JPH01213411A - Electrically conductive yarn - Google Patents

Electrically conductive yarn

Info

Publication number
JPH01213411A
JPH01213411A JP3658388A JP3658388A JPH01213411A JP H01213411 A JPH01213411 A JP H01213411A JP 3658388 A JP3658388 A JP 3658388A JP 3658388 A JP3658388 A JP 3658388A JP H01213411 A JPH01213411 A JP H01213411A
Authority
JP
Japan
Prior art keywords
component
fiber
core
conductive
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3658388A
Other languages
Japanese (ja)
Other versions
JPH0733637B2 (en
Inventor
Hideharu Sasaki
佐々木 英晴
Muneaki Awata
粟田 宗明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP63036583A priority Critical patent/JPH0733637B2/en
Publication of JPH01213411A publication Critical patent/JPH01213411A/en
Publication of JPH0733637B2 publication Critical patent/JPH0733637B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To obtain the subject yarn having excellent washing resistance, etc., consisting of a core component made from a specific copolymerization polyester and an electrically conductive substance and a sheath component of a fiber- forming polyester, wherein the sectional shape of the core part is a modified sectional shape with acute-angle parts. CONSTITUTION:The objective yarn which has excellent antistatic properties, washing resistance and chemical resistance, is obtained by coating (A) a core component comprising an electrically conductive substance such as acetylene black or Thermal black and a copolymerization polyester having 80-180 deg.C melting point with (B) a sheath component of a fiber-forming polyester, preferably essentially consisting of polyethylene terephthalate, wherein the sectional shape of the core component is a modified sectional shape having two or more acute-angle parts and all the minimum thickness vi of the sheath component formed by the acute-angle parts and the outer peripheral part of the sheath component is >=0.3mu and one or more of the thickness are <=5mu.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は導電性繊維、詳しくは芯成分に導電性物質を含
有する芯鞘型構造の導電性繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to conductive fibers, and more particularly to conductive fibers having a core-sheath type structure containing a conductive substance in the core component.

(従来の技術) ポリエチレン、ポリアミド、ポリエステル等の熱可塑性
樹脂は、繊維製品として多くの用途に使用されているが
、制電性に乏しいため帯電しやすいという欠点がある。
(Prior Art) Thermoplastic resins such as polyethylene, polyamide, and polyester are used in many applications as textile products, but they have the disadvantage of being easily charged due to poor antistatic properties.

そのため、導電性繊維に関する多くの研究がなされてい
る。
Therefore, many studies on conductive fibers have been conducted.

第一の方法として、繊維表面に導電性物質をコーティン
グする方法である。これらの導電性繊維は初期の導電性
能は良好であるが、着用時の耐摩耗性が不良であり、耐
洗濯性、耐薬品性も不良であり、防塵衣等に使用した場
合の発塵源となっている。
The first method is to coat the fiber surface with a conductive substance. Although these conductive fibers have good initial conductive performance, they have poor abrasion resistance when worn, poor washing resistance and chemical resistance, and are a source of dust generation when used in dustproof clothing. It becomes.

第二の方法として、導電性物質の粉末を熱可塑性樹脂中
に分散させコア層とし、繊維形成性ポリマーをシース層
としてシース・コアの複合繊維とする場合である。この
場合には、例えば導電性カーボンを配合した導電性繊維
は、導電性カーボンが黒色であるため、シース層の薄い
場合などには、黒色に着色し、審美性が要求される分野
に用いることができず、コア層が完全にシース層の中に
あり、かつ、シース層の厚みが充分でないとその用途が
きわめて限定されるという問題を有している。
The second method is to disperse a conductive material powder in a thermoplastic resin to form a core layer, and a fiber-forming polymer to form a sheath layer to form a sheath-core composite fiber. In this case, for example, conductive fibers containing conductive carbon may be colored black if the sheath layer is thin and used in fields where aesthetics are required, since the conductive carbon is black. However, if the core layer is completely inside the sheath layer and the sheath layer is not thick enough, its uses will be extremely limited.

導電性物質が導電性カーボンでない場合でも、シース層
で完全に覆わないと黒ずんで見えたり、使用中に脱落し
て機能が低下するなどのトラブルの原因となっている。
Even if the conductive substance is not conductive carbon, if it is not completely covered with a sheath layer, it may appear dark or fall off during use, causing problems such as reduced functionality.

一方、シース層による完全被覆構造でも、以下のような
問題を有している。すなわち、繊維断面の芯部間の導電
性は良好で問題はないが、シース層は繊維形成性の良好
なポリマーで形成されているため、電気的には絶縁体と
なっており、表面の電気抵抗値が高く、導電性不良とな
っている点が問題である。
On the other hand, even a completely covered structure with a sheath layer has the following problems. In other words, the conductivity between the core parts of the fiber cross section is good and there is no problem, but the sheath layer is made of a polymer with good fiber forming properties, so it is an electrical insulator, and the surface electrical conductivity is good. The problem is that the resistance value is high and the conductivity is poor.

したがって、このように芯部に導電性物質を含有する芯
鞘型複合繊維であっても、これを使用した布帛の静電気
による不快感(着用衣服の身体へのまつわりつき、脱衣
時の放電音、空気中のほこり付着等)の問題があった。
Therefore, even with core-sheath type composite fibers that contain conductive substances in their cores, fabrics using them can cause discomfort due to static electricity (clothes that cling to the body, discharge noise when undressing, air pollution). There was a problem with dust adhering inside.

さらに、かかる芯鞘型複合繊維の問題を解決するため、
特開昭60−110920号公報に記載されているよう
に芯成分を偏心させ、鞘成分の厚さを3μm以下とする
ことも提案されているが、かかる複合繊維は、電気抵抗
値も思ったように低くできない上、芯鞘界面剥離が生じ
、発塵しやすくなる等の問題がある。
Furthermore, in order to solve the problem of such core-sheath type composite fibers,
As described in JP-A No. 60-110920, it has been proposed to make the core component eccentric and reduce the thickness of the sheath component to 3 μm or less, but such composite fibers have a low electrical resistance value. In addition, there are problems such as core-sheath interface peeling and dust generation.

