JPH0366404B2 - - Google Patents

Info

Publication number
JPH0366404B2
JPH0366404B2 JP59279022A JP27902284A JPH0366404B2 JP H0366404 B2 JPH0366404 B2 JP H0366404B2 JP 59279022 A JP59279022 A JP 59279022A JP 27902284 A JP27902284 A JP 27902284A JP H0366404 B2 JPH0366404 B2 JP H0366404B2
Authority
JP
Japan
Prior art keywords
conductive
fiber
fibers
oxide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59279022A
Other languages
Japanese (ja)
Other versions
JPS61152823A (en
Inventor
Toshio Jitsumatsu
Masahiro Yamabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP27902284A priority Critical patent/JPS61152823A/en
Publication of JPS61152823A publication Critical patent/JPS61152823A/en
Publication of JPH0366404B2 publication Critical patent/JPH0366404B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は制電性能に優れ、且つ金沿摩耗制の改
良された白色の導電性複合繊維に関する。 (従来の技術) 従来、カーペツトの上を歩いてドアの把手に触
れた時の放電シヨツク、摩擦帯電による火花放
電、或いは塵埃の付着などの静電気障害は非常に
厄介なものであり、かなりの不快感を生ぜしめる
ものであつた。合成繊維や天然繊維に制電性を付
与する有効な手段の1つに、導電性カーボンブラ
ツクを分散したポリマーからなる導電性成分と繊
維形成性ポリマーからなる保護成分とが接合され
た導電性複合繊維を少量混用する方法がある。し
かしながら、カーボンブラツクを用いた導電性複
合繊維は黒色又は灰色に着色している為、その用
途を制限されているのが実状である。 近年、このような外観の黒色を改良するこのと
して、白色又は無色の導電性物質を含有させた導
電性繊維の研究が盛んである。なかでも酸化亜鉛
や酸化錫を主成分とする導電性金属酸化物やこれ
らの皮膜を有する微粒子は白色に近く、比較的良
好な導電性と混練性を有していることが判り、注
目されている。しかし、導電性カーボンブラツク
を用いた導電性複合繊維並みの導電性を得るに
は、導電性カーボンブラツクの場合に比べて2〜
3倍の導電性金属酸化物粒子を混練する必要があ
るなど解決すべき問題がいくつか残されており、
実用化が遅れている。 導電性金属酸化物等の粒子を多量に分散した導
電性成分が繊維表面に露出している導電性複合繊
維は優れた制電性能を発揮するものの、金属摩耗
性が著しいという欠点がある。こうした欠点を改
善するものとして、島成分が導電性を有する海島
構造部と単一ポリマー部とからなる特殊複合繊維
が特開昭56−58008号公報に提案されている。し
かしながら、導電性成分が表面に露出しているも
のに比べ制電性能に劣るという欠点は免れ難い。
また、導電性金属酸化物等の粒子を多量に分散し
た導電性組成物はメトルフロー(溶融流動性)が
著しく低く、繊維化することは容易なことではな
い。そのため、共重合して低粘度化したポリマー
を使用したり、可塑剤を添加したりしているが、
製糸性が犠牲になることが多い。 (発明が解決しようとする問題点) 本発明者はかかる背景から、導電性成分が繊維
表面に露出したものと同等の優れた制電性能を発
揮し、且つ金属摩耗性の改良された白色の導電性
複合繊維を得ることを目的に鋭意研究した結果、
本発明を完成するに至つた。 (問題点を解決するための手段) すなわち、本発明はポリオレフインP1に金属
又は導電性金属化合物の粒子を40〜80重量%分散
した導電性組成物P1′と前記ポリオレフインP1
相溶性を有しない繊維形成性重合体P2の混合物
Aと、非導電性の繊維形成性熱可塑性重合体Bと
が接合され、前記混合物Aが繊維表面に3μm以
下の幅で露出し、且つ前記組成物P1′が繊維長さ
方向において部分的に開口露出してなる複合繊維
であつて、該複合繊維の金属摩耗性が15分以上で
あることを特徴とする金属摩耗性のない白色導電
性複合繊維に係るものである。 本発明において使用する熱可塑性重合体P1
後記P2と相溶性を有しないものであれば任意で
あるが、ナイロン6、ナイロン66、ナイロン12な
どのポリアミド、ポリエチレンテレヘタレート、
ポリブチレンテレフタレートなどのポリエステ
ル、ポリエチレン、ポリプロピレンなどのポリオ
レフイン、ポリウレタン及びそれらの共重合体、
ポリオキシレン(ポリエチレンオキシド)のよう
なポリエーテル及びその誘導体(例えば、ポリエ
チレンオキシド/ポイエチレンテレヘタレートの
ブロツクコポリマー)ポリビニルアルコール、ポ
リカプラクトンなどが好ましい。 本発明において使用する導電性粒子は金属又は
導電性金属化合物の粒子或いは表面にこれらの皮
膜を有する粒子であつて、粉末状での比抵抗が
104Ω・cm程度以下のものであれば、あらゆる種
類の粒子が使用可能である。好適な導電性粒子と
して、白度の高い酸化錫、酸化亜鉛、酸化銅、亜
酸化銅、酸化インジウム、酸化ジルコニウム、酸
化タングステンなどの金属酸化物、銀、ニツケ
ル、銅、鉄などの金属或いはこれらの合金、硫化
銅、沃化銅、沃化亜鉛などの金属化合物を挙げる
ことができる。金属酸化物の多くのものは絶縁体
に近い半導体であつて本発明の目的に充分な導電
性を示さないことが多い。しかしながら、例え
ば、金属酸化物に適当な第2成分(不純物)を少
量(50%以下、特に25%以下)添加するなどの方
法により、導電性を強化し、本発明の目的に充分
な導電性を有するのが得られる。このような導電
