜は充分な導電性を有し且つ着
色の少ないものが好ましく、酸化亜鉛又は酸化錫
を主成分とするものが好適で、中でも酸化亜鉛を
主成分とするものが着色が少なく最も好ましい。 導電性粒子と混合し導電層を形成するポリマー
としては公知のあらゆる熱可塑性重合体を使用し
得る。例えばポリアミド、ポリエステル、ポリオ
レフイン、ポリビニル系、ポリエーテル、ポリカ
ーボネートなど多数のものがあげられる。このポ
リマーは繊維形成性のものが可紡性の見地からは
好ましいが、本発明の目的のためには可紡性の劣
るものも(複合紡糸可能であれば)使用し得る。
特に導電性の見地からは、結晶化度の高いもの、
例えば結晶化度40%以上のもの、特に50%以上、
最も望ましくは60%以上のものが好適である。 本発明者等の知見によれば、低結晶性(非結晶
性を含む)のポリマーと混合する場合は、導電性
粒子の混合率(重量比)を極めて高く、例えば80
〜95%(重量)にしなければ充分な導電性が得ら
れないことが多い。これに反し高結晶性のポリマ
ーに混合する場合は比較的少ない混合率、例えば
50〜80%程度、特に55〜75%程度で充分な導電性
が得られることが多い。云うまでもなく導電性粒
子の混合率が高いほど混合物の流動性が低下し紡
糸が困難となり、更に延伸性や得られる繊維の強
伸度が低下する傾向があるので導電性粒子の混合
率は低いほど好ましい。すなわち結晶性の高いポ
リマーが好ましい。 結晶性の高いポリマーを用いたものが導電性が
優れている理由は不明であるが溶融時は粒子はポ
リマー中に均一に分散しているが、冷却固化、或
いは延伸によりポリマーの結晶化が進むと結晶部
分から粒子が排除され結晶と結晶の間へ粒子が濃
縮され互いに接近又は接触し導電性構造を形成す
るためと想像される。例えば導電性酸化チタン粉
末(比抵抗12Ω・cm)75%、結晶性パラフインを
25%からなる混合物は溶融時は絶縁体に近い高い
抵抗(比抵抗108Ω・cm以上)を示すが(流動パ
ラフインでも同様)冷却固化(結晶化)した状態
ではすぐれた導電性(比抵抗102〜104Ω・cm)を
示す。(これに反しカーボンブラツクの場合は、
非結晶性ポリマーでもすぐれた導電性が得られ、
逆に高結晶性ポリマーでは結晶が粒子の連鎖を切
断するため導電性が劣る場合が多い。) 上記のように、導電性粒子が相互に接触又は極
めて接近している構造が、高い導電性が得るため
に好ましい。しかしこのような構造は、紡糸され
た繊維を延伸する工程により破壊・切断されるこ
とがある。(逆に延伸によつて粒子が配列し導電
性構造を成長させる場合もある。)延伸による導
電構造の破壊を防ぐ方法の1つは、導電層を形成
するポリマーの1部もしくは全部を非導電層ポリ
マーよりも低い融点の結晶性ポリマーとし、延伸
を非導電層ポリマーと低融点ポリマーの間の温度
領域で行なう方法である。この方法では延伸中は
低融点ポリマーは溶融しており、その後冷却固化
(結晶化)して上記導電構造を成長させる。例え
ば非導電層ポリマーとして融点150℃以上のポリ
マーを用い、導電層ポリマーとして融点が非導電
層ポリマーのそれよりも30℃以上(好ましくは50
℃以上、最も好ましくは80℃以上)低いものを組
合せて複合し、両ポリマーの融点の間の温度例え
ば50〜260℃、特に80〜200℃で延伸することが出
来る。 第二の方法は、延伸によつて破壊された導電性
構造を、加熱・冷却により再成長させる方法であ
る。例えば延伸糸を低融点ポリマーの融点以上、
非導電層ポリマーの融点以下の温度に緊張下又は
弛緩下で加熱し、次いで冷却することにより、導
電性構造を再成長させることが出来る。この場合
も両ポリマーの融点は前記の範囲であり、その差
は30℃以上であり、50℃以上が望ましい。繊維の
使用温度ではポリマーは固化(結晶化)していな
くてはならないから、低融点ポリマーの融点は40
℃以上、好ましくは80℃以上、最も好ましくは
100℃以上であることが望ましく、すなわち熱処
理温度ひ50〜260℃、特に80〜240℃が望ましい。
一般に未延伸糸をあまり高温(150℃以上、特に
200℃以上)で延伸することは困難な場合が多い
から、上記第1の方法よりも第2の方法が応用範
囲が広い。 導電性粒子の導電層における混合率は、粒子の
導電性、純度、構造、粒径、粒子の連鎖形成能及
び混合されるポリマーの性質や種類、結晶化度な
どによつて変るが、50〜85重量%、好ましくは60
〜80重量%程度である。(80重量%以上では流動
性が不足するので流動性改善剤の使用が必要とな
ることが多い。 導電性チタン粒子の他に粒子の分散性、導電
性、可紡性などの改良を目的として異種の導電性
粒子を併用することが出来る。例えば酸化錫、酸
化亜鉛、酸化ジルコニウム、酸化インジウム、酸
化鉄、酸化ビスマスなどの金属酸化物(着色が少
なく導電性の高いものが好ましい)、銅、銀、ニ
ツケル、鉄、アルミニウムその他の金属粒子など
を混用することが出来る。併用の場合は導電性酸
化チタンの混合率は前記の範囲より少なくてもよ
い場合があるが、導電性粒子の主成分(50%以
上)は導電性酸化チタンである。いずれにせよ、
複合繊維の導電層の比抵抗は106Ω・cm程度以下
にする必要があり、特に104Ω・cm以下が好まし
く、102Ω・cm以下が最も好ましい。 導電層には、更に分散剤(例えばワツクス類、
ポリアルキレンオキシド類各種界面活性剤、有機
電解質など)、着色剤、顔料、安定剤(酸化防止
剤、紫外線吸収剤など)、流動性改善剤その他の
添加剤を加えることが出来る。 複合繊維の非導電層(保護層)を形成する繊維
形成性重合体としては溶融紡糸可能なあらゆるも
のが用いられる。例えばナイロン6、ナイロン
66、ナイロン12、ナイロン610などのポリアミ
ド、ポリエチレンテレフタレート、ポリエチレン
オキシベンゾエート、ポリブチレンテレフタレー
トなどのポリエステル、ポリプロピレン、ポリエ
チレンなどのポリオレフイン、ポリ塩化ビニル、
ポリ塩化ビニリデンなどのポリビニル系ポリマ
ー、及びこれらのポリマーの共重合体や変性体な
どが用いられる。繊維形成性重合体には顔料、着
色料、安定剤、制電剤(ポリアルキレンオキシド
類、各種界面活性剤など)などの添加剤を加える
ことが出来る。 導電性成分と非導電性成分との複合(接合)
は、あらゆる形式が可能である。第1図〜第8図
は代表的な複合形式を示すもので(斜線部分は導
電層を示す)第1図は芯・鞘型(さやが導電層の
ものも可)、第2図はサイドバイサイド型、第3
図は3層型、第4図は放射型、第5図は多重サイ
ドバイサイド型、第6図は多芯型、第7図は多層
型、第8図は非円形芯型の例である。勿論上記以
外の任意の複合可能であり、又繊維の輪郭は円形
でもよく非円形でもよい。 複合繊維の横断面において導電層の占める面積
比率すなわち複合比率は任意である。繊維の白度
のことはほとんど考慮しなくてもよいからであ
る。しかし一般に導電性粒子を多量に混合した導
電層は強度、伸度などに劣る傾向があるから複合
比率は3〜80%、特に5〜60%程度が好ましいこ
とが多い。 本発明は白色又は白色に近い繊維を容易に製造
することが出来、カーボンブラツク系の導電繊維
が不適当であつた白色又は淡色の繊維製品の製造
にも好適である。本発明繊維は連続フイラメント
又はステープル状で他の帯電性の繊維と混用して
繊維製品に制電性を付与することが出来る。通常
混用率は0.1〜10重量%程度であるが勿論目的に
よつては10〜100重量%や0.1重量%以下の混用率
が適用される場合がある。混合は混綿、合糸、合
撚糸、混紡交織、交編、その他公知のあらゆる手
段で行なわれる。 以下実施例によつて本発明を説明する。部及び
%は特記しない限り重量比を示す。 実施例 1 平均粒径0.05μmの酸化チタンに対して酸化亜
鉛皮膜(重量約15%)を形成したものに、酸化ア
ルミニウム微粒子(粒径0.02μm)を4%混合焼
成して導電性粒末A1を得た。粉末A1の平均粒径
は0.06μm、比抵抗12Ω・cm、ほとんど白色(わ
ずかに灰青色)である。 分子量約50000、融点102℃、結晶化度37%の低
密度ポリエチレンをポリマーP1とする。分子量約
48000、融点130℃、結晶化度77%の高密度ポリエ
チレンをポリマーP2とする。 分子量約63000の結晶化度約55%、融点55℃の
ポリエチレンオキシドをポリマーP3とする。エチ
レンオキシド成分75部/プロピレンオキシド成分
25部からなる分子量約20000のランダム共重合物
90部とビスヒドロキシテレフタレート10部とを三
酸化アンチモン(600ppm)を触媒として245℃
で6時間減圧(0.5Torr)下で重合して得た、常
温で高粘度の液体(結晶化度0%)で分子量約
75000のポリエーテルエステルをポリマーP4とす
る。 分子量約16000、融点215℃、結晶化度45%のナ
イロン6をポリマーP5とする。 ポリマーP1〜P4に粉末A1を夫々60%、75%の
混合率で混練した混合ポリマーを芯部に、ポリマ
ーP5に酸化チタンを1%混合したものを鞘部に用
いて第1図のような構造で複合比1/10(断面積
比)で複合し270℃、直径0.3mmのオリフイスから
紡出し、冷却・オイリングして1000m/minの速
度で巻取り80℃のピン上で3.1倍に延伸して20デ
ニール/3フイラメントの延伸糸Y1〜Y8を得
た。各繊維の芯部ポリマー及び導電粒子混合率
と、単糸の長さ1cm当りの電気抵抗を第1表に示
す。
