JPS63235525A - Electrically conductive conjugated yarn - Google Patents

Electrically conductive conjugated yarn

Info

Publication number
JPS63235525A
JPS63235525A JP62069454A JP6945487A JPS63235525A JP S63235525 A JPS63235525 A JP S63235525A JP 62069454 A JP62069454 A JP 62069454A JP 6945487 A JP6945487 A JP 6945487A JP S63235525 A JPS63235525 A JP S63235525A
Authority
JP
Japan
Prior art keywords
conductive component
fiber
electrically conductive
conductive
nylon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62069454A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ogawa
康弘 小川
Takao Osagawa
長川 孝夫
Hidenobu Tsutsumi
英伸 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP62069454A priority Critical patent/JPS63235525A/en
Priority to CA000556540A priority patent/CA1285358C/en
Priority to DE3888856T priority patent/DE3888856T2/en
Priority to EP88100844A priority patent/EP0276756B1/en
Priority to KR1019880000844A priority patent/KR900008725B1/en
Publication of JPS63235525A publication Critical patent/JPS63235525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To obtain the titled novel yarn having excellent antistatic properties and high whiteness degree free from metal wearability, industrially and readily producible, comprising an electrically conductive component having specific sectional shape, by combining a non-electrically conductive component with the electrically conductive component. CONSTITUTION:A non-electrically conductive component comprising a fiber- forming polymer and having >=10<7>OMEGA.cm specific resistance and an electrically conductive component comprising a thermoplastic polymer and inorganic electrically conductive particles and having <10<7>OMEGA.cm specific resistance are used to give the aimed yarn which has a sectional shape of the electrically conductive component consisting of a thick part 1 covered with the non-electrically conductive component 4 and a thin part 2 connected to the thick part 1 and reaching the surface of fiber and has <=1.5mum exposed width of the electrically conductive component to the surface of fiber. Polyamide is used as the non-electrically conductive component and polyethylene is preferably used as the thermoplastic polymer constituting the electrically conductive component.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規な導電性複合繊維に関する。詳しくは金属
摩耗性がなく、工業的に製造容易な導電性複合繊維に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a novel conductive composite fiber. Specifically, the present invention relates to conductive composite fibers that are not abrasive to metals and are easy to manufacture industrially.

(従来の技術) 繊維、特にポリエステル、ポリアミド、ポリアクリロニ
トリル、ポリオレフィン等の疎水性繊維は摩擦等による
静電気の発生が著しく、帯電圧がしばしば10 KVを
超え、種々の障害を起こすことはよく知られている。こ
のため帯電防止(制電性付与)に関する多数の提案がな
されている。
(Prior Art) It is well known that fibers, especially hydrophobic fibers such as polyester, polyamide, polyacrylonitrile, polyolefin, etc., generate a significant amount of static electricity due to friction, etc., and the electrostatic voltage often exceeds 10 KV, causing various problems. ing. For this reason, many proposals have been made regarding antistatic properties (imparting antistatic properties).

その1つは金属繊維を帯電性繊維に混用する方法である
が、加工、更用時の屈曲による折損で制電性が低下した
り、他繊維との混合・交編・交織が困難であること、特
有の金属光沢が製品の品位を下げてしまう等の欠点を有
する。
One method is to mix metal fibers with chargeable fibers, but the antistatic properties deteriorate due to breakage due to bending during processing and reuse, and mixing, interweaving, and interweaving with other fibers is difficult. However, it has drawbacks such as its unique metallic luster which lowers the quality of the product.

また、金属をメッキした繊維や導電性物質をコーティン
グした繊維は、製造コストが極めて高いこと、加工時や
使用時の屈曲や摩擦で剥離することが多く、耐久性に乏
しいことなど多くの欠点を有する。
In addition, fibers plated with metal or fibers coated with conductive substances have many drawbacks, such as extremely high production costs, often peeling off due to bending or friction during processing or use, and poor durability. have

更に、カーボンブラックや金属粉などの導電性粒子を熱
可塑性重合体全体に分散させた繊維は、導電性を付与す
る程度まで導電性粒子を分散させた場合、紡糸性、強度
、伸度の低下は免れず実用に供するものを得ることは極
めて困難である。
Furthermore, fibers in which conductive particles such as carbon black or metal powder are dispersed throughout a thermoplastic polymer suffer from a decrease in spinnability, strength, and elongation when the conductive particles are dispersed to the extent that they impart conductivity. It is extremely difficult to obtain something that can be put to practical use.