性強化剤としては、酸化錫に対して酸化アンチモ
ンが、酸化亜鉛に対してアルミニウム、カリウ
ム、インジウム、ゲルマニウム、錫などの金属酸
化物が使える。 更に、酸化チタン、酸化亜鉛、酸化マグネシウ
ム、酸化錫、酸化鉄、酸化ケイ素、酸化アルミニ
ウムなどの非導電性無機粒子の表面に上記金属、
金属酸化物又は金属化合物の導電性皮膜を形成し
た粒子も用いられる。 導電性粒子の導電性は、粉末状での比抵抗が
104Ω・cm程度以下、特に102Ω・cm程度以下が好
ましく、101Ω・cm程度以下が最も好ましい。実
際に102Ω・cm〜10-2Ω・cm程度のものが得られ、
本発明の目的に好適に応用することができるが、
更に優れ導電性のものは一層好ましい。粉末の比
抵抗(体積抵抗率)は直径1cmの絶縁体の円筒に
試料を5gr詰め、上部からピストンによつて
200Kgの圧力を加え、直流電圧(例えば0.001〜
1000V)を印加して(電流1mA以下で)測定す
る。 また導電性粒子は充分小さい粒径のものでなく
てはならない。平均粒径が1〜2μmのものも使
用不可能ではないが、通常平均粒径が1μm以下、
特に0.5μm以下、最も好ましくは0.3μm以下のも
のが用いられる。 上記導電性粒子の熱可塑性重合体P1への分散
は溶融状態で撹拌混合すること(混練)により為
されるが、分散をできるだけ均一にすることが好
ましい。必要であれば、粒子分散剤を少量添加す
ることも好ましい。導電性粒子の混合率は、種
類、導電性、連鎖形成能及びP1の性質や結晶性
などによつて変るが、40〜85重量%程度の範囲で
あり、多くの場合60〜80重量%である。40重量%
未満では充分な導電性を示さなくなるし、一方、
85重量%を越えても、導電性は飽和に達してお
り、また溶融流動性や曳糸性が著しく低下する。 本発明において使用する繊維形成性熱可塑性重
合体P2及びBは繊維形成性のものであれば任意
であるが、ナイロン6、ナイロン66、ナイロン12
などのポリアミド、ポリエチレンテレフタレー
ト、ポリブチレンテレフタレータなどのポリエス
テル、ポリエチレン、ポリプロピレンなどのポリ
オレフイン、ポリウレタン及びこれらの共重合体
が好適である。特にナイロン6、ナイロン66、ポ
リエチレンテレフタレート、ポリプロピレンは現
在最も多量に商業生産されている合成繊維であ
り、これらと混用されて使用される機会が多い導
電性複合繊維の保護成分Bとして最適である。
P2及びBの組合わせは、延伸等による剥離を防
止するという点から、同種又は近似のポリマーの
組合わせが望ましい。 また、公知の方法によりその染色受容性を改善
して(例えば共重合させて塩基性又は酸性の染色
部位を導入する)合成繊維や天然繊維とのブレン
ド又は相互染色を容易にすることもできる。或い
は艶消性、顔料、着色剤、安定剤、制電制(ポリ
アルキレンオキシド類、界面活性剤など)などを
添加することもできる。 本発明の繊維は、前記導電性組成物P1と上記
P2の混合物Aと、上記Bの保護成分とが接合さ
れた複合繊維である。Aが繊維表面の一部を占め
ることは、導電性組成物P1′が繊維表面に開口露
出するための必要条件である。繊維横断面におい
てAが繊維表面に占める部分の長さ(Aの露出巾
という)は、P1の開口露出部分の長さの上限と
なり、金属摩耗性の見地から狭い程良く、3μm
以下とすることが好ましく、1μm以下が特に好
ましい。 更に、本発明の繊維は、導電性組成物P1′が繊
維長さ方向において部分的に開口露出している必
要があり、開口露出部分の発現間隔は0.1〜200mm
が好ましい。金属酸化物などの粒子を多量に分散
したP1′が0.1mm未満の間隔で露出すると、金属摩
耗性が著しくなり、延撚工程における糸切れ多発
などのトラブルを生じる。一方、導電性成分が繊
維表面に(連続的に)露出したものと同等の制電
性能を発揮するためには開口露出部分の発現間隔
は200mm以下であることが好ましく、10mm以下が
特に好ましい。200mm以上になると、制電性能を
充分に発揮できなくなり、混用率を増大しなけれ
ばならなくなる。 P1′の開口露出部分の発現間隔は、上記Aの露
出巾に勿論依存しているが、本発明ではP1′とP2
の混合比率及びメルトフローレート比によつてコ
ントロールする。導電性成分P1′の混合比率は
P1′を繊維長さ方向において部分的に開口露出さ
せるためには70重量%以下とすることが好まし
く、40重量%以下が特に好ましい。他方、この混
合比率は小さくなると発現間隔が長大となり、充
分な制電性能を発揮しなくなる傾向が出てくるた
め、5重量%以上が好ましく、特に10重量%以上
が好ましい。P1′のメルトフローレートは導電性
粒子を多量に分散しているため大巾に低下する傾
向にある。従つてP2として繊維用のポリマー、
或いはその変性ポリマーを使うとP1′に対するP2
のメルトフローレート比は、通常1より大きい組
合せとなる。このメルトフローレート比が1に近
いと、導電性成分が繊維表面に混合比率に応じ
て、或いは短い間隔で開口露出する傾向が出るの
で、3以上とすることが好ましく、特に10以上が
好ましい。殊に、第2〜4図のようにAの露出巾
が狭い場合には、メルトフローレートの小さい導
電性成分は流量の多い内部に集まり、開口露出部
分の発現間隔が混合率に比べて大きくなり、好適
である。 本発明の繊維は溶融紡糸方法(複合)によつて
製造できるが、導電性成分P1′が繊維長さ方向に
おいて部分的に開口露出していることが必要であ
る。このような繊維は上述したように、熱可塑性
重合体P1に導電性粒子を分散した導電性組成物
P1′5〜70重量部とP1の3倍以上のメルトフローレ
ートを有し、且つ相溶性を有しない繊維形成性熱
可塑性重合体P230〜95重量部の混合物Aと、非
導電性の繊維形成性重合体Bとを溶融紡糸(複
合)することが肝要である。また、口金の設計に
おいては下記のような特別な工夫をすることで可
能となる。すなわち、(イ)AとBと合流する直前に
剪断速度が102sec-1以上となるポリマー導入孔を
設けると、(ロ)Aの露出部を形成させるための内部
オルフイスを短辺0.07mm程度の長方形にするこ
と、(ハ)合流する直前のAの流速をVA、Bの流速
をVB、合流直後の複合流の流速をVA+Bとしたと
き、これらをほぼ等しく、且つ、VA<VB<VA+B
とすることが好ましい。本発明においては、導電
性組成物を単独ではなく、(これと相溶性の無い)