(Industrial Application Field) The present invention relates to a method for producing conductive composite fibers. (Prior art) Composite fibers in which a conductive layer made of a polymer mixed with conductive particles such as metal particles, carbon black, etc. and a non-conductive layer made of a fiber-forming polymer are well known, and can be mixed with other fibers. It is used for purposes such as imparting antistatic properties. Examples of composite fibers containing carbon black include JP-A-52-107350 and JP-A-55-6540.
The fibers are produced by spinning an antistatic synthetic polymer composition containing 3 to 20% by weight of titanium oxide whose surface is coated with tin oxide as metal particles. was published in 1973.
It is described in Publication No. 92854. (Problems to be Solved by the Invention) However, fibers mixed with carbon black have the disadvantage that they are colored black or gray, and furthermore, if carbon black is mixed in a large amount (enough to impart conductivity) to the spinning material, Not only does it exhibit structural viscosity and fluidity is significantly reduced, but also carbon black is deposited inside the spinning device, making it difficult to spin the yarn stably for a long period of time. On the other hand, it is very difficult to produce metal particles with a particle size of 1 μm or less, especially 0.5 μm or less, and ultrafine particles are extremely expensive and have little practical use. Furthermore, the smaller the particle size of metal particles, the more likely they are to fuse together (sinter) and become coarse or precipitate as metal lumps due to high temperature and high pressure during melt-kneading and melt-spinning.
Even if the amount is approximately 20% by weight, it is extremely difficult to melt-spun a mixture containing a larger amount. Moreover, in the case of metal particles, unlike carbon black, if the content is about 3 to 20% by weight, the desired conductive effect cannot be obtained. An object of the present invention is to provide a conductive composite fiber that is less colored and has excellent conductivity. Another object is to provide a method for manufacturing such conductive composite fibers industrially easily and at low cost. (Means for Solving the Problems) The object of the present invention is to provide a non-conductive layer component made of a fiber-forming polymer, and at least
50~15% by weight of thermoplastic polymer with melting point lower than 30℃ and titanium oxide particles with conductive coating below 50
After composite spinning, a conductive layer component consisting of ~85% by weight is heated to a temperature higher than the melting point of the thermoplastic polymer and lower than the melting point of the fiber-forming polymer, and then cooled to form a conductive layer in the conductive layer. This is achieved by a method for producing conductive composite fibers characterized by growing a conductive composite fiber. {The conductive film contains 50% by weight or more of metal oxide and
It is formed from 50% by weight or less of a metal and/or a metal oxide different from the metal oxide. } In the present invention, titanium oxide having a conductive film is used as the conductive particles. Metal films are also available as conductive films, but metal films have the drawback of being unstable and susceptible to deterioration and modification due to oxidation and the like. Some metal oxides are stable and conductive, such as copper oxide, silver oxide, zinc oxide, cadmium oxide,
Examples include tin oxide, lead oxide, and manganese oxide. In particular, by using these metal oxides as the main component (50% or more, especially 75% or more) and adding a small amount (50% or less) of the second component, the conductivity can be significantly increased (for example, about 10 3 Ω・cm). (below) can be done. Examples of the second component include oxides of different metals and/or the same or different metals.
For example, copper oxide/copper, zinc oxide/aluminum oxide, tin oxide/antimony oxide, zinc oxide/zinc/
Aluminum oxide/aluminum, tin oxide/tin/
Antimony oxide/antimony and those containing partially reduced oxides of antimony and the like are suitable. The method and amount of mixing of the second component (conductivity improving component) are various, but are not limited to those described above as long as they are effective and stable for improving conductivity. Titanium oxide with a conductive metal oxide film is
Specific resistance in powder form is approximately 10 4 Ω・cm (order)