これらの問題点を解決するため本出願人は、特開昭62
−53416号公報に記載されているように導電性物質
を芯成分に含有する芯鞘型複合繊維を高電圧で放電加工
することを提案した。
In order to solve these problems, the present applicant has
As described in Japanese Patent Publication No. 53416, it was proposed that a core-sheath type composite fiber containing a conductive substance as a core component be subjected to electric discharge machining at a high voltage.

(発明が解決しようとする問題点) 上記の特開昭62−53416号公仰で提案した方法に
よると、導電性能の優れた繊維が得られるものの、放電
加工時の繊維の損傷や耐洗濯性に劣るなどの問題があっ
た。そこで、本発明は、繊維に損傷を与えずに繊維表面
の電気抵抗を低下させ良好な導電性能を付与するととも
に耐洗濯性、耐薬品性に優れた導電性繊維を提供するこ
とを目的とするものである。
(Problems to be Solved by the Invention) According to the method proposed in the above-mentioned Japanese Patent Application Laid-Open No. 62-53416, fibers with excellent conductivity can be obtained, but the fibers are damaged during electrical discharge machining and have poor washing resistance. There were problems such as inferiority. Therefore, an object of the present invention is to provide a conductive fiber that lowers the electrical resistance of the fiber surface without damaging the fiber, provides good conductive performance, and has excellent washing resistance and chemical resistance. It is something.

(問題点を解決するための手段) 本発明者らは、上記問題点を解決するために研究を重ね
た結果、芯部を構成するポリエステルに特殊な共重合ポ
リエステルを用い、かつ、芯部の断面形状を鋭突部を有
する異形断面形状にすることによって、繊維に損傷を与
えず、耐洗濯性、耐薬品性に優れた導電性繊維が得られ
ることを見出し本発明に到達した。
(Means for Solving the Problems) As a result of repeated research in order to solve the above problems, the present inventors used a special copolymer polyester as the polyester constituting the core, and The present invention was achieved by discovering that conductive fibers with excellent washing resistance and chemical resistance can be obtained without damaging the fibers by making the cross-sectional shape an irregular cross-sectional shape having sharp protrusions.

すなわち、本発明は導電性物質を含有する芯成分と、該
芯成分を完全に被覆する繊維形成性ポリエステルからな
る鞘成分とにより構成され、繊維表面の電気抵抗値が1
01Ω/cI11未満であり、かつ、該表面の電気抵抗
値と断面間の内部電気抵抗値との比が103以下である
芯鞘型複合繊維において、該芯成分が80〜180℃の
融点を有する共重合ポリエステルと導電性物質とからな
り、芯成分の断面形状が2以上の鋭突部を有する異形断
面形状であって、該鋭突部と該鞘成分外周部とにより形
成される鞘成分最小厚さViのすべてが0.3μm以上
で、かつ、その少な(とも一つが5μm以下であること
を特徴とする導電性繊維である。
That is, the present invention is composed of a core component containing a conductive substance and a sheath component made of fiber-forming polyester that completely covers the core component, and the electrical resistance value of the fiber surface is 1.
01Ω/cI11 or less, and the ratio of the electrical resistance value of the surface to the internal electrical resistance value between the cross sections is 103 or less, in which the core component has a melting point of 80 to 180 ° C. The core component is made of a copolymerized polyester and a conductive substance, and the core component has an irregular cross-sectional shape having two or more sharp protrusions, and the sheath component is formed by the sharp protrusions and the outer periphery of the sheath component. The conductive fiber is characterized in that all of the thicknesses Vi are 0.3 μm or more, and one of the thicknesses Vi is 5 μm or less.

本発明繊維の芯成分は導電性物質を含有するものである
が、該導電性物質としては、導電性カーポンプラック、
導電性金属化合物等の公知のものが使用できる。
The core component of the fiber of the present invention contains a conductive substance, and the conductive substance includes conductive carpon rack,
Known materials such as conductive metal compounds can be used.

カーボンブランクの種類としては、アセチレンブラック
、オイルファーネスブラック、サーマルブラック、チャ
ネルブランク、ケッチエンブラック等が例示される。他
方、導電性金属化合物としては、ヨウ化銅、硫化銅等が
挙げられ、導電性金属酸化物としては特に白色性に優れ
た酸化第二錫、酸化亜鉛が挙げられる。ここでいう酸化
第二錫には、少量のアンチモン化合物を含む酸化第二錫
、酸化チタン粒子の表面に少量のアンチモン化合物を含
む酸化第二錫をコーティングして得られる導電性金属複
合体も含まれる。また、酸化亜鉛には少量の酸化アルミ
ニウム、酸化リチウム、酸化インジウム等を溶解した導
電性酸化亜鉛も含まれる。
Examples of the types of carbon blanks include acetylene black, oil furnace black, thermal black, channel blank, and Ketschen black. On the other hand, examples of conductive metal compounds include copper iodide and copper sulfide, and examples of conductive metal oxides include tin oxide and zinc oxide, which have particularly excellent whiteness. The stannic oxide mentioned here also includes stannic oxide containing a small amount of antimony compound, and conductive metal composites obtained by coating the surface of titanium oxide particles with stannic oxide containing a small amount of antimony compound. It will be done. Zinc oxide also includes conductive zinc oxide in which small amounts of aluminum oxide, lithium oxide, indium oxide, etc. are dissolved.

これらは、通常微粉末としてマトリックスポリマーに分
散して用いられるが、該マトリックスポリマーには、融
点が80−180℃である特殊な共重合ポリエステルポ
リマーを用いることが重要である。
These are normally used as fine powders dispersed in a matrix polymer, but it is important to use a special copolyester polymer having a melting point of 80 to 180°C as the matrix polymer.

この場合、融点が80℃未満では、芯の異形断面形状が
バラツキ易く、均質な糸が得られないし、180℃を越
えると、芯成分中に所定量の導電剤を分散させることが
困難で、紡糸そのものが不可能となる。
In this case, if the melting point is less than 80°C, the irregular cross-sectional shape of the core tends to vary, making it impossible to obtain a homogeneous thread, and if it exceeds 180°C, it is difficult to disperse a predetermined amount of the conductive agent in the core component. Spinning itself becomes impossible.