繊維形成性ポリマーとの混合流として取扱うた
め、従来繊維化が困難であつた導電性粒子高混合
率の複合繊維を容易に製造することが可能とな
る。 本発明の繊維は、充分な導電性を有していなく
てはならず、107Ω・cm未満の非抵抗を有するこ
とが好ましく、103Ω・cm以下が特に好ましい。
また、本発明の繊維は、後記の評価方法による金
属摩耗性が15分以上でなくてはならず、更に20分
以上と大幅に改良された金属摩耗性を有するもの
が好ましい(実施例1、比較例1、2参照)。 導電性組成物P1′の複合比率(断面積占有率)
については、導電性粒子を多量に含有した導電性
成分は曳糸性に劣る傾向があるため、通常30%以
下が好ましく、特に15%以下が好適である。他
方、複合比率が小さくなると導電性が不安定にな
り、或いは低下する傾向が出てくるため、通常1
%以上が好ましく、特に3%以上が好適である。 本発明の繊維は白色又は色色に近く、例えば白
度(反射率)60%以上のものを製造することがで
き、従来のカーボンブラツク系の導電性複合繊維
が不適当であつた白色他は淡色の繊維製品にも使
用することができる。連続フイラメント又はステ
ープル状で、巻縮しない状態又は巻縮した状態で
他の帯電性の天然繊維又は人造繊維と混用して繊
維製品に制電性能を付与することができる。混用
率は、通常0.1〜10%程度であるが、勿論目的に
よつては10〜100%や0.1%以下の混用率が適用さ
れる場合がある。混合は、混練、合糸、合撚糸、
混紡、交織、交編その他公知のあらゆる方法で行
うことができる。 以下実施例によつて本発明を説明する。%は特
記しない限り重量%を示す。 メルトフローレートは、JIS K7210(1976)に
準じて、すなわち、ダイの内径0.5mm、荷重は
2.16Kgf、温度は紡糸温度、操作はA法によつて
測定した。 導電性は、長さ10cmの単糸60本を束ねて両端を
金属端子と導電性接着剤で接着し、1KVの直流
電圧を印加して抵抗値を測定し、それから算出し
た比抵抗で評価した。 金属摩耗性は、20デニール3フイラメントの糸
(但し、導電性フイラメントは1本で、残りの2
本は導電性成分の無い非導電性フイラメントから
なる混練糸)を用い、直径35μmのステンレス線
上を100m/分の速度で糸を走行させた時の(接
触前の糸張力4〜5g、接触角45°)ステンレス
線の切断時間で評価した。 制電性は、ナイロン6の200デニール48フイラ
メントの丸編物に約6mm間隔で編込み(10本に1
本の割合)、この編物をよく洗濯、乾燥し、温湿
度25℃、33%の雰囲気中、木製の台上でウール布
で軽く15回摩擦し、1分後の帯電圧で評価した。
この評価方法によれば帯電圧が2000V以下であれ
あほとんどの状況下で静電気障害を防止すること
ができる。 実施例 1 表面に酸化錫(SnO2)皮膜を有する酸化チタ
ン粒子に対して1.5%の酸化アンチモンを混合焼
成して導電性化した粒子をCとする。Cの平均粒
径は0.25μm(粒径のバラツキ範囲は0.20〜0.30μ
mで比較的揃つている)、酸化錫の含有率は15%、
比抵抗4.3Ω・cm、外観は白色に近い淡灰青色で
白度(光反射率)は83%であつた。 メルトフロー15のポリプロピレンの粉末約25%
と上記C75%を混合し、更に溶融混練して導電性
組成物P1′を得た。粒子分散剤としてポリエチレ
ンオキシド/ポリブチレンオキシドのブロツク共
重合物で(共重合比3/1)、分子量4000のもの
をCに対して0.3%添加し、ポリプロピレン粉末
に混合するときは流動性改善剤としてステアリン
酸マグネシウム塩をCに対して0.5%添加した、
P1′のメルトフローレートは0.1であつた。 上記P1′のペレツトとメルトフローレート2.0の
ナイロン6のペレツトを1:2でブレンドした混
合物と、分子量16000のナイロン6に艶消剤とし
て酸化チタン粒子を0.35%添加したものを第2図
のような複合構造で溶融紡糸した(但し、導電性
フイラメントは1本で、残りの2本は導電性成分
の無い非導電性フイラメントからなる混成糸)。
両成分の複合比(体積)を1:1とし、紡糸温度
280℃で、直径0.25mmのオリフイスから紡出し、
冷却・オイリングしながら800m/分の速度で捲
取つた。次いで90℃、2.6倍で延伸し、更に170℃
の熱板に接触させた後、12T/mで加撚しながら
パーンに巻取り、20デニール3フイラメントの延
伸糸Y1を得た。 比較例 1 メルトフロー50のポリプロピレンを使用して、
実施例1と同様に導電性組成物P1″を得た。P1″と
分子量16000のナイロン6に酸化チタン粒子を
0.35%添加したものを複合比(体積)1:10で実
施例1と同様に紡糸し、次いで延撚して延伸糸
Y2を得た。尚、Y2の紡糸においては糸切れ率が
17%で実施例1の7%より高く、また延撚におい
ては約400g〜800gの巻量で40%近くが糸切れ
し、すべてのトラベラーにするどい切込みキズが
発生していた。 比較例 2 導電性成分が芯部に含まれる芯鞘型の複合構造
で、実施例1と同様に紡糸・延撚し、延伸糸Y3
を得た。 これら延伸糸の性能を第1表に示す。Y1〜Y3
はいずれも比抵抗で103Ω・cm程度の優れた導電
性を示すが、導電性性能は芯鞘型のY3が著しく
劣る。また金属摩耗性においてはY2が著しく不
良である。一方、本発明の繊維であるY1は制電
性能、金属摩耗性ともに優れていることが判る。 次にY1〜Y3をそれぞれナイロン6の糸2600デ
ニール140フイラメントと合糸して巻縮加工した
ものを4コースに1本用い、他の3コースはナイ
ロン6巻縮加工糸2600デニール140フイラメント
を用いてタフテツドカーペツト(ループ、混用率
0.19%)を製造した。カーペツトは常法により酸
性線染料で黄色に染色したが、いずれも導電性繊
維が目立つことなく、導電性繊維を混用していな
いカーペツトと同様の外観を有していた。得られ
たカーペツト上を皮鞘で歩行(25℃、20%RH)
したときの人体帯電圧を測定したところ、本発明
の繊維Y1を混用したカーペツは−2.0KVで、Y2
を混用したカーペツトの−1.9KVと同等の優れた
制電性能を有していた。一方、Y3を混用したカ
ーペツトは−4.4KVで、接地した把手に触れた時
放電シヨツクを感じた。また、Y3を合糸した巻
縮加工糸を全コースに用いたカーペツトは−