かかる欠点を解消すべく、カーボンブラックや金属粉な
どの導電性粒子を分散させた熱可塑性重合体とFJm形
成性重合体をサイドバイサイド或いは芯鞘型に複合した
繊維が特公昭52−81450号公報、特公昭5B−4
4579号公報、特公昭57−25647−8−公報等
で提案されている。しかしながら導電性粒子を含有する
導電性成分を非導電性ポリマーで完全に包みこんだ複合
繊維は、コロナ放電を生起するための鞘部の絶縁破壊が
起り難く、制電性が劣るという欠点がある1また、導電
性成分を鞘とする複合繊維や導電性成分と非導電性ポリ
マーをサイドバイサイド型に接合した複合繊維は、導電
性成分が繊維表面に露出していることによりコロナ放電
性すなわち制電性に優れるが、カーボンブラックや無機
導電性粒子の黒乃至灰色が目立ち、これらの複合m維を
混用した製品の品位を低下させる。また摩耗性が大きり
、摩擦によって相手を損偏させるという欠点を有する。
In order to overcome this drawback, Japanese Patent Publication No. 52-81450 discloses a fiber that is a side-by-side or core-sheath type composite of a thermoplastic polymer in which conductive particles such as carbon black or metal powder are dispersed and an FJm-forming polymer. Special Public Showa 5B-4
This method has been proposed in Japanese Patent Publication No. 4579, Japanese Patent Publication No. 57-25647-8, etc. However, composite fibers in which a conductive component containing conductive particles is completely wrapped in a non-conductive polymer have the drawback that dielectric breakdown of the sheath part that causes corona discharge is difficult to occur, and the antistatic properties are poor. 1 In addition, composite fibers with a conductive component as a sheath or composite fibers in which a conductive component and a non-conductive polymer are bonded side-by-side have corona discharge properties, that is, antistatic properties, because the conductive component is exposed on the fiber surface. However, the black or gray color of carbon black and inorganic conductive particles stands out, degrading the quality of products made by mixing these composite m-fibers. It also has the disadvantage of being highly abrasive and causing damage to the other party due to friction.

このような問題点を解決するためにいくつかの提案がな
されている。導電性成分を芯とする芯鞘型複合糸の制電
性を向上させるために、たとえば、特開昭60−224
818号公報には鞘成分に金属粒子または金属の被膜を
有する無機粒子を分散させた繊維が、また特開昭60−
110920号公報には鞘成分の最小厚さが8μm以下
の繊維が提案されている。また、サイドバイサイド型等
のSS性成分がw4維表面に露出した複合繊維の金属摩
耗性を軽減するために、たとえば特願昭59−2548
49号には可溶性ポリマーを鞘成分に用い、製品とした
後に溶解除去することによって導電性成分を露出させる
ことの出来る繊維が、またたとえば特開昭57−161
126号公報には導電性成分の繊維表面への露出度が8
0%以下の繊維が提案されている。これらの繊維はそれ
ぞれ優れた制電性を有し、加工工程に於ける金属摩耗に
対しても配慮されたものであるが、これらの繊維を製造
するためには特別の原料や煩雑な装置を用いるか或いは
極めて微妙な製造条件を設定する必要がある。
Several proposals have been made to solve these problems. In order to improve the antistatic properties of a core-sheath type composite yarn having a conductive component as a core, for example, Japanese Patent Application Laid-Open No. 60-224
No. 818 discloses a fiber in which metal particles or inorganic particles having a metal coating are dispersed in the sheath component, and Japanese Patent Application Laid-Open No. 1986-
Japanese Patent No. 110920 proposes a fiber whose sheath component has a minimum thickness of 8 μm or less. In addition, in order to reduce the metal abrasion of side-by-side type composite fibers in which SS components are exposed on the surface of W4 fibers, for example, Japanese Patent Application No. 59-2548
No. 49 discloses a fiber that uses a soluble polymer as a sheath component and can expose a conductive component by dissolving and removing it after being made into a product.
No. 126 discloses that the degree of exposure of the conductive component to the fiber surface is 8.
0% or less fibers have been proposed. Each of these fibers has excellent antistatic properties and is designed to prevent metal wear during the processing process, but producing these fibers requires special raw materials and complicated equipment. Therefore, it is necessary to set extremely delicate manufacturing conditions.

(発明が解決しようとする問題点) 本発明の目的は摩耗性がなく、且つ優れた制電性を有し
、しかも工業釣書こ容易に製造することのできる新規な
白変の高い導電性複合la紬を提供することにある。
(Problems to be Solved by the Invention) The object of the present invention is to provide a novel highly conductive composite with no abrasiveness, excellent antistatic properties, and which can be easily manufactured in an industrial fishing industry. Our goal is to provide la pongee.

(問題を解決するための手段) 本発明の目的は、繊維形成性ポリマーからなる比抵抗が
107Ω*cm以上の非導電性成分と、熱可塑性ポリマ
ーと無機導電性粒子からなる比抵抗が107Ω・cm未
満の導電性成分との複合繊維に於て、導電性成分の断面
形状が非導電性成分に包みこまれた肉厚の部分と、該肉
厚部に接続し繊維表面にまで達する細い部分からなり、
且つ導電性成分の繊維表面への露出幅が高々1.5μm
であることを特徴とする導電性複合繊維によって達成さ
れる。
(Means for Solving the Problems) The object of the present invention is to combine a non-conductive component made of a fiber-forming polymer with a specific resistance of 107 Ω*cm or more, and a thermoplastic polymer and an inorganic conductive particle with a specific resistance of 107 Ω*cm. In a composite fiber with a conductive component of less than cm, the cross-sectional shape of the conductive component is a thick part wrapped in a non-conductive component, and a thin part that connects to the thick part and reaches the fiber surface. Consisting of
In addition, the exposed width of the conductive component on the fiber surface is at most 1.5 μm.
This is achieved by a conductive composite fiber characterized by:

本発明に用いられる無機導電性粒子は、粉末状での比抵
抗が104Ω・cm程度以下のものであればあらゆる種
類の粒子が使用可能である。白変の高い金属酸化物や金
属酸化物被膜を有する粒子は勿論、カーボンブラックや
金属粉(例えば銀、ニッケル、銅、鉄或いはこれらの合
金など)、硫化銅、沃化銀、硫化亜鉛、硫化カドミウム
などの金属化合物も使用し得る。
As the inorganic conductive particles used in the present invention, any type of particles can be used as long as the specific resistance in powder form is about 10 4 Ω·cm or less. Not only metal oxides with high white discoloration and particles with metal oxide coatings, but also carbon black, metal powders (such as silver, nickel, copper, iron, or alloys thereof), copper sulfide, silver iodide, zinc sulfide, and sulfide. Metal compounds such as cadmium may also be used.

金属酸化物粒子としては、酸化錫、酸化亜鉛、酸化銅、
亜酸化銅、酸化インジウム、酸化ジルコニウム、酸化タ
ングステンなどの粒子があげられる。金属酸化物の多く
のものは絶縁体に近い半導体であって本発明の目的に充
分な導電性を示さないことが多い。しかしながら、例え
ば、金属酸化物に適当な第2成分(不純物)を生態(5
0チ以下、特に25チ以下)添加するなどの方法により
、導電性を強化し、本発明の目的に充分な導電性を有す
るものが得られる。このような導電性強化剤としては、
酸化錫に対して酸化アンチモンが、酸化亜鉛に対してア
ルミニウム、カリウム、インジウム、ゲルマニウム、錫
などの金属酸化物が使える。
Metal oxide particles include tin oxide, zinc oxide, copper oxide,
Examples include particles of cuprous oxide, indium oxide, zirconium oxide, and tungsten oxide. Many metal oxides are semiconductors that are close to insulators and often do not exhibit sufficient electrical conductivity for the purpose of the present invention. However, for example, if an appropriate second component (impurity) is added to the metal oxide,
The conductivity can be strengthened by adding 0% or less, especially 25% or less, and a material having sufficient conductivity for the purpose of the present invention can be obtained. Such conductivity enhancers include:
Antimony oxide can be used for tin oxide, and metal oxides such as aluminum, potassium, indium, germanium, and tin can be used for zinc oxide.

更に、酸化チタン、酸化亜鉛、酸化マグネシウム、酸化
錫、酸化鉄、酸化ケイ素、酸化アルミニウムなどの非導
電性無機物粒子の表面に上記金属酸化物又は金属化合物
の導電性皮膜を形成した粒子も用いられる。
Furthermore, particles in which a conductive film of the above metal oxide or metal compound is formed on the surface of non-conductive inorganic particles such as titanium oxide, zinc oxide, magnesium oxide, tin oxide, iron oxide, silicon oxide, or aluminum oxide are also used. .

導電性粒子の導m性は、粉末状での比抵抗が104Ω・
cm程度以下、特に102Ω・cm程度以下が好ましく
、101Ω参cm 程度以下が最も好ましい。実際に1
02Ω・cm〜10−2Ω・cm程度のものが得られ、
本発明の目的に好適に応用することができるが、更に優
れた!i性のものは一層好ましい。粉末の比抵抗(体積
抵抗率)は直径1 cmの絶縁体の円筒に試料を5g詰
め、上部からピストンによって200kgの圧力を加え
、直流電圧(例えば0.001〜1000Vi印加しテ
(電流1mA以下で)測定する。
Regarding the conductivity of the conductive particles, the specific resistance in powder form is 104Ω・
It is preferably about 102 Ω·cm or less, particularly about 10 2 Ω·cm or less, and most preferably about 10 1 Ω·cm 2 or less. actually 1
02Ω・cm to 10−2Ω・cm can be obtained,
Although it can be suitably applied to the purpose of the present invention, it is even better! Those of i-character are more preferable. The specific resistance (volume resistivity) of the powder is determined by filling an insulating cylinder with a diameter of 1 cm with 5 g of the sample, applying a pressure of 200 kg from the top with a piston, and applying a DC voltage (for example, 0.001 to 1000 Vi) (current of 1 mA or less). ) to measure.

また、導電性粒子は充分小さい粒径のものでなくてはな
らない。平均粒径が1〜2μmのものも使用不可能では
ないが、通常平均粒径が1μm以下、特に0.5μm以
下、最も好ましくは0.8μm以下のものが用いられる
Further, the conductive particles must have a sufficiently small particle size. Although it is not impossible to use particles with an average particle size of 1 to 2 μm, those with an average particle size of 1 μm or less, particularly 0.5 μm or less, and most preferably 0.8 μm or less are used.

導電性成分の導電性粒子の混合率は、粒子の種類、導電
性、粒子径、粒子の連鎮形成能及び混合する結合材ポリ
マーの性質や結晶性などによって変るが、通常10〜8
6%(重り程度の範囲内であり、多くの場合20〜80
%程度である。
The mixing ratio of the conductive particles of the conductive component varies depending on the type of particles, conductivity, particle size, ability to form interlocking particles, and the properties and crystallinity of the binder polymer to be mixed, but is usually 10 to 8.
6% (within the weight range, often 20 to 80
It is about %.

無機導電性粒子と混合して導電性成分を形成する熱可塑
性ポリマーは、特に限定されることはなく任意”に選ぶ
ことが出来る。例えばポリアミド、ポリエステル、ポリ
オレフィン、ポリビニル系、ポリエーテルなど多数の熱
可塑性ポリマーが挙げられる。このポリマーはl&紬形
成性のものが可紡性の見地からは好ましいが可紡性の劣
るものでも、組合わせる非導電性成分に繊維形成性のポ
リマーを用いれば充分可紡性の良い複合繊維を得ること
が出来る。このようなポリマーのうち、繊維形成性の非
導電性ポリマーとの親和性の乏しい結晶化度60%以上
のポリマーカ!特に好適で、このようなポリマーとして
はポリエチレン、ポリプロピレン、ポリオキシメチレン
、ポリエチレンオキシド及びその誘導体(例えばポリエ
チレンオキシド/PETのブロックコポリマー)、ポリ
カプロラクトン、ポリカプロラクトンなどがめげられる
。これらのポリマーのうちポリエチレン、ポリプロピレ
ン、ポリオキシメチレンが特に好適である。
The thermoplastic polymer that is mixed with the inorganic conductive particles to form the conductive component is not particularly limited and can be selected arbitrarily. Examples include plastic polymers.It is preferable to use plastic polymers that form fibers from the viewpoint of spinnability, but even those with poor spinnability can be used as long as a fiber-forming polymer is used as the non-conductive component. Composite fibers with good spinnability can be obtained.Among such polymers, polymers with a crystallinity of 60% or more that have poor affinity with fiber-forming non-conductive polymers are particularly suitable. Examples of such polymers include polyethylene, polypropylene, polyoxymethylene, polyethylene oxide and its derivatives (for example, polyethylene oxide/PET block copolymers), polycaprolactone, polycaprolactone, etc. Among these polymers, polyethylene, polypropylene, and polyoxymethylene are particularly preferred. suitable.

導電性ポリマーの比抵抗(体積抵抗率)は107Ω・c
m禾満であることが必要であり、104Ω・cm以下が
好ましく、102Ω・cm  以下が特に好ましい。
The specific resistance (volume resistivity) of the conductive polymer is 107Ω・c
It is necessary that the resistance is 10 Ω·cm or less, preferably 10 4 Ω·cm or less, and particularly preferably 10 2 Ω·cm 2 or less.

導電性ポリマーには、更に分散剤(例えばワックス類、
ポリアルキレンオキシド類、各種界面活性剤、有機電解
質など)、着色剤、顔料、安定剤(酸化防止剤、紫外線
吸収剤など)、流動性改善剤、その他の添加剤を加える
ことが出来る。
The conductive polymer may further contain a dispersant (e.g. waxes, etc.).
Polyalkylene oxides, various surfactants, organic electrolytes, etc.), colorants, pigments, stabilizers (antioxidants, ultraviolet absorbers, etc.), fluidity improvers, and other additives can be added.

複合mw、coa維形成性ポリマーとしては、紡糸可能
なあらゆるものが用いられる。中でもナイロン6、ナイ
ロン66、ナイロン12、ナイロン610などのポリア
ミド°、ポリエチレンテレフタレート、ポリエチレンオ
キシベンゾエート、ポリエチレンテレフタレートなどの
ポリエステル、ポリアクリロニトリル及びそれらのポリ
マーの共重合体や変性体が特に好適である。law、形
成性ポリマーには、艶消剤、顔料、着色料、安定剤、制
電剤(ポリアルキレンオキシド類、各種界面活性剤など
)などの添加剤を加えることが出来る。しかしながら金
属摩耗を生ずる恐れのある程、多量の無機粒子を含有す
ることは好ましくない。このような繊維形成性ポリマー
の比抵抗は107Ω・cm以上が好適である。
As the composite mw, coa fiber-forming polymer, any material that can be spun can be used. Among these, polyamides such as nylon 6, nylon 66, nylon 12, and nylon 610, polyesters such as polyethylene terephthalate, polyethylene oxybenzoate, and polyethylene terephthalate, polyacrylonitrile, and copolymers and modified products of these polymers are particularly suitable. Additives such as matting agents, pigments, coloring agents, stabilizers, antistatic agents (polyalkylene oxides, various surfactants, etc.) can be added to the law-forming polymer. However, it is not preferable to contain such a large amount of inorganic particles that it may cause metal wear. The specific resistance of such a fiber-forming polymer is preferably 10 7 Ω·cm or more.

本発明の複合繊維に於て導電性ポリマーの複合比(断面
積占有率)は3〜40%が好ましく、より好ましくは4
〜20%、最も好ましくは5〜15傷である。複合比が
小さいと導電性が低下し、従って制電性が劣るものとな
る。また多いと糸質が劣るものとなり、金属摩耗性も大
きくなる。
In the composite fiber of the present invention, the composite ratio (cross-sectional area occupancy) of the conductive polymer is preferably 3 to 40%, more preferably 4%.
~20%, most preferably 5-15 scratches. If the composite ratio is small, the conductivity will decrease, and therefore the antistatic property will be poor. In addition, if the amount is too large, the quality of the thread will be poor and the metal abrasion resistance will also increase.

導電性成分が繊維表面に露出する幅(例えば第1図のd
2)は高々1.5μm以下であり、好ましくは高々1.
2μm、最も好ましくは高々1.0μmである。繊維表
面に露出する導電性成分の幅が大きいと金、lr1*耗
を生じやすくなる。
Width where the conductive component is exposed on the fiber surface (for example, d in Figure 1)
2) is at most 1.5 μm or less, preferably at most 1.5 μm.
2 μm, most preferably at most 1.0 μm. If the width of the conductive component exposed on the fiber surface is large, gold, lr1* wear is likely to occur.

本発明の複合繊維の断面(輪郭)は円形でもよく、非円
形でもよく特に限定されないが円形断面が好適である。
The cross section (outline) of the composite fiber of the present invention may be circular or non-circular and is not particularly limited, but a circular cross section is preferred.

本発明の複合繊維に於ては導電性成分の形状が重要であ
る。導電性成分の形状は第1図〜第6図に示されるよう
に頭部に、相当する肉厚の部分と尾部に相当する細い部
分を自し、尾の先端が細くなって繊#表面ζこ露出して
いるおたまじゃくしに似た形状が好適である。
In the composite fiber of the present invention, the shape of the conductive component is important. As shown in Figures 1 to 6, the shape of the conductive component has a thick part at the head and a thin part corresponding to the tail, with the tip of the tail becoming thinner and forming a fiber surface. A shape resembling an exposed tadpole is preferred.

頭部は円形、楕円形、三角形あるいは四角形など任意の
形態をとることが出来るが、その厚さくたとえば第1図
のdl)は5μm以上であることが好ましい。頭部と尾
部とは明確に区別できる場合(例えば第1図)も好適で
あるが、区別が明確でない場合(例えば第2図、第5図
)も好適である。尾部は頭部に連続した細い部分を甘う
か、その形態は直線状であってもよいが、曲線状のもの
が露出幅を細くする上でより好ましい。また頭部との接
続した部分から尾の先端まで同じ幅であってもよいが(
第1図)、徐々に細くなっているもの(第2図、第4図
、第5図)、細くなったり太くなったりしているもの(
第6図)が露出幅を細くコントロールする上で好ましい
。これに対し、頭部(肉厚部)を持たない帯状部だけか
らなる形状(第10図)は、細くすれば専一性能ひいて
は制電性能が低下したり不安定になる傾向があり、一方
太くすれば金属摩耗性が著しくなり、好ましくない。
The head can take any shape such as circular, elliptical, triangular, or square, but it is preferable that its thickness (for example, dl in FIG. 1) be 5 μm or more. It is preferable that the head and tail can be clearly distinguished (for example, in FIG. 1), but it is also preferable that the head and tail are not clearly distinguished (for example, in FIGS. 2 and 5). The tail may be a thin part continuous to the head, or it may have a straight shape, but a curved tail is more preferable in order to narrow the exposed width. Also, the width may be the same from the part connected to the head to the tip of the tail (
(Figure 1), gradually becoming thinner (Figures 2, 4, and 5), and things that become thinner or thicker (Figures 2, 4, and 5).
(Fig. 6) is preferable for controlling the exposure width narrowly. On the other hand, if the shape (Fig. 10) consists only of a band-like part without a head (thick part), the exclusive performance and even the antistatic performance tend to decrease or become unstable if it is made thinner. If it is made thicker, metal abrasion becomes significant, which is not preferable.

(作用&び′効果) このように導電性4リマーが頭部(肉厚部)と尾部を何
し、しかも尾部の先端のみが繊維周辺に達している形状
をしていること1こよって、本発明の目的である優れた
制電性と耐金属摩耗性が達成できる理由は次のように考
えられる。即ち、比抵抗が107Ω・cm以下の導電性
?リマーが頭部、例えば6μm以上の厚さで繊細の内部
で連続しCいることにより、繊維の長さ方向の電荷の移
動が容易であると考えられ、この機能は導電性ポリマー
が一定程度以上の太さを有するため繊維を延伸、仮撚、
捲返し、製編織などの加工工程に於ても損われることが
ない。一方、尾部は細く連続していて嶺゛雑の周辺部に
達しているため、&l[の有する電荷を放電する機能を
有するものと考えられる。
(Function & effect) In this way, the conductive 4-rimer has a head (thick part) and a tail, and only the tip of the tail reaches the fiber periphery1. The reason why the excellent antistatic properties and metal wear resistance, which are the objectives of the present invention, can be achieved is considered to be as follows. In other words, conductivity with a specific resistance of 107Ω・cm or less? It is thought that it is easy for the charge to move in the length direction of the fiber because the reamer is continuous in the head, for example, inside the fiber with a thickness of 6 μm or more. The fibers are stretched, false-twisted,
It will not be damaged even during processing processes such as turning, weaving, weaving, etc. On the other hand, since the tail is thin and continuous and reaches the rugged surrounding area, it is thought that it has the function of discharging the charge held by &l[.

(実施例) 以下実施例により本発明を説明する。実施例1こ於て、 制電性は以下の方法によって評価した。通常の6ナイロ
ン延伸糸(210デニール154フイラメント)を丸編
機を用いて編立て、その際10周に1周の間隔で導電性
複合繊維編み込み、混入率0.85%の丸編物を作成す
る。精練によって紡糸油剤を除去したのち、充分に水洗
して80°Cで3時間乾燥した後、更に25°C180
%RHの雰囲気中で6時間調湿する。その後同じ温湿度
中で綿布にて15回摩擦し、10秒後の帯電圧を測定し
た。
(Example) The present invention will be explained below with reference to Examples. In Example 1, antistatic properties were evaluated by the following method. Ordinary 6 nylon drawn yarn (210 denier 154 filament) is knitted using a circular knitting machine, and conductive composite fibers are knitted at intervals of 1 out of 10 turns to create a circular knitted fabric with a mixing rate of 0.85%. . After removing the spinning oil by scouring, it was thoroughly washed with water, dried at 80°C for 3 hours, and further heated at 25°C at 180°C.
%RH atmosphere for 6 hours. Thereafter, it was rubbed 15 times with a cotton cloth at the same temperature and humidity, and the charged voltage was measured after 10 seconds.

金属摩耗性は、直径85μmのステンレス線上を100
m/分の速度で糸を走行させた時の(接触前の糸張力4
〜5g、接触角45°)ステンレス線の切断時間で評価
した。
Metal abrasion resistance is 100% on a stainless steel wire with a diameter of 85 μm.
When the thread is run at a speed of m/min (thread tension before contact 4
~5g, contact angle 45°) Evaluation was made based on the cutting time of the stainless steel wire.

導電性は、長さ10cm  の単糸5本を束穐で両端を
金属端子と導電性接着剤(藤倉化成ドータイトD−55
0)で接着し、IOVの直流電圧を印加して抵抗値を測
定し、それから算出した導電性成分の比抵抗で評価した
For conductivity, 5 single threads of 10 cm length were tied together with metal terminals and conductive adhesive (Fujikura Kasei Dotite D-55).
0), the resistance value was measured by applying a DC voltage of IOV, and the resistivity of the conductive component calculated from the resistance value was evaluated.

実施例1 表面に酸化錫の皮膜を有する酸化チタン粒子に対して0
.75%の酸化アンチモンを混合焼成して得られた平均
粒径0.25μmの導電性粒子は比抵抗が6.3Ω・c
mであった。この粒子75(重量)部と分子量go、o
ooのポリエチレン(重量)26部を混練して導電性ポ
リマーA1を作った。
Example 1 0 for titanium oxide particles having a tin oxide film on the surface
.. Conductive particles with an average particle size of 0.25 μm obtained by mixing and firing 75% antimony oxide have a specific resistance of 6.3 Ω・c.
It was m. 75 parts (by weight) of this particle and molecular weight go, o
A conductive polymer A1 was prepared by kneading 26 parts of polyethylene (by weight) of 0.0 mm.

この導電性ポリマーと、95チ濃硫酸相対粘度2.8の
ナイロン6とを用い第1表に示すような断面形状になる
ように紡糸温度280°Cで直径025mmのオリフィ
スから紡出し、冷却、オリイングしながら800m/分
の速度で捲取った。次いで80°Cの熱ローラーを介し
、延伸倍率2.6倍で延伸し、更に170℃の熱プレー
トに接触させた後m1ll)、20デニール/8フイラ
メントの延伸糸Y1〜Y5を得た。これらの導電性複合
繊維の導電性(比抵抗)、制電性、金属摩耗性を第1表
に示す。
Using this conductive polymer and 95% concentrated sulfuric acid, nylon 6 with a relative viscosity of 2.8, it was spun through an orifice with a diameter of 025 mm at a spinning temperature of 280°C so as to have the cross-sectional shape shown in Table 1, and then cooled. It was rolled up at a speed of 800 m/min while being oried. Next, the yarn was drawn at a draw ratio of 2.6 times through a hot roller at 80°C, and further brought into contact with a hot plate at 170°C to obtain drawn yarns Y1 to Y5 of 20 denier/8 filaments. Table 1 shows the electrical conductivity (specific resistance), antistatic properties, and metal abrasion properties of these electrically conductive composite fibers.

糸Y1〜Y5はいずれも比抵抗が10−8のオーダー以
下であり良好な導電性を示した。制電性はY1〜Y3お
よびY5は良好であったが、導電性ポリマーが繊維表面
に露出していないY4は制電性が劣るものであった。ま
た金属摩耗性は、Y1〜Y4は小さいが、導電性ポリマ
ーの繊維表面への露出幅が大きいY5は著しく金Mjl
)耗性が大きい。Y5はガイド摩耗が大きいため安定製
造は出来なかった。
Each of the yarns Y1 to Y5 had a specific resistance of the order of 10<-8> or less and exhibited good conductivity. Although Y1 to Y3 and Y5 had good antistatic properties, Y4, in which the conductive polymer was not exposed on the fiber surface, had poor antistatic properties. In addition, metal abrasion resistance is small for Y1 to Y4, but Y5, where the conductive polymer is exposed to the fiber surface with a large width, is significantly inferior to gold Mjl.
) Highly abrasive. Y5 could not be stably manufactured due to large guide wear.

次にY1〜Y4をそれぞれナイロン6の2600デニー
ル140フイラメントの糸と合糸して巻縮加工したもの
を4コースに1本用い、他の8コースはナイロンのみと
して、タフテッドカーペット(ループ、混用率0.17
%)を製造した。25℃、20%RHの室内で得られた
カーペット上を皮靴で歩行したときの人体帯電圧は、本
発明繊維のYl〜Y8を混用したカーペットはそれぞれ
−2,OKV。
Next, each of Y1 to Y4 was combined with a 2,600 denier 140 filament yarn of nylon 6 and crimped, and one yarn was used for each of the four courses, and the other eight courses were made of nylon only. Rate 0.17
%) was produced. When walking with leather shoes on a carpet obtained indoors at 25° C. and 20% RH, the electrostatic potential of the human body was -2 and OKV for the carpets mixed with fibers Yl to Y8 of the present invention, respectively.

−2,8KVl−1,8K V”iC”あった。これに
対し、芯鞘型複合糸であるY4を混用したカーペットで
は−4,8K Vで、アースした把手に触れたとき放電
シコックt−(tiじた。比較のためナイロンのみを用
いたカーペットの人体帯電圧は−9,2K Vで、アー
スした把手に触れた時の放電ショックは激しいもので、
かなりの恐怖感を生ゼしぬるものであった0 実施例2 非導電性ポリマーとして分子1115,000のポリエ
チレンテレフタレートに艶消剤として酸化チタンを0.
65 %配合したポリマーを用い、導電性ポリマーとし
て実施例1に用いたAli用いて第8図に示す断面形状
になるように口金内でサイドバイサイド形に複合し、紡
糸温度285°Cで直径0.8mmのオリフィスから紡
出し、冷却オイリングの後1000m/minの速度で
巻取り、次いで86°Cの熱ロールを用いて8.1倍に
延伸、160℃のプレートヒーターで熱固定しつつ巻取
り2、導電性フィラメントY6〜Y9を得た。
-2,8KVl-1,8K V"iC" was there. On the other hand, a carpet mixed with Y4, which is a core-sheath type composite yarn, had a discharge of t-(ti) when it touched a grounded handle at -4.8KV.For comparison, a carpet made only of nylon The electrical charge on the human body is -9.2KV, and the electric discharge shock when touching the grounded handle is severe.
Example 2 Titanium oxide was added as a matting agent to polyethylene terephthalate with a molecular weight of 1,115,000 as a non-conductive polymer.
Using a polymer blended at 65% and using the same Ali used in Example 1 as the conductive polymer, it was composited side-by-side in the spinneret so as to have the cross-sectional shape shown in FIG. Spun from an 8 mm orifice, cooled and oiled, then wound at a speed of 1000 m/min, then stretched to 8.1 times using a heated roll at 86°C, and wound while heat-setting with a plate heater at 160°C. , conductive filaments Y6 to Y9 were obtained.

これらフィラメントの性能は@2表の如くであった。The performance of these filaments was as shown in Table 2.

【図面の簡単な説明】 第1図〜第6図は本発明腹合繊維の断面を示す模式図で
ある。第71は芯鞘型の複合錫維の、第8図〜第10図
は公知のサイドバイサイド型の腹合#i維の断面を示す
模式図である。 図中、 (1)・・・導辻性成分の肉厚部、
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 6 are schematic diagrams showing cross sections of the fibers of the present invention. No. 71 is a schematic diagram showing a cross section of a core-sheath type composite tin fiber, and FIGS. 8 to 10 are cross-sectional views of a known side-by-side type diagonal #i fiber. In the figure, (1)...thick part of the conductive component,

Claims (6)

【特許請求の範囲】[Claims] (1)繊維形成性ポリマーからなる比抵抗が10^7Ω
・cm以上の非導電性成分と、熱可塑性ポリマーと無機
導電性粒子からなる比抵抗が10^7Ω・cm未満の導
電性成分との複合繊維に於て、導電性成分の断面形状が
非導電性成分に包みこまれた肉厚の部分と、該肉厚部に
接続し繊維表面にまで達する細い部分からなり、且つ導
電性成分の繊維表面への露出幅が高々1.5μmである
ことを特徴とする導電性複合繊維。
(1) Specific resistance made of fiber-forming polymer is 10^7Ω
・In a composite fiber consisting of a non-conductive component with a diameter of cm or more and a conductive component with a specific resistance of less than 10^7 Ω cm made of a thermoplastic polymer and inorganic conductive particles, the cross-sectional shape of the conductive component is non-conductive. It consists of a thick part surrounded by a conductive component and a thin part that connects to the thick part and reaches the fiber surface, and the exposed width of the conductive component to the fiber surface is at most 1.5 μm. Characteristic conductive composite fiber.
(2)繊維断面に於て導電性成分の形状が、頭部と尾部
を有するおたまじゃくし形であり、頭部の厚さが5μm
以上である特許請求の範囲第1項記載の繊維。
(2) The shape of the conductive component in the fiber cross section is tadpole-shaped with a head and a tail, and the thickness of the head is 5 μm.
The fiber according to claim 1, which is the above.
(3)導電性成分の複合比(断面積占有率)が3〜40
%である特許請求の範囲第1項記載の繊維。
(3) Composite ratio (cross-sectional area occupancy) of conductive components is 3 to 40
% of the fiber according to claim 1.
(4)導電性成分を形成するポリマーがポリエチレン、
ポリプロピレン、ポリオキシメチレンである特許請求の
範囲第1項記載の繊維。
(4) The polymer forming the conductive component is polyethylene,
The fiber according to claim 1, which is polypropylene or polyoxymethylene.
(5)繊維形成性ポリマーがナイロン6、ナイロン66
、ナイロン12、ナイロン610などのポリアミド、ポ
リエチレンテレフタレート、ポリエチレンオキシベンゾ
エート、ポリブチレンテレフタレートなどのポリエステ
ルである特許請求の範囲第1項記載の繊維。
(5) Fiber-forming polymer is nylon 6, nylon 66
The fiber according to claim 1, which is a polyamide such as , nylon 12, nylon 610, or a polyester such as polyethylene terephthalate, polyethylene oxybenzoate, or polybutylene terephthalate.
(6)導電成分の繊維表面への露出幅が高々1.2μm
である特許請求の範囲第1項記載の繊維。
(6) The exposed width of the conductive component on the fiber surface is at most 1.2 μm
The fiber according to claim 1, which is
JP62069454A 1987-01-30 1987-03-23 Electrically conductive conjugated yarn Pending JPS63235525A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62069454A JPS63235525A (en) 1987-03-23 1987-03-23 Electrically conductive conjugated yarn
CA000556540A CA1285358C (en) 1987-01-30 1988-01-14 Conductive composite filaments and fibrous articles containing the same
DE3888856T DE3888856T2 (en) 1987-01-30 1988-01-21 Compound conductive fibers and fibrous articles containing these fibers.
EP88100844A EP0276756B1 (en) 1987-01-30 1988-01-21 Conductive composite filaments and fibrous articles containing the same
KR1019880000844A KR900008725B1 (en) 1987-01-30 1988-01-30 Conductive composite filaments and fibrous articles containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62069454A JPS63235525A (en) 1987-03-23 1987-03-23 Electrically conductive conjugated yarn

Publications (1)

Publication Number Publication Date
JPS63235525A true JPS63235525A (en) 1988-09-30

Family

ID=13403109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62069454A Pending JPS63235525A (en) 1987-01-30 1987-03-23 Electrically conductive conjugated yarn

Country Status (1)

Country Link
JP (1) JPS63235525A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156334A (en) * 1985-07-12 1986-03-22 Canon Inc Device having display function
JPS61152823A (en) * 1984-12-27 1986-07-11 Kanebo Ltd Conductive conjugated fiber
JPS61174469A (en) * 1985-01-28 1986-08-06 カネボウ株式会社 Production of conductive composite fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152823A (en) * 1984-12-27 1986-07-11 Kanebo Ltd Conductive conjugated fiber
JPS61174469A (en) * 1985-01-28 1986-08-06 カネボウ株式会社 Production of conductive composite fiber
JPS6156334A (en) * 1985-07-12 1986-03-22 Canon Inc Device having display function

Similar Documents

Publication Publication Date Title
JPH0364603B2 (en)
JPH01292116A (en) Electrically conductive fiber and production thereof
CN106894225A (en) Graphene coated composite construction conductive fiber and preparation method thereof
JP5220673B2 (en) Conductive sewing thread and knitted fabric
JP2004225214A (en) Electroconductive conjugated fiber
JPS60224813A (en) Antistatic conjugated fiber
JP4280546B2 (en) Conductive composite fiber and conductive woven / knitted fabric
JPS6156334B2 (en)
KR900008725B1 (en) Conductive composite filaments and fibrous articles containing the same
JPS63235525A (en) Electrically conductive conjugated yarn
JPH10310974A (en) Production of electrically conductive fiber
JPS61174469A (en) Production of conductive composite fiber
JPH01213411A (en) Electrically conductive yarn
JPS63219624A (en) Electrically conductive yarn and production thereof
JPH01183520A (en) Electrically conductive fiber
JPH043450B2 (en)
JPS6253416A (en) Electrically conductive fiber and production thereof
JPH01148811A (en) Production of electrically conductive conjugate fiber
JPH0157167B2 (en)
JP2833780B2 (en) Conductive composite fiber
JPH10212622A (en) Electroconductive fiber
JP4763451B2 (en) Conductive composite fiber
JP3635152B2 (en) Conductive composite fiber
JPH042808A (en) Electrically conductive conjugate fiber
JPS61152823A (en) Conductive conjugated fiber