Below, it is particularly preferable to be about 10 2 Ω・cm or less, and 10 1
The most preferable value is approximately Ω·cm or less. Actually 10 2 Ω・
cm to 10 -2 Ω·cm have been obtained, and can be suitably applied to the purpose of the present invention. (Those with even better conductivity are even more preferred). The specific resistance of the powder is determined by placing a sample of 10 gr in a cylinder with a diameter of 1 cm.
Measurement is performed by applying a pressure of 200 kg from the top of the packing using a piston and applying direct current (0.1 to 1000 V). It is desirable that the conductive particles have a small particle size from the viewpoint of spinnability and conductivity. For example, the average particle size is 1 μm
Below, especially 0.7μm or less, most preferably 0.5~
0.01 μm is used. Generally, the smaller the particle size, the better the conductivity of the mixture when mixed with a polymer. Particles with a particle size of 1 μm or more are not impossible to use, but their performance is significantly inferior. Usually, titanium oxide with a particle size of 0.2 μm or less is commercially produced as a white pigment, and by adding a conductive film to this, a particle size of about 0.3 μm or less can be obtained.
The conductive film can be formed, for example, by vacuum evaporation, by depositing a metal compound (for example, an organic acid salt), baking it to form an oxide, or by partially reducing it. The conductive film preferably has sufficient conductivity and has little coloration, and is preferably one containing zinc oxide or tin oxide as a main component.Among these, a film containing zinc oxide as a main component is most preferable because it has little coloration. Any known thermoplastic polymer can be used as the polymer to be mixed with the conductive particles to form the conductive layer. Examples include polyamide, polyester, polyolefin, polyvinyl, polyether, polycarbonate, and many others. Although fiber-forming polymers are preferable from the viewpoint of spinnability, for the purpose of the present invention, polymers with poor spinnability may also be used (as long as composite spinning is possible).
In particular, from the standpoint of conductivity, materials with a high degree of crystallinity,
For example, crystallinity of 40% or more, especially 50% or more,
Most preferably, it is 60% or more. According to the findings of the present inventors, when mixing with low crystallinity (including non-crystalline) polymers, the mixing ratio (weight ratio) of conductive particles is extremely high, for example, 80
Sufficient conductivity is often not obtained unless the amount is ~95% (by weight). On the other hand, when mixing with highly crystalline polymers, the mixing ratio is relatively small, e.g.
Sufficient conductivity is often obtained at about 50 to 80%, especially about 55 to 75%. Needless to say, the higher the mixing ratio of conductive particles, the lower the fluidity of the mixture and the difficulty of spinning, and the lower the drawability and the strength and elongation of the obtained fibers. The lower the better. That is, a polymer with high crystallinity is preferred. It is unclear why products using highly crystalline polymers have superior conductivity; however, when melted, the particles are uniformly dispersed in the polymer, but upon cooling, solidification, or stretching, the polymer crystallizes. It is assumed that this is because particles are excluded from the crystal part, concentrated between the crystals, and come close to or in contact with each other to form a conductive structure. For example, conductive titanium oxide powder (specific resistance 12Ω cm) 75%, crystalline paraffin
A mixture consisting of 25% exhibits high resistance (specific resistance of 10 8 Ω cm or more) close to that of an insulator when melted (the same applies to liquid paraffin), but when cooled and solidified (crystallized), it exhibits excellent conductivity (specific resistance). 10 2 to 10 4 Ω・cm). (On the other hand, in the case of carbon black,
Excellent conductivity can be obtained even with amorphous polymers,