2.5KVであつた。尚、比較のため、ナイロン6巻
縮加工糸2600デニール140フイラメントのみから
なるカーペツトでは人体帯電圧が−9.2KVで、接
地した把手に触れた時の放電シヨツクは激しいも
ので、かなりの恐怖感を生ぜしめるものであつ
た。
(Industrial Application Field) The present invention relates to a white conductive composite fiber that has excellent antistatic performance and improved metal abrasion resistance. (Prior Art) Conventionally, electrostatic disturbances such as discharge shocks caused by walking on a carpet and touching a door handle, spark discharges due to frictional charging, and dust adhesion have been very troublesome and caused considerable damage. It was something that caused a sense of pleasure. One of the effective means of imparting antistatic properties to synthetic fibers and natural fibers is a conductive composite in which a conductive component made of a polymer in which conductive carbon black is dispersed and a protective component made of a fiber-forming polymer are bonded together. There is a method of mixing a small amount of fiber. However, since conductive composite fibers using carbon black are colored black or gray, their uses are actually limited. In recent years, there has been active research into conductive fibers containing white or colorless conductive substances in order to improve the black appearance. Among them, conductive metal oxides whose main components are zinc oxide and tin oxide, and fine particles with coatings of these metals, are close to white and have been found to have relatively good conductivity and kneadability, and have attracted attention. There is. However, in order to obtain conductivity comparable to that of conductive composite fibers using conductive carbon black, it is necessary to
Several issues remain to be resolved, such as the need to mix three times as many conductive metal oxide particles.
Practical implementation is delayed. Although conductive composite fibers in which a conductive component in which a large amount of particles such as conductive metal oxides are dispersed are exposed on the fiber surface exhibit excellent antistatic performance, they have the drawback of significant metal abrasion. In order to improve these drawbacks, a special composite fiber consisting of a sea-island structure part whose island components have conductivity and a single polymer part has been proposed in Japanese Patent Laid-Open No. 56-58008. However, the disadvantage is that the antistatic performance is inferior to those in which the conductive component is exposed on the surface.
Further, a conductive composition in which a large amount of particles such as a conductive metal oxide is dispersed has extremely low melt flow (melt fluidity), and it is not easy to form it into fibers. For this reason, polymers that have been copolymerized to lower the viscosity are used or plasticizers are added.