かかる共重合ポリエステルとしては、特に、5〜50モ
ル%のイソフタル酸またはイソフタル酸ジメチルと95
〜50モル%のテレフタル酸またはテレフタル酸ジメチ
ルとからなるジカルボン酸成分と、ヘキサメチレングリ
コールからなるジオール成分とからなる共重合ポリエス
テル、または40〜80モル%のイソフタル酸またはイ
ソフタル酸ジメチルと60〜20モル%のテレフタル酸
またはテレフタル酸ジメチルとからなるジカルボン酸成
分と、2〜10モル%のエチレングリコールと98〜9
0モル%のテトラメチレングリコールとからなるジオー
ル成分とからなる共重合ポリエステルを用いることが好
ましい。
Such copolyesters include, in particular, 95 to 50 mol% of isophthalic acid or dimethyl isophthalate.
A copolymerized polyester consisting of a dicarboxylic acid component consisting of ~50 mol% of terephthalic acid or dimethyl terephthalate and a diol component consisting of hexamethylene glycol, or a copolymerized polyester consisting of 40-80 mol% of isophthalic acid or dimethyl isophthalate and 60-20 mol% of isophthalic acid or dimethyl isophthalate. A dicarboxylic acid component consisting of mol% of terephthalic acid or dimethyl terephthalate, 2 to 10 mol% of ethylene glycol, and 98 to 9% of ethylene glycol.
It is preferable to use a copolymerized polyester consisting of a diol component consisting of 0 mol% of tetramethylene glycol.

この共重合ポリエステルは導電性物質を多量に分散させ
た状態でも分散性がよく、かつ、鞘部のポリエステル成
分との接着性が特に良好であるため、芯部の鋭突部と鞘
成分外周とにより形成される鞘成分最小厚さを薄くして
も洗濯耐久性が良好であり、かつ、より低電圧で放電処
理を行っても、十分な導電性能を付与することができる
ため、繊維に損傷を与えることがない。
This copolyester has good dispersibility even when a large amount of conductive material is dispersed, and has particularly good adhesion to the polyester component of the sheath, so that the sharp protrusion of the core and the outer periphery of the sheath Even if the minimum thickness of the sheath component is made thinner, it has good washing durability, and even if discharge treatment is performed at a lower voltage, sufficient conductive performance can be imparted, so there is no damage to the fibers. Never give up.

該芯成分を完全に取り囲む鞘成分は繊維形成性ポリエス
テルから構成される。特に、風合、加工工程の取扱い性
において優れており、さらに、耐薬品性も良好なことか
らポリエチレンテレフタレートが好ましい。
A sheath component that completely surrounds the core component is comprised of fiber-forming polyester. In particular, polyethylene terephthalate is preferred because it has excellent texture and handling properties during processing, and also has good chemical resistance.

かかる物質からなる導電性繊維は、繊維断面における該
芯成分の形状が2以上の鋭突部を有する異形断面形状で
あることが重要である。鋭突部の数は2〜8が好ましい
。ここにいう鋭突部を有する断面形状とは凸状ないしは
突起状の凸部を有する断面形状をいい、主なもの、に、
第1図(イ)〜(ニ)に示すものがある。さらに、第1
図(ロ)に示した鋭突部と鞘成分外周との最小厚さVi
のすべてが0.3μm以上であり、少な(とも一つは5
μm以下であることが必要である。Viが0.3μmよ
り小さい箇所がある場合には、耐洗濯性が低下し、■五
のすべてが5μmより大きい場合には、導電性能が劣る
という問題がある。
In a conductive fiber made of such a substance, it is important that the core component in the cross section of the fiber has an irregular cross-sectional shape having two or more sharp protrusions. The number of sharp protrusions is preferably 2 to 8. The cross-sectional shape having a sharp protrusion here refers to a cross-sectional shape having a convex or protruding convex part, and the main ones are:
There are those shown in Fig. 1 (a) to (d). Furthermore, the first
The minimum thickness Vi between the sharp protrusion and the outer periphery of the sheath component shown in Figure (B)
All of them are 0.3μm or more, and a few (one is 5μm or more)
It is necessary that the thickness be less than μm. If there is a part where Vi is smaller than 0.3 μm, there is a problem that the washing resistance is decreased, and if all of (5) are larger than 5 μm, the conductive performance is poor.

また、本発明の導電性複合繊維は、第1図(ホ)に示す
ような中空繊維であってもよい。
Further, the conductive composite fiber of the present invention may be a hollow fiber as shown in FIG. 1 (E).

本発明の導電性繊維は、後述するような放電処理を施し
て得られるが、繊維表面の電気抵抗値がIQIIΩ/c
ts未満であり、かつ、該表面の電気抵抗値(Ω/ c
s )と断面間の内部電気抵抗値(97cm)との比が
10’以下である。通常、繊維形成性ポリマーからなる
繊維の表面抵抗値は、例えば、10”Ω/c−オーダー
というように非常に高く、仮に断面間内部抵抗値が10
’Ω/ cm 井−ダーと低(でも、表面の電気抵抗値
と断面間の内部電気抵抗値の比は10’程度と大であり
、繊維の表面には、はとんど導電性の効果が発現しない
The conductive fiber of the present invention is obtained by subjecting it to a discharge treatment as described below, and the electrical resistance value of the fiber surface is IQIIΩ/c.
ts, and the electrical resistance value of the surface (Ω/c
s ) and the internal electrical resistance value (97 cm) between cross sections is 10' or less. Normally, the surface resistance value of fibers made of fiber-forming polymers is very high, for example, on the order of 10"Ω/c, and if the cross-sectional internal resistance value is 10"
'Ω/cm' is very low (however, the ratio of the surface electrical resistance value to the internal electrical resistance value between the cross sections is as large as about 10', and the surface of the fiber has almost no conductive effect. is not expressed.