Conversely, highly crystalline polymers often have poor conductivity because the crystals break the chain of particles. ) As mentioned above, a structure in which the conductive particles are in contact with each other or are very close to each other is preferred in order to obtain high conductivity. However, such a structure may be destroyed or cut during the process of drawing the spun fibers. (On the other hand, stretching may cause the particles to align and grow a conductive structure.) One way to prevent the destruction of the conductive structure due to stretching is to make part or all of the polymer forming the conductive layer non-conductive. In this method, a crystalline polymer having a melting point lower than that of the layer polymer is used, and stretching is performed in a temperature range between that of the non-conductive layer polymer and the low melting point polymer. In this method, the low melting point polymer is molten during stretching, and is then cooled and solidified (crystallized) to grow the conductive structure. For example, a polymer with a melting point of 150°C or higher is used as the non-conductive layer polymer, and a polymer with a melting point of 30°C or higher (preferably 50°C or higher) than that of the non-conductive layer polymer is used as the conductive layer polymer.
C. or higher, most preferably 80.degree. C. or higher), and can be composited and stretched at a temperature between the melting points of both polymers, such as 50 to 260C, particularly 80 to 200C. The second method is to regrow the conductive structure destroyed by stretching by heating and cooling. For example, if the drawn yarn is above the melting point of the low melting point polymer,
The conductive structure can be regrown by heating under tension or relaxation to a temperature below the melting point of the non-conductive layer polymer, followed by cooling. In this case as well, the melting points of both polymers are within the above range, and the difference therebetween is 30°C or more, preferably 50°C or more. Since the polymer must be solidified (crystallized) at the temperature at which the fiber is used, the melting point of a low melting point polymer is 40
℃ or higher, preferably 80℃ or higher, most preferably
It is desirable that the temperature is 100°C or higher, that is, the heat treatment temperature is preferably 50 to 260°C, particularly 80 to 240°C.
Generally, undrawn yarn is heated at too high a temperature (150℃ or higher, especially
Since it is often difficult to stretch at a temperature of 200° C. or higher, the second method has a wider range of applications than the first method. The mixing ratio of conductive particles in the conductive layer varies depending on the conductivity, purity, structure, particle size, chain-forming ability of the particles, the nature and type of the polymer to be mixed, the degree of crystallinity, etc. 85% by weight, preferably 60
~80% by weight. (If it exceeds 80% by weight, the fluidity is insufficient, so it is often necessary to use a fluidity improver.) In addition to conductive titanium particles, it is also used to improve particle dispersibility, conductivity, and spinnability Different types of conductive particles can be used together.For example, metal oxides such as tin oxide, zinc oxide, zirconium oxide, indium oxide, iron oxide, bismuth oxide (preferably those with little coloring and high conductivity), copper, Silver, nickel, iron, aluminum and other metal particles can be used in combination.If used in combination, the mixing ratio of conductive titanium oxide may be lower than the above range, but the main component of the conductive particles (more than 50%) is conductive titanium oxide.In any case,
The specific resistance of the conductive layer of the composite fiber must be approximately 10 6 Ω·cm or less, particularly preferably 10 4 Ω·cm or less, and most preferably 10 2 Ω·cm or less. The conductive layer further contains a dispersant (e.g. wax,
It is possible to add polyalkylene oxides (various surfactants, organic electrolytes, etc.), colorants, pigments, stabilizers (antioxidants, ultraviolet absorbers, etc.), fluidity improvers, and other additives. As the fiber-forming polymer forming the non-conductive layer (protective layer) of the composite fiber, any material that can be melt-spun can be used. For example, nylon 6, nylon