Spinability is often sacrificed. (Problems to be Solved by the Invention) With this background in mind, the present inventors have developed a white material that exhibits excellent antistatic performance equivalent to that of a fiber in which the conductive component is exposed on the surface of the fiber, and has improved metal abrasion resistance. As a result of intensive research aimed at obtaining conductive composite fibers,
The present invention has now been completed. (Means for Solving the Problems) That is, the present invention provides a conductive composition P1 ' in which particles of a metal or a conductive metal compound are dispersed in a polyolefin P1 in an amount of 40 to 80% by weight, and a conductive composition P1 ' that is compatible with the polyolefin P1 . A mixture A of a fiber-forming polymer P 2 having no fiber-forming polymer P 2 and a non-conductive fiber-forming thermoplastic polymer B are bonded, the mixture A is exposed on the fiber surface in a width of 3 μm or less, and the composition A white conductive material with no metal abrasion, characterized in that the substance P1 ' is partially exposed through an opening in the length direction of the fiber, and the composite fiber has a metal abrasion of 15 minutes or more. This relates to composite fibers. The thermoplastic polymer P 1 used in the present invention can be any polymer as long as it is not compatible with P 2 described below, and includes polyamides such as nylon 6, nylon 66, and nylon 12, polyethylene terehetalate,
Polyesters such as polybutylene terephthalate, polyolefins such as polyethylene and polypropylene, polyurethanes and their copolymers,
Preferred are polyethers such as polyoxylene (polyethylene oxide) and their derivatives (eg, block copolymers of polyethylene oxide/poyethylene terehetalate), polyvinyl alcohol, polycalactone, and the like. The conductive particles used in the present invention are particles of a metal or a conductive metal compound, or particles having a film thereof on the surface, and have a specific resistance in powder form.
All kinds of particles can be used as long as they are about 10 4 Ω·cm or less. Suitable conductive particles include highly white metal oxides such as tin oxide, zinc oxide, copper oxide, cuprous oxide, indium oxide, zirconium oxide, and tungsten oxide, and metals such as silver, nickel, copper, and iron; Examples include alloys of copper sulfide, copper iodide, zinc iodide, and other metal compounds. Many metal oxides are semiconductors that are close to insulators and often do not exhibit sufficient electrical conductivity for the purpose of the present invention. However, for example, by adding a small amount (50% or less, especially 25% or less) of a suitable second component (impurity) to the metal oxide, the conductivity can be strengthened and sufficient conductivity can be obtained for the purpose of the present invention. It is obtained to have . As such conductivity enhancers, antimony oxide can be used for tin oxide, and metal oxides such as aluminum, potassium, indium, germanium, tin and the like can be used for zinc oxide. Furthermore, the above metals, such as titanium oxide, zinc oxide, magnesium oxide, tin oxide, iron oxide, silicon oxide, aluminum oxide, etc.
Particles having a conductive coating of metal oxide or metal compound may also be used. The conductivity of conductive particles is determined by the specific resistance in powder form.
It is preferably about 10 4 Ω·cm or less, particularly about 10 2 Ω·cm or less, and most preferably about 10 1 Ω·cm or less. In fact, a value of about 10 2 Ω・cm to 10 -2 Ω・cm can be obtained,
Although it can be suitably applied to the purpose of the present invention,
Those with even better conductivity are even more preferable. The specific resistance (volume resistivity) of the powder is determined by filling an insulating cylinder with a diameter of 1 cm with 5 gr of the sample, and using a piston from the top.
Apply a pressure of 200Kg and apply a DC voltage (e.g. 0.001~
1000V) (at a current of 1mA or less) and measure. Further, the conductive particles must have a sufficiently small particle size. Although it is not impossible to use particles with an average particle size of 1 to 2 μm, usually the average particle size is 1 μm or less,
In particular, those having a diameter of 0.5 μm or less, most preferably 0.3 μm or less are used. The conductive particles are dispersed in the thermoplastic polymer P 1 by stirring and mixing (kneading) in a molten state, but it is preferable to make the dispersion as uniform as possible. If necessary, it is also preferable to add a small amount of a particle dispersant. The mixing ratio of conductive particles varies depending on the type, conductivity, chain-forming ability, properties and crystallinity of P1 , etc., but is in the range of about 40 to 85% by weight, and in most cases 60 to 80% by weight. It is. 40% by weight
If it is less than that, sufficient conductivity will not be exhibited;
Even if it exceeds 85% by weight, the conductivity reaches saturation, and the melt fluidity and stringiness are significantly reduced. The fiber-forming thermoplastic polymers P2 and B used in the present invention can be any fiber-forming polymer, including nylon 6, nylon 66, nylon 12
Suitable are polyamides such as, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyolefins such as polyethylene and polypropylene, polyurethanes, and copolymers thereof. In particular, nylon 6, nylon 66, polyethylene terephthalate, and polypropylene are currently the most commercially produced synthetic fibers, and are most suitable as the protective component B of conductive composite fibers that are often used in combination with these.
The combination of P 2 and B is preferably a combination of the same or similar polymers from the viewpoint of preventing peeling due to stretching or the like. It is also possible to improve its dye receptivity by known methods (for example by copolymerizing to introduce basic or acidic dyeing sites) to facilitate blending or interdying with synthetic or natural fibers. Alternatively, matting agents, pigments, coloring agents, stabilizers, antistatic agents (polyalkylene oxides, surfactants, etc.), etc. may be added. The fiber of the present invention comprises the above conductive composition P1 and the above conductive composition P1.
This is a composite fiber in which mixture A of P 2 and the protective component B described above are bonded together. The fact that A occupies a part of the fiber surface is a necessary condition for the conductive composition P 1 ' to be exposed to the fiber surface. The length of the part that A occupies on the fiber surface in the cross section of the fiber (referred to as the exposed width of A) is the upper limit of the length of the exposed part of the opening of P1 , and from the standpoint of metal abrasion, the narrower the better, 3 μm.