本発明者らは、先に、鞘成分が繊維形成性ポリマーから
構成されていても、繊維表面の電気抵抗値がIQIOΩ
/ cmオーダー以下である導電性繊維を提案した(特
開昭62−53416号公報)。
The present inventors previously discovered that even if the sheath component is composed of a fiber-forming polymer, the electrical resistance value of the fiber surface is IQIOΩ.
/ Conductive fiber, which is less than a CM order, was proposed (Special Opening Shora 62-53416 Bulletin).

ここに、電気抵抗値(Ω/ cm )は次のようにして
測定する。
Here, the electrical resistance value (Ω/cm) is measured as follows.

(イ)断面量的部電気抵抗(直 繊維軸方向の長さ2.0 cmとなるよう両端を横断面
方向にカットした繊維の該両断面にAgドウタイト(銀
粒子含有の導電性樹脂塗料、藤倉工業製)を付着させた
試料を電気絶縁性ポリエチレンテレフタレートフィルム
上で、温湿度20’CX30%RHの条件のもとに0.
5KVの直流電圧を該Agドウタイト付着面を使って印
加して両断面間に流れる電流を求め、オームの法則によ
り電気抵抗値Ω/ cmを算出する。
(b) Cross-sectional quantitative electric resistance (A straight fiber with Ag dotite (conductive resin paint containing silver particles) Fujikura Industries Co., Ltd.) was deposited on an electrically insulating polyethylene terephthalate film under conditions of temperature and humidity of 20'C x 30% RH.
A DC voltage of 5 KV is applied using the Ag dotite attachment surface to determine the current flowing between both cross sections, and the electrical resistance value Ω/cm is calculated using Ohm's law.

J…上1」四i % U彊直 繊維軸方向の長さ約2.’Ocmにカットされた繊維の
両端付近の表面(繊維側面)に前記のAgドウタイトを
付着させたものを試料として、該試料を電気絶縁性ポリ
エチレンテレフタレートフィルム上で、温湿度20℃×
30%RHの条件の下に、0.5KVの直流電圧を該A
gドウタイト間に印加してAgドウタイト間に流れる電
流を求め、かつ、Agドウタイト間の距離を測定して、
オームの法則により表面電気抵抗値Ω/cmを算出する
J...Top 1"4i% U-shaped straight fiber axial length approximately 2. A sample was prepared by adhering the above-mentioned Ag doutite to the surface near both ends (fiber side surfaces) of a fiber cut into 100 cm. The sample was placed on an electrically insulating polyethylene terephthalate film at a temperature and humidity of 20°
Under the condition of 30%RH, apply a DC voltage of 0.5KV to the A
Find the current that is applied between the Ag doutites and flows between the Ag doutites, and measure the distance between the Ag doutites,
The surface electrical resistance value Ω/cm is calculated using Ohm's law.

本発明の繊維は、放電処理を施すことによって表面電気
抵抗値を低下させ、表面電気抵抗値と断面間の内部電気
抵抗値との比を小さくし、導電性を付与するものである
が、放電処理法としては、前記のようにして得られた芯
鞘型複合繊維を高電圧電極に接触させて高電圧を印加す
る通電法、放電形状の異なるコロナ放電、火花放電、グ
ロー放電、アーク放電等の高電圧放電処理法により処理
することができる。
The fibers of the present invention are subjected to electrical discharge treatment to reduce the surface electrical resistance value, reduce the ratio of the surface electrical resistance value to the internal electrical resistance value between cross sections, and impart electrical conductivity. Treatment methods include an energization method in which the core-sheath composite fiber obtained as described above is brought into contact with a high voltage electrode and a high voltage is applied, corona discharge with different discharge shapes, spark discharge, glow discharge, arc discharge, etc. The high voltage discharge treatment method described above can be used.

印加電圧としては、1’KVを超える電圧であって、1
00KVまでの範囲のものが使用でき、好ましくは5〜
100KV、特に好ましくは10〜50KVの範囲のも
のが好適に例示される。電圧の極性はプラスでも、マイ
ナスでも(直流)、又は交流であってもよい。電極間の
距離はO”10cna間の範囲のものが使用でき、放電
形態と処理速度との関係で決めることができる。又、導
電性物質を含有する芯成分を一方の極とし、他方の極を
別に設けて、該両極に高電圧を印加し、この高電圧電極
下で放電処理することが最適に例示されるが、この方法
に限るものではなく、別々に設けた二つの極に高電圧を
印加して放電処理する方法であってもよい。
The applied voltage is a voltage exceeding 1'KV, and 1
00KV can be used, preferably 5~
Suitable examples include those in the range of 100 KV, particularly preferably 10 to 50 KV. The polarity of the voltage may be positive, negative (direct current), or alternating current. The distance between the electrodes can be in the range of 0"10cna, and can be determined depending on the relationship between the discharge form and the processing speed.Also, the core component containing the conductive substance is used as one pole, and the other pole is used as the distance between the electrodes. The best example is to separately provide two electrodes, apply a high voltage to the two electrodes, and perform the discharge treatment under this high voltage electrode, but the method is not limited to this method. A method may also be used in which discharge treatment is performed by applying .

又、このような放電処理は糸の状態でも、編織物等の布
帛、不織布の状態でも行うことができる。
Furthermore, such discharge treatment can be performed on yarns, fabrics such as knitted fabrics, and nonwoven fabrics.

さらに糸の場合、延伸糸に施しても、未延伸糸に施して
も良い。
Furthermore, in the case of yarn, it may be applied to drawn yarn or undrawn yarn.

かかる放電処理によって、表面電気抵抗値を10I0Ω
/cI11オーダー以下とすることができるし、表面電
気抵抗値と断面量的部電圧抵抗値との比を10”以下と
することができ、好ましくは、この比を102以下、特
に厳しい条件で使用する場合は10以下とすることがで
きる。
Through this discharge treatment, the surface electrical resistance value was reduced to 10I0Ω.
/cI can be on the order of 11 or less, and the ratio of the surface electrical resistance value to the cross-sectional quantitative voltage resistance value can be made to be 10" or less, and preferably this ratio is 102 or less, when used under particularly severe conditions. If so, it can be set to 10 or less.