Polyamides such as 66, nylon 12, and nylon 610, polyesters such as polyethylene terephthalate, polyethylene oxybenzoate, and polybutylene terephthalate, polyolefins such as polypropylene and polyethylene, polyvinyl chloride,
Polyvinyl polymers such as polyvinylidene chloride, and copolymers and modified products of these polymers are used. Additives such as pigments, colorants, stabilizers, antistatic agents (polyalkylene oxides, various surfactants, etc.) can be added to the fiber-forming polymer. Composite (joining) of conductive and non-conductive components
can be in any format. Figures 1 to 8 show typical composite types (shaded areas indicate conductive layers). Figure 1 is a core/sheath type (the sheath is also a conductive layer type), and Figure 2 is a side-by-side type. Type, 3rd
The figure shows an example of a three-layer type, FIG. 4 a radial type, FIG. 5 a multiple side-by-side type, FIG. 6 a multi-core type, FIG. 7 a multi-layer type, and FIG. 8 an example of a non-circular core type. Of course, any combination other than the above is possible, and the outline of the fibers may be circular or non-circular. The area ratio occupied by the conductive layer in the cross section of the composite fiber, that is, the composite ratio is arbitrary. This is because there is almost no need to consider the whiteness of the fibers. However, in general, a conductive layer mixed with a large amount of conductive particles tends to be inferior in strength, elongation, etc., so the composite ratio is often preferably about 3 to 80%, particularly about 5 to 60%. The present invention can easily produce white or nearly white fibers, and is suitable for producing white or light-colored fiber products for which carbon black conductive fibers are unsuitable. The fibers of the present invention are in the form of continuous filaments or staples and can be mixed with other chargeable fibers to impart antistatic properties to textile products. The mixing rate is usually about 0.1 to 10% by weight, but depending on the purpose, a mixing rate of 10 to 100% by weight or 0.1% by weight or less may be applied. The mixing may be carried out by blending, doubling, twisting, blending, weaving, knitting, or any other known method. The present invention will be explained below with reference to Examples. Parts and percentages indicate weight ratios unless otherwise specified. Example 1 A zinc oxide film (approximately 15% by weight) was formed on titanium oxide with an average particle size of 0.05 μm, and 4% aluminum oxide fine particles (particle size 0.02 μm) were mixed and fired to produce conductive particles A. Got 1 . Powder A1 has an average particle size of 0.06 μm, a specific resistance of 12 Ω·cm, and is almost white (slightly gray-blue). Polymer P1 is a low-density polyethylene with a molecular weight of about 50000, a melting point of 102°C, and a crystallinity of 37%. Molecular weight approx.
48000, melting point 130℃, crystallinity 77% high density polyethylene is used as polymer P2 . Polyethylene oxide having a molecular weight of about 63,000, a crystallinity of about 55%, and a melting point of 55°C is used as polymer P3 . 75 parts of ethylene oxide component/propylene oxide component
A random copolymer with a molecular weight of approximately 20,000 consisting of 25 parts
90 parts of bishydroxyterephthalate and 10 parts of bishydroxyterephthalate were mixed at 245°C using antimony trioxide (600ppm) as a catalyst.
A high viscosity liquid (crystallinity 0%) at room temperature obtained by polymerization under reduced pressure (0.5 Torr) for 6 hours at
75000 polyetherester as polymer P4 . Polymer P5 is nylon 6 with a molecular weight of about 16,000, a melting point of 215°C, and a crystallinity of 45%. A mixed polymer obtained by kneading powder A 1 with polymers P 1 to P 4 at a mixing ratio of 60% and 75%, respectively, was used for the core, and a mixture of polymer P 5 and titanium oxide at 1% was used for the sheath. The structure shown in the figure is compounded at a compounding ratio of 1/10 (cross-sectional area ratio), spun at 270℃ from an orifice with a diameter of 0.3mm, cooled and oiled, wound at a speed of 1000m/min, and placed on a pin at 80℃. The drawn yarns Y 1 to Y 8 of 20 denier/3 filaments were drawn by 3.1 times. Table 1 shows the core polymer and conductive particle mixing ratio of each fiber and the electrical resistance per 1 cm of single yarn length.

【表】【table】

【表】 糸Y1〜Y8を夫々ナイロン6の延伸糸(2600d/
144f)と合糸して巻縮加工し、合糸したものを4
コースに1本用い他の3コースはナイロン6巻縮
加工糸(2600d/144f)を用いてタフテツドカー
ペツト(ループ)を製造した。得られたカーペツ
ト上を皮靴で歩行(25℃、20%RH)したときの
人体の帯電圧を測定した所第2表の通りであつ
た。なお比較のためナイロン6巻縮糸のみからな
るカーペツト上を歩行したときの人体帯電圧を併
記する。
[Table] Yarns Y 1 to Y 8 are each drawn nylon 6 yarn (2600d/
144f) and crimping, and the combined yarn is
A tufted carpet (loop) was manufactured by using one thread for one course and using nylon 6-wrap crimped yarn (2600d/144f) for the other three courses. The electrostatic potential of the human body when walking on the resulting carpet with leather shoes (25°C, 20% RH) was as shown in Table 2. For comparison, the voltage charged on the human body when walking on a carpet made of only 6-wrap nylon crimped yarn is also shown.

【表】 前記糸Y1〜Y8を150℃で3%弛緩させて熱処理
を行つた糸を夫々HY1〜HY8と記す。第3表に示
す通りHY1〜HY6の電気抵抗は低下しており、導
電性のかなりの改良が認められたが、HY7及び
HY8には効果が認められなかつた。
[Table] The yarns Y 1 to Y 8 were heat-treated by relaxing them by 3% at 150° C. and are designated as HY 1 to HY 8 , respectively. As shown in Table 3, the electrical resistance of HY 1 to HY 6 decreased, indicating a considerable improvement in conductivity, but HY 7 and HY 6 showed a significant improvement in conductivity.
No effect was observed in HY 8 .

【表】【table】

【表】 平均粒径0.04μmの酸化チタン粒子に酸化錫の
皮膜(重量約12%)を形成したものに、酸化アン
チモン粒子(粒径0.02μm)を5%混合焼成して
得た導電性粉末をA2とする。粉末A2の平均粒径
は0.05μm、比抵抗9Ω・cmでほとんど白色(わ
ずかに灰青色)であつた。 実施例1のポリマーP2を用い粉末A2を75%混
合したものを導電層とし、ポリマーP5に酸化チタ
ンを2%混合したものを保護層とし、第3図のよ
うに複合(複合比1/8)し、以下実施例1の糸
Y4及びHY4とほぼ同様にして夫々糸Y9、HY9を得
た。 糸Y9、HY9の電気抵抗は夫々7.6×109、1.1×
109Ω/cmであつた。尚、HY9は導電層が繊維表
面に露出しているものの、熱処理は短時間であ
り、糸切れや毛羽の増加は無かつた。 実施例 3 実施例1の粒子A1及びポリマーP2からなり、
粒子の混合率70%の混合物を芯とし、分子量約
18000のポリエチレンテレフタノートを鞘として
複合比1/9で第8図のような横断面に複合し、
直径0.25mm、278℃のオリフイスから紡出しオイ
リングして1500m/minの速度で巻取り、80℃で
3.15倍に延伸し、更に緊張下で180℃で熱処理し
て30デニール/6フイラメントの糸Y10及びHY10
を得た。 糸Y10及びHY10の単糸の電気抵抗は夫々8.6×
1010、9.5×109Ω/cmであつた。なお芯部に導電
部分を配する複合繊維は、帯電した物体が近くに
あるときは鞘が絶縁破壊されコロナ放電により除
電するが、第8図のように芯部の横断面が1個以
上の尖端を有する形のときは上記絶縁破壊が起り
易く制電性がすぐれている。 このような尖端を形成するためには導電粒子は
粒径が小さいほど好ましく、粒径0.1μm以下の
ものが最も好ましい。 導電層が繊維表面に露出しているものでも、例
えば第3図や第4図のように尖端を有するものが
コロナ放電を起し易く制電性にすぐれており、こ
れらに対しても同様の粒径の小さいものが望まし
い。 (発明の効果) 本発明方法により得られた繊維は優れた導電性
を有するばかりでなく、従来のカーボンブラツク
を使用したものとは異なつて着色が少なく、しか
も工業的に容易に製造することができる。又本発
明方法により得られた導電性繊維は非電導性の繊
維と混用し、作業衣、特にエレクトロニクス産業
に使われる無塵衣等に有用である。
[Table] Conductive powder obtained by mixing and firing 5% antimony oxide particles (particle size 0.02 μm) on titanium oxide particles with an average particle size of 0.04 μm on which a tin oxide film (approximately 12% by weight) is formed. Let be A 2 . Powder A 2 had an average particle size of 0.05 μm, a specific resistance of 9 Ω·cm, and was almost white (slightly gray-blue). The conductive layer was made by mixing 75% of powder A 2 using polymer P 2 from Example 1, and the protective layer was made by mixing 2% of titanium oxide with polymer P 5 . 1/8) and the following is the yarn of Example 1.
Yarns Y 9 and HY 9 were obtained in substantially the same manner as Y 4 and HY 4 , respectively. The electrical resistance of yarn Y 9 and HY 9 is 7.6×10 9 and 1.1×, respectively.
It was 109 Ω/cm. Although the conductive layer of HY 9 was exposed on the fiber surface, the heat treatment was for a short time and there was no yarn breakage or increase in fuzz. Example 3 Consisting of particles A 1 of Example 1 and polymer P 2 ,
The core is a mixture of particles with a mixing ratio of 70%, and the molecular weight is approx.
18000 polyethylene terephthalate was used as a sheath and composited at a composite ratio of 1/9 into a cross section as shown in Figure 8.
Spun from an orifice with a diameter of 0.25 mm at 278°C, oiled, wound at a speed of 1500 m/min, and heated at 80°C.
Stretched 3.15 times and further heat treated at 180℃ under tension to create 30 denier/6 filament yarns Y 10 and HY 10
I got it. The electric resistance of single yarn Y 10 and HY 10 is 8.6× respectively.
10 10 , 9.5×10 9 Ω/cm. Composite fibers with a conductive part in the core have dielectric breakdown in the sheath when a charged object is nearby and the charge is removed by corona discharge, but as shown in Figure 8, if the core has one or more When the shape has a pointed tip, the above-mentioned dielectric breakdown occurs easily and the antistatic property is excellent. In order to form such a tip, it is preferable that the conductive particles have a smaller particle size, and those having a particle size of 0.1 μm or less are most preferable. Even if the conductive layer is exposed on the fiber surface, for example, those with pointed ends as shown in Figures 3 and 4 are more likely to cause corona discharge and have excellent antistatic properties, so the same method can be used for these as well. It is desirable that the particle size is small. (Effects of the Invention) The fibers obtained by the method of the present invention not only have excellent conductivity, but unlike those using conventional carbon black, they are less colored and can be easily produced industrially. can. Furthermore, the conductive fibers obtained by the method of the present invention can be used in combination with non-conductive fibers and are useful for work clothing, especially dust-free clothing used in the electronics industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は本発明複合繊維の横断面の具
体例であり、図において斜線部は導電層を示す。
FIGS. 1 to 8 show specific examples of cross sections of the composite fibers of the present invention, and the shaded areas in the figures indicate conductive layers.