The thickness is preferably at most 1 μm, particularly preferably at most 1 μm. Furthermore, in the fibers of the present invention, the conductive composition P 1 ' must be partially exposed through openings in the length direction of the fibers, and the interval between exposed openings is 0.1 to 200 mm.
is preferred. If P 1 ', in which a large amount of particles such as metal oxides are dispersed, is exposed at intervals of less than 0.1 mm, metal abrasion becomes significant and problems such as frequent yarn breakage occur during the stretching and twisting process. On the other hand, in order to exhibit antistatic performance equivalent to that of a fiber in which the conductive component is (continuously) exposed on the fiber surface, the interval between exposed openings is preferably 200 mm or less, particularly preferably 10 mm or less. If it exceeds 200 mm, the antistatic performance cannot be fully demonstrated, and the mixing ratio must be increased. The interval between the opening exposed portions of P 1 ' depends on the exposed width of A above, but in the present invention, P 1 ' and P 2
It is controlled by the mixing ratio and melt flow rate ratio. The mixing ratio of the conductive component P 1 ′ is
In order to partially expose P 1 ' in the longitudinal direction of the fiber, the content is preferably 70% by weight or less, particularly preferably 40% by weight or less. On the other hand, if this mixing ratio is small, the interval between occurrences becomes long and there is a tendency that sufficient antistatic performance is not exhibited, so it is preferably 5% by weight or more, particularly preferably 10% by weight or more. The melt flow rate of P 1 ' tends to decrease significantly because a large amount of conductive particles are dispersed. Therefore polymers for fibers as P 2 ,
Alternatively, if the modified polymer is used, P 2 for P 1
The melt flow rate ratio of is usually greater than 1 in combination. If this melt flow rate ratio is close to 1, the conductive component tends to be exposed on the fiber surface in openings depending on the mixing ratio or at short intervals, so it is preferably 3 or more, particularly 10 or more. In particular, when the exposed width of A is narrow as shown in Figures 2 to 4, the conductive components with a low melt flow rate gather inside the interior where the flow rate is high, and the intervals between the exposed openings are large compared to the mixing ratio. Therefore, it is suitable. The fiber of the present invention can be produced by a melt spinning method (composite), but it is necessary that the conductive component P 1 ' is partially exposed through an opening in the fiber length direction. As mentioned above, such fibers are made of a conductive composition in which conductive particles are dispersed in a thermoplastic polymer P1 .
Mixture A of P 1'5 to 70 parts by weight and 30 to 95 parts by weight of a fiber-forming thermoplastic polymer P 2 which has a melt flow rate 3 times or more that of P 1 and has no compatibility, and a non-conductive It is important to melt spin (composite) the fiber-forming polymer B. In addition, this can be achieved by making the following special efforts in designing the cap. That is, if (a) a polymer introduction hole with a shear rate of 10 2 sec -1 or more is provided just before A and B merge, then (b) the internal orifice for forming the exposed part of A will be 0.07 mm on the short side. (c) When the flow velocity of A immediately before merging is V A , the flow velocity of B is V B , and the flow velocity of the composite flow immediately after merging is V A + B , these should be approximately equal, and ,V A <V B <V A+B
It is preferable that In the present invention, the conductive composition is not used alone, but rather (incompatible with the conductive composition).
Since it is handled as a mixed flow with a fiber-forming polymer, it becomes possible to easily produce composite fibers with a high mixing ratio of conductive particles, which has been difficult to form into fibers in the past. The fibers of the invention must have sufficient electrical conductivity, preferably having a non-resistance of less than 10 7 Ω·cm, particularly preferably less than 10 3 Ω·cm.
Furthermore, the fibers of the present invention must have a metal abrasion resistance of 15 minutes or more according to the evaluation method described below, and preferably have significantly improved metal abrasion resistance of 20 minutes or more (Example 1, (See Comparative Examples 1 and 2). Composite ratio (cross-sectional area occupancy) of conductive composition P 1
Since conductive components containing a large amount of conductive particles tend to have poor spinnability, the content is usually preferably 30% or less, particularly preferably 15% or less. On the other hand, as the composite ratio becomes smaller, the conductivity tends to become unstable or decrease;
% or more is preferable, and 3% or more is particularly preferable. The fibers of the present invention can be produced in white or nearly colored fibers, for example, with a whiteness (reflectance) of 60% or more, and in contrast to white and pale colors, for which conventional carbon black-based conductive composite fibers were unsuitable. It can also be used in textile products. In the form of a continuous filament or staple, it can be mixed with other chargeable natural fibers or man-made fibers in an uncrimped or crimped state to impart antistatic performance to textile products. The mixing rate is usually about 0.1 to 10%, but of course, depending on the purpose, a mixing rate of 10 to 100% or 0.1% or less may be applied. Mixing includes kneading, doubling, twisting,
It can be carried out by blending, interweaving, interweaving, or any other known method. The present invention will be explained below with reference to Examples. % indicates weight % unless otherwise specified. The melt flow rate was determined according to JIS K7210 (1976), that is, the inner diameter of the die was 0.5 mm, and the load was
The temperature was 2.16 Kgf, the temperature was the spinning temperature, and the operation was performed using Method A. Conductivity was evaluated by bundling 60 single threads with a length of 10 cm and gluing both ends with metal terminals and conductive adhesive, applying a DC voltage of 1KV to measure the resistance value, and then calculating the specific resistance. . The metal abrasion resistance is a 20 denier 3-filament thread (however, one conductive filament is used, and the remaining 2
This book uses a kneaded yarn made of non-conductive filaments with no conductive components, and runs the yarn at a speed of 100 m/min on a stainless steel wire with a diameter of 35 μm (thread tension before contact is 4 to 5 g, contact angle is 45°) was evaluated based on the cutting time of stainless steel wire. The antistatic property is determined by knitting 200 denier 48 filament circular knitted fabric of nylon 6 at approximately 6 mm intervals (1 in 10).