(作用) 本発明の繊維は、表面電気抵抗値と断面間の内部電気抵
抗値との比が103以下、表面電気抵抗値が10”Ω/
 crn未満となり、かつ、洗濯耐久性および耐薬品性
に優れた特性を有するものである。
(Function) The fiber of the present invention has a ratio of surface electrical resistance to cross-sectional internal electrical resistance of 103 or less, and a surface electrical resistance of 10”Ω/
crn, and has excellent washing durability and chemical resistance.

電気抵抗値に関しては、繊維形成性ポリマーの電気抵抗
値を高電圧による放電処理により低下させることができ
るため上記のような値をとることができる。特に、芯成
分を一方の極とし、他方の極を別に設けてこの両極に高
電圧をかけて放電処理した場合には繊維形成性ポリマー
の有するる電気絶縁性をなくし、電気の半導体と同様の
性質を付与することができる。
Regarding the electrical resistance value, since the electrical resistance value of the fiber-forming polymer can be lowered by discharge treatment using a high voltage, the above value can be obtained. In particular, when the core component is used as one pole and the other pole is separately provided and a high voltage is applied to these two poles and discharge treatment is performed, the electrical insulation property of the fiber-forming polymer is lost, and the same as that of an electric semiconductor is produced. Properties can be assigned.

また、芯成分として、鞘成分との接着性にすぐれた特殊
な共重合ポリエステルを用い、かつ、芯部の断面形状が
異形断面形状であり芯部が鞘部によって完全に被覆され
ているために、洗濯耐久性、耐薬品性に優れている。
In addition, a special copolyester polyester with excellent adhesion to the sheath component is used as the core component, and the core has an irregular cross-sectional shape and is completely covered by the sheath. , excellent washing durability and chemical resistance.

すなわち、芯成分が、鞘成分のポリエステルと良好な接
着性を示す融点が80〜180℃である共重合ポリエス
テルからなるため、芯部の鋭突部と鞘成分外周部とによ
り形成される鞘成分最小厚さViO値が小さくても十分
な耐洗濯性を有することができる。これは従来の芯鞘型
導電性繊維にはみられなかったことである。さらに芯成
分の断面形状が鋭突部を有する異形断面形状であるため
、放電加工時に該鋭突部先端において放電処理が行われ
、低電圧での処理でも十分な導電性を付与することがで
きるため、放電加工による鞘部の損傷を最小限度にする
ことができ、強伸度低下、放電加工中の断糸等のトラブ
ルを防止できる。また、導電物質を含有する芯成分が完
全に鞘成分で覆われていながら制電性を発揮するので、
導電物質特有の色が繊維表面にあられれることもなく、
芯成分が使用中に脱落して機能が低下することもない。
That is, since the core component is made of a copolymerized polyester with a melting point of 80 to 180° C. that exhibits good adhesion to the polyester of the sheath component, the sheath component formed by the sharp protrusion of the core and the outer periphery of the sheath component. Even if the minimum thickness ViO value is small, sufficient washing resistance can be achieved. This has not been seen in conventional core-sheath type conductive fibers. Furthermore, since the core component has an irregular cross-sectional shape with sharp protrusions, electrical discharge treatment is performed at the tip of the sharp protrusions during electrical discharge machining, and sufficient conductivity can be imparted even when processed at low voltage. Therefore, damage to the sheath portion due to electrical discharge machining can be minimized, and troubles such as a decrease in strength and elongation and yarn breakage during electrical discharge machining can be prevented. In addition, the core component containing the conductive material exhibits antistatic properties even though it is completely covered with the sheath component.
The color peculiar to conductive materials does not appear on the fiber surface,
The core component will not fall off during use and the functionality will not deteriorate.

(実施例) 以下、実施例について述べるが、洗濯耐久性及び耐薬品
性は下記の方法により評価した。
(Example) Examples will be described below, and washing durability and chemical resistance were evaluated by the following methods.

試料はT−89393の繊維規格に準じて作成し、導電
糸を1c11間隔でストライプに織込んだ。
The sample was prepared according to the fiber standard of T-89393, and conductive threads were woven into stripes at 1c11 intervals.

洗濯耐久性はクリーンルーム内で洗濯をくり返した後の
織物表面を任意に20ケ所外観検査し、破損箇所の個数
割合を%で表した。耐薬品性は、織物試料を薬品に室温
で24時間浸漬後、水洗乾燥後、スコツトテスターで5
0回揉み操作をくり返した後、織物表面を任意に20ケ
所外観検査し、剥離なしを○、一部剥離をΔ、大部分剥
離を×で評価した。
Washing durability was determined by visually inspecting the surface of the fabric at 20 arbitrary locations after repeated washing in a clean room, and expressing the number of damaged spots as a percentage. Chemical resistance was determined using a Scotto tester after immersing the fabric sample in chemicals for 24 hours at room temperature, washing with water, and drying.
After repeating the kneading operation 0 times, the appearance of the fabric surface was randomly inspected at 20 locations, and evaluation was made as ◯ for no peeling, Δ for partial peeling, and × for most peeling.

実施例1 酸化チタン徽粒子の表面に導電性酸化第二錫をコーティ
ングした平均粒径0.25μ、比抵抗9Ω値の導電性粉
体240重量部と、ジカルボン酸成分としてテレフタル
酸ジメチル90モル%、イソフタル酸ジメチル10モル
%、ジオール成分としてヘキサメチレングリコール10
0モル%からなる共重合ポリエステル(融点:138℃
、固有粘度: 0.66) 75重量部をニーグーに仕
込み、200℃で1時間混練した。得られた導電性樹脂
の比抵抗は、3. l X 102Ω・備であった。
Example 1 240 parts by weight of a conductive powder having an average particle size of 0.25μ and a specific resistance of 9Ω, which is made by coating the surface of titanium oxide particles with conductive tin oxide, and 90 mol% of dimethyl terephthalate as a dicarboxylic acid component. , dimethyl isophthalate 10 mol%, hexamethylene glycol 10 as diol component
Copolymerized polyester consisting of 0 mol% (melting point: 138°C
, intrinsic viscosity: 0.66) 75 parts by weight were charged into a Nigu and kneaded at 200°C for 1 hour. The specific resistance of the obtained conductive resin is 3. The resistance was 1 x 102Ω.