Claims (1)

【特許請求の範囲】 1 繊維形成性重合体からなる非導電層成分と、
該繊維形成性重合体より少なくとも30℃低い融点
を有する熱可塑性重合体50〜15重量%と下記の導
電性皮膜を有する酸化チタン粒子50〜85重量%と
からなる導電層成分とを複合紡糸後、前記熱可塑
性重合体の融点よりも高く、繊維形成性重合体の
融点よりも低い温度に加熱した後冷却し、導電層
内に導電性構造を成長させることを特徴とする導
電性複合繊維の製造方法。 {導電性被膜が50重量%以上の金属酸化物と50重
量%以下の金属及び/又は該金属酸化物と異なる
金属酸化物とより形成されている。} 2 酸化チタンの導電性皮膜が酸化亜鉛又は酸化
錫を主成分とするものである特許請求の範囲第1
項記載の方法。 3 繊維形成性重合体がポリアミド、ポリエステ
ル、ポリエーテル、ビニル系ポリマー又はポリオ
レフインである特許請求の範囲第1項記載の方
法。
[Claims] 1. A non-conductive layer component made of a fiber-forming polymer;
After composite spinning a conductive layer component consisting of 50 to 15% by weight of a thermoplastic polymer having a melting point at least 30°C lower than the fiber-forming polymer and 50 to 85% by weight of titanium oxide particles having a conductive film as described below. , a conductive composite fiber characterized in that it is heated to a temperature higher than the melting point of the thermoplastic polymer and lower than the melting point of the fiber-forming polymer, and then cooled to grow a conductive structure in the conductive layer. Production method. {The conductive film is formed of 50% by weight or more of a metal oxide and 50% by weight or less of a metal and/or a metal oxide different from the metal oxide. } 2 Claim 1, in which the conductive film of titanium oxide contains zinc oxide or tin oxide as a main component.
The method described in section. 3. The method according to claim 1, wherein the fiber-forming polymer is polyamide, polyester, polyether, vinyl polymer or polyolefin.
JP18498085A 1985-08-21 1985-08-21 Production of electrically-conductive conjugated yarn Granted JPS61201014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18498085A JPS61201014A (en) 1985-08-21 1985-08-21 Production of electrically-conductive conjugated yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18498085A JPS61201014A (en) 1985-08-21 1985-08-21 Production of electrically-conductive conjugated yarn

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8075380A Division JPS576762A (en) 1980-06-06 1980-06-14 Conductive composite fiber and its manufacture

Publications (2)

Publication Number Publication Date
JPS61201014A JPS61201014A (en) 1986-09-05
JPS6229526B2 true JPS6229526B2 (en) 1987-06-26

Family

ID=16162692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18498085A Granted JPS61201014A (en) 1985-08-21 1985-08-21 Production of electrically-conductive conjugated yarn

Country Status (1)

Country Link
JP (1) JPS61201014A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735163A1 (en) * 1995-03-29 1996-10-02 Teijin Limited Electroconductive conjugate fiber

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392724A (en) * 1986-09-30 1988-04-23 Kuraray Co Ltd Composite fiber having excellent heat-resistance, chemical resistance and antistaticity
JP2599785B2 (en) * 1989-03-14 1997-04-16 株式会社クラレ Conductive composite fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231450A (en) * 1975-09-03 1977-03-09 Kawamura Kogyo Kk Automatic opening and closing tongue device for conveyer
JPS5392854A (en) * 1977-01-26 1978-08-15 Unitika Ltd Antistatic synthetic polymer composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231450A (en) * 1975-09-03 1977-03-09 Kawamura Kogyo Kk Automatic opening and closing tongue device for conveyer
JPS5392854A (en) * 1977-01-26 1978-08-15 Unitika Ltd Antistatic synthetic polymer composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735163A1 (en) * 1995-03-29 1996-10-02 Teijin Limited Electroconductive conjugate fiber

Also Published As

Publication number Publication date
JPS61201014A (en) 1986-09-05

Similar Documents

Publication Publication Date Title
US4457973A (en) Conductive composite filaments and methods for producing said composite filaments
US4420534A (en) Conductive composite filaments and methods for producing said composite filaments
US5698148A (en) Process for making electrically conductive fibers
US5518812A (en) Antistatic fibers
JPH0364603B2 (en)
JPH0122365B2 (en)
JPS6229526B2 (en)
JPH01292116A (en) Electrically conductive fiber and production thereof
JPS6156334B2 (en)
JPH0551811A (en) Conductive conjugate fiber
JPH02289108A (en) Electroconductive conjugate fiber
JPS60224813A (en) Antistatic conjugated fiber
JPH0122366B2 (en)
JPS60444B2 (en) conductive fiber
JPH0129890B2 (en)
JPS6385114A (en) Electrically conductive yarn and production thereof
JPS5860015A (en) Preparation of electrically conductive composite fiber
JPH0366404B2 (en)
JPH01183520A (en) Electrically conductive fiber
JPH042808A (en) Electrically conductive conjugate fiber
JPH03249212A (en) Electrically conductive conjugate fiber
JPS61201008A (en) Production of electrically conductive monofilament
JPS61275415A (en) Production of electrically-conductive conjugated, combined filament yarn
JPH03241010A (en) Electrically conductive conjugate fiber
JPH02300317A (en) Electrically conductive conjugate fiber