This knitted fabric was thoroughly washed and dried, rubbed lightly with a woolen cloth 15 times on a wooden table in an atmosphere with a temperature and humidity of 25°C and 33%, and evaluated by the electrostatic voltage after 1 minute.
According to this evaluation method, it is possible to prevent electrostatic damage under most circumstances, even if the charged voltage is 2000V or less. Example 1 Titanium oxide particles having a tin oxide (SnO 2 ) film on their surfaces are mixed with 1.5% antimony oxide and fired to make the particles conductive. The average particle size of C is 0.25μm (the variation range of particle size is 0.20~0.30μm)
m), the tin oxide content is 15%,
It had a specific resistance of 4.3 Ω·cm, an appearance of pale gray-blue close to white, and a whiteness (light reflectance) of 83%. Approximately 25% polypropylene powder with melt flow 15
and the above C75% were mixed and further melted and kneaded to obtain a conductive composition P 1 '. As a particle dispersant, a block copolymer of polyethylene oxide/polybutylene oxide (copolymerization ratio 3/1) with a molecular weight of 4000 is added at 0.3% to C, and when mixed with polypropylene powder, it is used as a fluidity improver. 0.5% magnesium stearate salt was added to C,
The melt flow rate of P 1 ' was 0.1. A 1 :2 blend of P 1 ' pellets and nylon 6 pellets with a melt flow rate of 2.0, and a mixture of nylon 6 with a molecular weight of 16,000 and 0.35% titanium oxide particles added as a matting agent were prepared as shown in Figure 2. (However, one conductive filament was used, and the remaining two were hybrid yarns consisting of non-conductive filaments with no conductive component.)
The composite ratio (volume) of both components was 1:1, and the spinning temperature was
Spun at 280℃ from an orifice with a diameter of 0.25mm,
It was rolled up at a speed of 800 m/min while cooling and oiling. Then stretched at 90℃, 2.6 times, and further stretched at 170℃.
After being brought into contact with a hot plate, the yarn was wound into a pirn while being twisted at 12 T/m to obtain a drawn yarn Y1 of 3 filaments of 20 denier. Comparative example 1 Using polypropylene with a melt flow of 50,
A conductive composition P 1 ″ was obtained in the same manner as in Example 1. Titanium oxide particles were added to P 1 ″ and nylon 6 with a molecular weight of 16,000.
The yarn containing 0.35% was spun at a composite ratio (volume) of 1:10 in the same manner as in Example 1, and then stretched and twisted to form a drawn yarn.
Got Y2 . In addition, in spinning Y 2 , the yarn breakage rate is
The yarn breakage rate was 17%, higher than 7% in Example 1, and in the case of stretching and twisting, nearly 40% of the yarns were broken at a winding amount of about 400 g to 800 g, and all the travelers had groove cut flaws. Comparative Example 2 A core-sheath type composite structure in which a conductive component is contained in the core was spun, drawn and twisted in the same manner as in Example 1, and a drawn yarn Y 3
I got it. Table 1 shows the performance of these drawn yarns. Y1Y3
Both exhibit excellent electrical conductivity with a specific resistance of about 10 3 Ωcm, but the core-sheath type Y 3 is significantly inferior in electrical conductivity. Furthermore, Y2 is extremely poor in terms of metal abrasion resistance. On the other hand, it can be seen that Y1 , the fiber of the present invention, is excellent in both antistatic performance and metal abrasion resistance. Next, each of Y 1 to Y 3 was combined with 2600 denier 140 filament of nylon 6 thread and crimped, and one of the 4 courses was used, and the other 3 courses were crimped 2600 denier 140 filament of nylon 6 thread. Using tufted carpet (loop, mixing rate
0.19%). The carpets were dyed yellow with an acid line dye in a conventional manner, but the conductive fibers were not noticeable in any case, and the carpets had the same appearance as carpets that did not contain conductive fibers. Walking on the resulting carpet with the skin sheath (25℃, 20%RH)
When the voltage on the human body was measured, it was -2.0KV for the carpet mixed with the fiber Y1 of the present invention, and Y2
It had excellent anti-static performance equivalent to -1.9KV of carpet mixed with On the other hand, the carpet mixed with Y3 had a voltage of -4.4KV, and I felt a discharge shock when I touched the grounded handle. In addition, carpets that use crimped yarn with Y3 yarn for all courses are -
It was 2.5KV. For comparison, in a carpet made only of 2600 denier 140 filament of nylon 6-wound yarn, the voltage on the human body was -9.2 KV, and when the person touched the grounded handle, the discharge shock was intense and caused quite a sense of fear. It was something that gave birth to something.