この導電性樹脂を芯成分とし、ポリエチレンテレフタレ
ートを鞘成分とし複合紡糸装置を用いて溶融紡糸し、第
1図(ロ)に示すような断面形状を有する芯鞘型複合繊
維としたのち3.1倍に延伸して25デニール、単糸数
5のマルチフィラメントを得た。
This conductive resin is used as a core component, polyethylene terephthalate is used as a sheath component, and melt-spun using a composite spinning device to obtain a core-sheath type composite fiber having a cross-sectional shape as shown in Figure 1 (b). The multifilament was stretched twice to obtain a 25 denier multifilament with a single thread count of 5.

この芯鞘型複合繊維をマイナス5KV、50m/分でコ
ロナ放電処理をした。電気抵抗値、強伸度、耐洗濯性、
耐薬品性を第1表に示す。
This core-sheath type composite fiber was subjected to corona discharge treatment at -5 KV and 50 m/min. Electrical resistance value, strength and elongation, washing resistance,
Chemical resistance is shown in Table 1.

比較例1 実施例1で用いた導電性粉体240重量部とメルトイン
デックス75のポリエチレン75重量部とをニーグーに
仕込み、180’cで30分間混練した。得られた導電
性樹脂の比抵抗は、3.0X10”Ω・cmであった。
Comparative Example 1 240 parts by weight of the conductive powder used in Example 1 and 75 parts by weight of polyethylene having a melt index of 75 were charged into a Nigu and kneaded at 180'c for 30 minutes. The specific resistance of the obtained conductive resin was 3.0×10”Ω·cm.

実施例1と同様に溶融紡糸、延伸し、コロナ放電処理を
行った後の性質を第1表に示す。
Table 1 shows the properties after melt spinning, stretching, and corona discharge treatment in the same manner as in Example 1.

比較例2 実施例1において、共重合ポリエステルのかわりにナイ
ロン6を用い、250°Cで1時間混練した以外は実施
例1と同様に行った。得られた繊維の性質を第1表に示
す。
Comparative Example 2 The same procedure as in Example 1 was carried out except that nylon 6 was used instead of the copolymerized polyester and kneaded at 250°C for 1 hour. The properties of the obtained fibers are shown in Table 1.

実施例2 導電性物質として、導電性カーボンブラック30重足部
と、実施例1で用いた共重合ポリエステル70重量部を
混練した以外は実施例1と同様に行った。得□られた繊
維の性質を第1表に示す。
Example 2 The same procedure as in Example 1 was carried out except that 30 parts by weight of conductive carbon black and 70 parts by weight of the copolyester used in Example 1 were kneaded as conductive substances. The properties of the obtained fibers are shown in Table 1.

比較例3〜4 実施例1において、Viが第1表に示す値になるように
芯・鞘成分の量を変更した以外は、実施例1と同様に紡
糸、延伸、コロナ放電処理を行った。結果を第1表に示
す。
Comparative Examples 3 to 4 Spinning, drawing, and corona discharge treatment were performed in the same manner as in Example 1, except that the amounts of the core and sheath components were changed so that Vi became the value shown in Table 1. . The results are shown in Table 1.

実施例3 実施例1において、共重合ポリエステルとしてテレフタ
ル酸ジメチル40モル%、イソフタル酸ジメチル60モ
ル%、からなるジカルボン酸成分と、エチレングリコー
ル5モル%、テトラメチレングリコール95モル%から
なるジオール成分とからなる共重合ポリエステルを用い
る以外は実施例1と同様に行った。その結果を第1表に
示す。
Example 3 In Example 1, a dicarboxylic acid component consisting of 40 mol% of dimethyl terephthalate and 60 mol% of dimethyl isophthalate and a diol component consisting of 5 mol% of ethylene glycol and 95 mol% of tetramethylene glycol were used as the copolymerized polyester. Example 1 was carried out in the same manner as in Example 1 except that a copolymerized polyester consisting of was used. The results are shown in Table 1.

(本真、以下余白) 第1表の結果から明らかなように、芯成分が導電性物質
と共重合ポリエステルからなり、かつ、ViO値が本発
明の範囲内にある場合(実施例1〜3)には、芯成分が
ナイロン6やポリエチレンの場合(比較例1および2)
、あるいはViO値が本発明の範囲よりも低い場合(比
較例3)に比べて、耐洗濯性および耐薬品性が優れてお
り、さらに、ViO値が本発明の範囲よりも高い場合(
比較例4)に比べて、表面電気抵抗値が低く、制電性に
優れていることがわかる。
(Main truth, hereafter blank) As is clear from the results in Table 1, when the core component consists of a conductive substance and a copolymerized polyester and the ViO value is within the range of the present invention (Examples 1 to 3) ), when the core component is nylon 6 or polyethylene (Comparative Examples 1 and 2)
, or the case where the ViO value is lower than the range of the present invention (Comparative Example 3), the washing resistance and chemical resistance are excellent, and the ViO value is higher than the range of the present invention (Comparative Example 3).
It can be seen that the surface electrical resistance value is lower than that of Comparative Example 4), and the antistatic property is excellent.

比較例5 導電性物質、芯部ポリマーおよび鞘部ポリマーは実施例
1で用いたものを使用して溶融紡糸し、同心円型複合繊
維としたのち、3.1倍に延伸し、25デニール、単糸
数5のマルチフィラメントを得た。実施例1と同様の方
法によりコロナ放電処理をした。得られた糸は、Vi(
μrn) −7,3、表面電気抵抗値5.OXIO”Ω
・cm、断面量的部電気抵抗値4X10’Ω・cm、強
度3.9(g/de) 、伸度39%であった。この結
果から明らかなように、芯部の断面形状が鋭突部を有す
る異形断面でない場合(比較例5)には、本発明の場合
(実施例1)に比較して、表面電気抵抗値が高く、実質
的に放電加工されない。
Comparative Example 5 The conductive material, core polymer, and sheath polymer used in Example 1 were melt-spun to form concentric composite fibers, which were then drawn 3.1 times and made into 25 denier, single fibers. A multifilament with a thread count of 5 was obtained. Corona discharge treatment was performed in the same manner as in Example 1. The obtained thread has Vi(
μrn) -7.3, surface electrical resistance value 5. OXIO”Ω
・cm, cross-sectional quantitative electrical resistance value of 4×10' Ω・cm, strength of 3.9 (g/de), and elongation of 39%. As is clear from this result, when the cross-sectional shape of the core part is not an irregular cross-section having a sharp protrusion (Comparative Example 5), the surface electrical resistance value is lower than that of the present invention (Example 1). high and virtually non-erodible.

実施例4〜5、比較例6 実施例1において、イソフタル酸ジメチルの量を第2表
に示すように変更し、融点の異なる芯成分ポリマーとし
た以外は、同様に紡糸延伸を行い、放電処理を行った。
Examples 4 to 5, Comparative Example 6 Spinning and drawing were carried out in the same manner as in Example 1, except that the amount of dimethyl isophthalate was changed as shown in Table 2, and the core component polymers had different melting points. I did it.

電気抵抗値、強伸度、耐洗濯性、耐薬品性を第2表に示
す。
The electrical resistance value, strength and elongation, washing resistance, and chemical resistance are shown in Table 2.

比較例7 実施例3において、テレフタル酸ジメチルを82モル%
、イソフタル酸ジメチルを18モル%、エチレングリコ
ールを3モル%、テトラメチレングリコールを97モル
%とする以外は、実施例3と同様に行った。その結果を
第2表に示す。
Comparative Example 7 In Example 3, 82 mol% of dimethyl terephthalate
The same procedure as in Example 3 was carried out, except that dimethyl isophthalate was 18 mol%, ethylene glycol was 3 mol%, and tetramethylene glycol was 97 mol%. The results are shown in Table 2.

(本頁、以下余白) 第  2  表 ※ 紡糸不可能 第2表の結果から明らかなように、芯成分の共重合ポリ
エステルの融点が80℃未満である場合(比較例6)に
は、糸断面が不均一になるため強伸度が低く、180℃
を越える場合(比較例7)には芯ポリマーの粘度が高い
ため、紡糸そのものが不可能であった。
(This page, blank spaces below) Table 2 *Unable to spin As is clear from the results in Table 2, when the melting point of the core component copolyester is less than 80°C (Comparative Example 6), the thread cross section The strength and elongation are low due to non-uniformity, and the
(Comparative Example 7), the viscosity of the core polymer was so high that spinning itself was impossible.

一方、融点が本発明の範囲内にある場合(実施例3〜4
)には、電気抵抗値が低くなり、強伸度、耐洗濯性およ
び耐薬品性は良好である。
On the other hand, when the melting point is within the range of the present invention (Examples 3 to 4)
) has a low electrical resistance value and good strength and elongation, washing resistance and chemical resistance.

(発明の効果) 本発明によれば、繊維表面の電気抵抗値が低く、制電性
に優れた芯鞘型複合繊維であり、かつ耐洗濯性、耐薬品
性に優れた導電性繊維を提供することができる。
(Effects of the Invention) According to the present invention, there is provided a conductive fiber that is a core-sheath composite fiber with a low electric resistance value on the fiber surface and excellent antistatic properties, and has excellent washing resistance and chemical resistance. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の導電性芯鞘型複合繊維の断面形状の
例を示す図である。 Vi・・・・・・鋭突部と鞘成分外周部とにより形成さ
れる鞘成分最小厚さ。
FIG. 1 is a diagram showing an example of the cross-sectional shape of the conductive core-sheath type composite fiber of the present invention. Vi: Minimum thickness of the sheath component formed by the sharp protrusion and the outer periphery of the sheath component.

Claims (1)

【特許請求の範囲】 1、導電性物質を含有する芯成分と、該芯成分を完全に
被覆する繊維形成性ポリエステルからなる鞘成分とによ
り構成され、繊維表面の電気抵抗値が10^1^1Ω/
cm未満であり、かつ、該表面の電気抵抗値と断面間の
内部電気抵抗値との比が10^3以下である芯鞘型複合
繊維において、該芯成分が80〜180℃の融点を有す
る共重合ポリエステルと導電性物質とからなり、芯成分
の断面形状が2以上の鋭突部を有する異形断面形状であ
って、該鋭突部と該鞘成分外周部とにより形成される鞘
成分最小厚さViのすべてが0.3μm以上で、かつ、
その少なくとも一つが5μm以下であることを特徴とす
る導電性繊維。 2、繊維形成性ポリエステルが、主としてポリエチレン
テレフタレートであり、芯成分を構成する共重合ポリエ
ステルが、5〜50モル%のイソフタル酸またはイソフ
タル酸ジメチルと90〜50モル%のテレフタル酸また
はテレフタル酸ジメチルとからなるジカルボン酸成分と
、ヘキサメチレングリコールからなるジオール成分とか
らなる共重合ポリエステルである特許請求の範囲第1項
記載の導電性繊維。 3、芯成分を構成する共重合ポリエステルが、40〜8
0モル%のイソフタル酸またはイソフタル酸ジメチルと
60〜20モル%のテレフタル酸またはテレフタル酸ジ
メチルとからなるジカルボン酸成分と、2〜10モル%
のエチレングリコールと98〜90モル%のテトラメチ
レングリコールとからなるジオール成分とからなる共重
合ポリエステルである特許請求の範囲第1項記載の導電
性繊維。
[Claims] 1. It is composed of a core component containing a conductive substance and a sheath component made of fiber-forming polyester that completely covers the core component, and the electrical resistance value of the fiber surface is 10^1^ 1Ω/
In a core-sheath type composite fiber which is less than cm and has a ratio of the electrical resistance value of the surface to the internal electrical resistance value between the cross sections of 10^3 or less, the core component has a melting point of 80 to 180 ° C. The core component is made of a copolymerized polyester and a conductive substance, and the core component has an irregular cross-sectional shape having two or more sharp protrusions, and the sheath component is formed by the sharp protrusions and the outer periphery of the sheath component. All of the thicknesses Vi are 0.3 μm or more, and
A conductive fiber characterized in that at least one of the conductive fibers has a diameter of 5 μm or less. 2. The fiber-forming polyester is mainly polyethylene terephthalate, and the copolymerized polyester constituting the core component is 5 to 50 mol% of isophthalic acid or dimethyl isophthalate and 90 to 50 mol% of terephthalic acid or dimethyl terephthalate. 2. The conductive fiber according to claim 1, which is a copolymerized polyester comprising a dicarboxylic acid component consisting of a dicarboxylic acid component consisting of the following: and a diol component consisting of hexamethylene glycol. 3. The copolymerized polyester constituting the core component is 40 to 8
a dicarboxylic acid component consisting of 0 mol% isophthalic acid or dimethyl isophthalate and 60 to 20 mol% terephthalic acid or dimethyl terephthalate; and 2 to 10 mol%
2. The conductive fiber according to claim 1, which is a copolymerized polyester comprising ethylene glycol and a diol component comprising 98 to 90 mol% of tetramethylene glycol.
JP63036583A 1988-02-18 1988-02-18 Conductive fiber Expired - Lifetime JPH0733637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63036583A JPH0733637B2 (en) 1988-02-18 1988-02-18 Conductive fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63036583A JPH0733637B2 (en) 1988-02-18 1988-02-18 Conductive fiber

Publications (2)

Publication Number Publication Date
JPH01213411A true JPH01213411A (en) 1989-08-28
JPH0733637B2 JPH0733637B2 (en) 1995-04-12

Family

ID=12473793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63036583A Expired - Lifetime JPH0733637B2 (en) 1988-02-18 1988-02-18 Conductive fiber

Country Status (1)

Country Link
JP (1) JPH0733637B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2037015A1 (en) * 2006-07-03 2009-03-18 Kuraray Co., Ltd. Conductive sheath-core conjugate fiber and process for producing the same
US7809321B2 (en) 2006-10-06 2010-10-05 Ricoh Company, Ltd. Cleaning device, process cartridge and image forming apparatus
US7873298B2 (en) 2007-01-10 2011-01-18 Ricoh Company, Ltd. Cleaning device, process cartridge, and image forming apparatus
US7929897B2 (en) 2007-02-14 2011-04-19 Ricoh Company, Ltd. Cleaning unit, process cartridge, and image forming apparatus using the same
US8699898B2 (en) 2011-03-04 2014-04-15 Ricoh Company, Ltd. Apparatus and method for changing a voltage setting for an image forming apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042295A (en) * 2007-08-06 2009-02-26 Ricoh Co Ltd Cleaning device, process cartridge and image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133217A (en) * 1981-02-03 1982-08-17 Kuraray Co Ltd Fiber consisting of copolyester
JPS588122A (en) * 1981-07-09 1983-01-18 Kuraray Co Ltd Conjugate fiber and its production
JPS6021909A (en) * 1983-07-15 1985-02-04 Unitika Ltd Antistatic synthetic fiber
JPS60224812A (en) * 1984-04-17 1985-11-09 Kanebo Ltd Electrically conductive composite fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133217A (en) * 1981-02-03 1982-08-17 Kuraray Co Ltd Fiber consisting of copolyester
JPS588122A (en) * 1981-07-09 1983-01-18 Kuraray Co Ltd Conjugate fiber and its production
JPS6021909A (en) * 1983-07-15 1985-02-04 Unitika Ltd Antistatic synthetic fiber
JPS60224812A (en) * 1984-04-17 1985-11-09 Kanebo Ltd Electrically conductive composite fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2037015A1 (en) * 2006-07-03 2009-03-18 Kuraray Co., Ltd. Conductive sheath-core conjugate fiber and process for producing the same
EP2037015A4 (en) * 2006-07-03 2009-07-15 Kuraray Co Conductive sheath-core conjugate fiber and process for producing the same
JP4902652B2 (en) * 2006-07-03 2012-03-21 株式会社クラレ Conductive core-sheath type composite fiber and method for producing the same
US7809321B2 (en) 2006-10-06 2010-10-05 Ricoh Company, Ltd. Cleaning device, process cartridge and image forming apparatus
US7873298B2 (en) 2007-01-10 2011-01-18 Ricoh Company, Ltd. Cleaning device, process cartridge, and image forming apparatus
US7929897B2 (en) 2007-02-14 2011-04-19 Ricoh Company, Ltd. Cleaning unit, process cartridge, and image forming apparatus using the same
US8699898B2 (en) 2011-03-04 2014-04-15 Ricoh Company, Ltd. Apparatus and method for changing a voltage setting for an image forming apparatus

Also Published As

Publication number Publication date
JPH0733637B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
KR930000241B1 (en) Electroconductive composite fiber and process for preparation thereof
JP3917524B2 (en) Fiber composite and use thereof
JPH01292116A (en) Electrically conductive fiber and production thereof
JPH01213411A (en) Electrically conductive yarn
JPH10131035A (en) Production of electroconductive fiber
JPH01183520A (en) Electrically conductive fiber
JP2004225214A (en) Electroconductive conjugated fiber
JPH10310974A (en) Production of electrically conductive fiber
JPS63219624A (en) Electrically conductive yarn and production thereof
JPS6253416A (en) Electrically conductive fiber and production thereof
JP2005194650A (en) Conductive conjugate fiber
JPS6350446B2 (en)
JPS60224813A (en) Antistatic conjugated fiber
JPH0733605B2 (en) Conductive hollow composite fiber
JP2833780B2 (en) Conductive composite fiber
JP4763451B2 (en) Conductive composite fiber
JPH10212622A (en) Electroconductive fiber
JPS63190017A (en) Antistatic conjugate fiber
JP2004044035A (en) Conductive conjugate fiber
KR950000723B1 (en) Composite fiber having an electrical conductivity and being prepared 3 other components
JPH09143821A (en) Electroconductive fiber
JPS63235525A (en) Electrically conductive conjugated yarn
JP3238535B2 (en) Conductive composite fiber
JP3113054B2 (en) Conductive composite fiber
JPH0372749B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term