【表】 (発明の効果) 本発明の繊維は、導電性成分が露出したものと
同等の優れた制電性能を発揮し、且つ金属摩耗性
の改良された白色の導電性複合繊維であり、従
来、カーボンブラツク系のものが不適当であつた
白色又は淡色の繊維製品にも使用することが可能
である。また、本発明の製造法は、溶融流動性の
低い導電性成分を単独ではなく、繊維形成性ポリ
マーとの混合流として取扱うため、製糸性に優
れ、工業生産への適用性が高いという効果もあ
り、工業的価値は極めて大きいものと言える。
[Table] (Effects of the invention) The fiber of the present invention is a white conductive composite fiber that exhibits excellent antistatic performance equivalent to that of a fiber with an exposed conductive component and has improved metal abrasion resistance. It can also be used for white or light-colored textile products, for which carbon black-based products have conventionally been unsuitable. In addition, the production method of the present invention handles the conductive component with low melt flowability not alone but as a mixed stream with the fiber-forming polymer, so it has excellent silk-spinning properties and is highly applicable to industrial production. It can be said that the industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第2図〜第4図は本発明繊維の横断面図の好適
な具体例であり、また第1図は一実施態様を示す
ものである。
2 to 4 are preferred specific examples of cross-sectional views of the fibers of the present invention, and FIG. 1 shows one embodiment.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリオレフインP1に金属又は導電性金属化
合物の粒子を40〜80重量%分散した導電性組成物
P1′と前記ポリオレフインP1と相溶性を有しない
繊維形成性熱可塑性重合体P2の混合物Aと、非
導電性の繊維形成性熱可塑性重合体Bとが接合さ
れ、前記混合物Aが繊維表面に3μm以下の幅で
露出し、且つ前記組成物P1′が繊維長さ方向にお
いて部分的に開口露出してなる複合繊維であつ
て、該複合繊維の金属摩耗性が15分以上であるこ
とを特徴とする金属摩耗性のない白色導電性複合
繊維。
1 Conductive composition in which 40 to 80% by weight of metal or conductive metal compound particles are dispersed in polyolefin P1
A mixture A of a fiber-forming thermoplastic polymer P 2 that is incompatible with P 1 ' and the polyolefin P 1 , and a non-conductive fiber-forming thermoplastic polymer B are joined, and the mixture A becomes a fiber. A conjugate fiber having a width of 3 μm or less exposed on the surface and in which the composition P 1 ' is partially exposed through openings in the fiber length direction, and the conjugate fiber has a metal abrasion resistance of 15 minutes or more. A white conductive composite fiber with no metal abrasion properties.
JP27902284A 1984-12-27 1984-12-27 Conductive conjugated fiber Granted JPS61152823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27902284A JPS61152823A (en) 1984-12-27 1984-12-27 Conductive conjugated fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27902284A JPS61152823A (en) 1984-12-27 1984-12-27 Conductive conjugated fiber

Publications (2)

Publication Number Publication Date
JPS61152823A JPS61152823A (en) 1986-07-11
JPH0366404B2 true JPH0366404B2 (en) 1991-10-17

Family

ID=17605299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27902284A Granted JPS61152823A (en) 1984-12-27 1984-12-27 Conductive conjugated fiber

Country Status (1)

Country Link
JP (1) JPS61152823A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190017A (en) * 1987-01-30 1988-08-05 Kanebo Ltd Antistatic conjugate fiber
JPS63235525A (en) * 1987-03-23 1988-09-30 Kanebo Ltd Electrically conductive conjugated yarn
JPH01148811A (en) * 1987-12-02 1989-06-12 Kanebo Ltd Production of electrically conductive conjugate fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526246A (en) * 1978-08-14 1980-02-25 Toray Ind Inc Highly oriented and electrically conductive conjugate fiber with excellent fiber performance
JPS5631016A (en) * 1979-08-13 1981-03-28 Toray Ind Inc Electrically conductive acrylonitrile composite fiber
JPS58115118A (en) * 1981-12-28 1983-07-08 Kanebo Ltd Electrically conductive composite fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526246A (en) * 1978-08-14 1980-02-25 Toray Ind Inc Highly oriented and electrically conductive conjugate fiber with excellent fiber performance
JPS5631016A (en) * 1979-08-13 1981-03-28 Toray Ind Inc Electrically conductive acrylonitrile composite fiber
JPS58115118A (en) * 1981-12-28 1983-07-08 Kanebo Ltd Electrically conductive composite fiber

Also Published As

Publication number Publication date
JPS61152823A (en) 1986-07-11

Similar Documents

Publication Publication Date Title
US3969559A (en) Man-made textile antistatic strand
US4457973A (en) Conductive composite filaments and methods for producing said composite filaments
US4420534A (en) Conductive composite filaments and methods for producing said composite filaments
JPH0364603B2 (en)
JPS5841910A (en) Electrically conductive mixed filament yarn
JPS60110920A (en) Electrically conductive composite fiber
JPH0366404B2 (en)
JPS6156334B2 (en)
JPH01292116A (en) Electrically conductive fiber and production thereof
JPS61174469A (en) Production of conductive composite fiber
KR900008725B1 (en) Conductive composite filaments and fibrous articles containing the same
JPH0122365B2 (en)
JPS60224813A (en) Antistatic conjugated fiber
JPS5930925A (en) Antistatic composite spun yarn and production thereof
JPH0122366B2 (en)
JPH10310944A (en) Antistatic sewing yarn
JPS6229526B2 (en)
JPH0551811A (en) Conductive conjugate fiber
JPH042808A (en) Electrically conductive conjugate fiber
JPH01183520A (en) Electrically conductive fiber
JP2988818B2 (en) Polyolefin-based conductive composite fiber
JPH01148811A (en) Production of electrically conductive conjugate fiber
JPH03241010A (en) Electrically conductive conjugate fiber
JPH0129890B2 (en)
JP3113054B2 (en) Conductive composite fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees