JPS60224812A - Electrically conductive composite fiber - Google Patents

Electrically conductive composite fiber

Info

Publication number
JPS60224812A
JPS60224812A JP7778184A JP7778184A JPS60224812A JP S60224812 A JPS60224812 A JP S60224812A JP 7778184 A JP7778184 A JP 7778184A JP 7778184 A JP7778184 A JP 7778184A JP S60224812 A JPS60224812 A JP S60224812A
Authority
JP
Japan
Prior art keywords
conductive
particles
sheath component
component
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7778184A
Other languages
Japanese (ja)
Other versions
JPH0364603B2 (en
Inventor
Toshio Jitsumatsu
実松 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Kanebo Gohsen Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Kanebo Gohsen Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd, Kanebo Gohsen Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP7778184A priority Critical patent/JPS60224812A/en
Publication of JPS60224812A publication Critical patent/JPS60224812A/en
Publication of JPH0364603B2 publication Critical patent/JPH0364603B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an electrically conductive white composite fiber free from metal abrasion property and having excellent antistatic property, by compounding a specific electrically conductive core component with a non-conductive sheath component. CONSTITUTION:The objective composite fiber can be produced by compounding (A) an electrically conductive core component having a specific resistance of <10<7>OMEGA.cm and composed of electrically conductive particles such as tin oxide and a thermoplastic polymer such as polyethylene with (B) a non-conductive sheath component composed of a fiber-forming polymer such as nylon 6, nylon 66, etc. having a specific resistance of >=10<7>OMEGA.cm and containing 0.001-5wt% electrically conductive particles of metal oxide or metallic compound such as zinc oxide or coated with a film containing the above particles. The minimum thickness of the sheath component in the cross-section of the fiber is preferably <=3mu.

Description

【発明の詳細な説明】 本発明は金属皐耗性がなく、且つ制!I!性能に優れた
白色の導電性複合HAIIIkに関する。
[Detailed Description of the Invention] The present invention is free from metal abrasion and is free from wear! I! This invention relates to a white conductive composite HAIIIk with excellent performance.

通電、カーペットの上を夛いてドアの把手に触nた時の
放電シッック、JIk線帯電による火花放電、或いは壷
埃の付看などのh電気障害は非常に厄介なものであり、
かなりの不快感を生ぜしめるものである。合成線維や天
然繊維に制電性を付与する有効な手段の一つに、導電性
カーホンブラックを混合したポリマーからなる尋電成分
と繊維形成性ポリマーからなる保護成分とが接合された
導電性複合繊維を少量混用する方法がある。しかしなが
ら、カーボンブラックを用いた導に性複合繊維は黒色又
は灰色に着色している為、その用途を制限されているの
が実状である。近年、このような外観の黒色を改良する
ものとして、白色又は無色の4亀性物質を含有さぜた導
電性繊維の研究が盛んである。なかでも導電性金属酸化
物やこれらの皮膜を有する微粒子は白色に近く、比較的
良好な導電性と混線性を自していることが判り、注目さ
れている。例えば特開昭57−5919号公報及び待島
昭57−11213号公報には酸化亜鉛や酸化錫を生取
分とする等電性金属酸化物を用いた導電性複合繊維が記
載されている。しかし、導電性カーボンブラックを用い
た導電性複合繊維並みの導電性を得るには、導電性カー
ボンブラックの場合に比べて、2〜3倍の導電性金属酸
化物を混練する必要があるなど、解決すべき問題がいく
つか残されており、実用化が遅れている。
Electrical disturbances such as electricity, discharge sickness when touching a door handle on a carpet, spark discharge due to charging of a JIk wire, or the appearance of dust in a pot are extremely troublesome.
This causes considerable discomfort. One of the effective means of imparting antistatic properties to synthetic fibers and natural fibers is conductive fibers, which are made by bonding a Hiden component made of a polymer mixed with conductive carphone black and a protective component made of a fiber-forming polymer. There is a method of mixing a small amount of composite fiber. However, since conductive composite fibers using carbon black are colored black or gray, their use is actually limited. In recent years, there has been active research into conductive fibers containing white or colorless tetragonal substances to improve the black appearance. Among them, conductive metal oxides and fine particles having a coating thereof are close to white in color and have been found to have relatively good conductivity and crosstalk properties, and are attracting attention. For example, JP-A-57-5919 and Machishima-Sho 57-11213 disclose conductive composite fibers using isoelectric metal oxides containing zinc oxide or tin oxide as raw materials. However, in order to obtain conductivity comparable to that of conductive composite fibers using conductive carbon black, it is necessary to knead 2 to 3 times as much conductive metal oxide as in the case of conductive carbon black. Some problems remain to be resolved, and practical implementation is delayed.

一方、最近の電子機器産業の成長に伴い、無塵制電作業
服やカーペットに要求される制電性能は従来以上、ます
ます^度なものとなっている。
On the other hand, with the recent growth of the electronic equipment industry, the anti-static performance required of dust-free anti-static work clothes and carpets is becoming even more advanced than before.

本莞明者等はかかる背景から、白色でしかも高度な制電
性能を発揮する繊維を研究の結果、先に、導電性金属酸
化物粒子を多足に含有した導電成分か繊維表面に露出し
ている導電性複合繊維は優れた制電性能を有するものの
、金属摩耗性が著しいことを艶出し、これを改良するも
のとして、導電性の金属酸化物等の粒子を含有する導電
性の芯成分と、これを取囲む繊維形成性ポリマーからな
る鞘成分とからなり、且つm組構断面において鞘成分の
厚さで最小部位が3μm以下である導電性複合!1lJ
1[:を特願1t/158−214277号として提案
した。
Against this background, the inventors of the present invention have researched fibers that are white and exhibit high antistatic performance. Although the conductive composite fiber has excellent antistatic performance, it has remarkable metal abrasion resistance, and to improve this, a conductive core component containing particles of conductive metal oxide, etc. and a sheath component made of a fiber-forming polymer surrounding the sheath component, and the minimum thickness of the sheath component in the cross section of the m-structure is 3 μm or less! 1lJ
1[: was proposed as Japanese Patent Application No. 1t/158-214277.

更に研究を進めた結果、鞘成分にも粒径が鞘成分の最小
厚さと同程度の導電性粒子を小量含有さすると、金1m
摩耗性が無く、しかも制[性能は導電成分が繊維表面に
露出しているものと同等の導電性複合繊維が得られるこ
とを見出し、本発明を完成するに至った。
As a result of further research, we found that if the sheath component also contains a small amount of conductive particles with a particle size similar to the minimum thickness of the sheath component, 1 m of gold can be produced.
The present inventors have discovered that it is possible to obtain a conductive composite fiber that is not abrasive and has control performance equivalent to that of a fiber in which the conductive component is exposed on the surface of the fiber, leading to the completion of the present invention.

すなわち、本発明は導電性粒子と熱可塑性ポリv−%6
&ZJt抵抗が1゜・0.−未満。導電I成分と、導電
性の金属酸化物又は金鳩化合物の粒子或いは表面にこれ
らの皮膜を有する粒子を0.001〜5嵐i%含有する
比抵抗が1070・帰以上の繊維形成性ポリマーからな
る非導電性鞘成分とを複合してなる導電性複合繊維であ
る。
That is, the present invention uses conductive particles and thermoplastic polyv-%6
&ZJt resistance is 1°・0. Less than -. From a fiber-forming polymer with a specific resistance of 1070 or higher, containing a conductive I component and 0.001 to 5 i% of particles of a conductive metal oxide or metal compound, or particles having a film thereof on the surface. It is a conductive composite fiber made by combining a non-conductive sheath component.

芯成分に含有される導電性粒子は、粉末状での比抵抗が
100・儒以下のものであればあらゆる種類の粒子が使
用可能である。白変の烏い金−酸化物や金属酸化物被膜
を有する粒子は勿論、金鵬粉(例えば銀、ニッケル、銅
、鉄或いはこれらの合金など)や硫化銅、沃化銅、硫化
亜鉛、硫化カドミラなどの金属化合物など着色している
ものも使用し得る。芯成分の断面積i!l+8で小さく
し、例えば2〜15%とすることや鞘にTiO2等の白
色顔料を分散させりことにより充分着色を隠すことが出
来るからである。
As the conductive particles contained in the core component, all kinds of particles can be used as long as they have a specific resistance of 100 F or less in powder form. Particles with white discolored metal oxides and metal oxide coatings, as well as metal powder (such as silver, nickel, copper, iron, or alloys thereof), copper sulfide, copper iodide, zinc sulfide, and cadmium sulfide. It is also possible to use colored materials such as metal compounds such as. Cross-sectional area of the core component i! This is because the coloring can be sufficiently hidden by reducing the ratio by l+8, for example, from 2 to 15%, or by dispersing a white pigment such as TiO2 in the sheath.

金属酸化物粒子としては、酸化錫、酸化亜鉛、酸化銅、
亜酸化銅、酸化インジウム、酸化ジルコニウム、酸化ク
ンゲステンなどの粒子があげられる。金属酸化物の多く
のものは絶縁体に近い半導体であ−で本発明の目的に充
分な導電性を示さないことが多い。しかしながら、例え
ば、金属酸化物に適当な第2成分(不純物)を少量(5
0%以上、特に25%以))添加するなどの方法により
、導電性を強化し、本発明の目的に充分な導電性を有す
るものが得られる。このような導電性強化列としては、
酸化錫に対して酸化アンチモンが、酸化亜鉛に対してア
ルミニウム、カリウム、インジウム、ゲルマニウム、錫
などの金属酸化物が使える。
Metal oxide particles include tin oxide, zinc oxide, copper oxide,
Examples include particles such as cuprous oxide, indium oxide, zirconium oxide, and Kungesten oxide. Many metal oxides are semiconductors that are close to insulators and often do not exhibit sufficient electrical conductivity for the purpose of the present invention. However, for example, a small amount (50% of the second component) suitable for the metal oxide (impurity)
By adding 0% or more, especially 25% or more)), the conductivity can be enhanced and a material having sufficient conductivity for the purpose of the present invention can be obtained. Such conductivity reinforcement columns include:
Antimony oxide can be used for tin oxide, and metal oxides such as aluminum, potassium, indium, germanium, and tin can be used for zinc oxide.

更に、酸化チタン、酸化!lt!鉛、酸化マグネシウム
、酸化錫、酸化鉄、酸化ケイ素、酸化アルミニウムなど
の非導電性無機物粒子の表向に上記金属酸化物、金属化
合物又は金−の導電性皮膜を形成した粒子も用いられる
Furthermore, titanium oxide, oxidation! lt! Particles in which a conductive film of the above-mentioned metal oxide, metal compound, or gold is formed on the surface of non-conductive inorganic particles such as lead, magnesium oxide, tin oxide, iron oxide, silicon oxide, or aluminum oxide may also be used.

導電性粒子の導電性は、粉末状での比抵抗が1040・
鋸程度以下、特に102Ω・crn程度以下が好ましく
、101Ω・6nii度以下が最も好ましい。実際に1
020・m〜10−20・ctn程度のものが得られ、
本発明の目的に好虐に応用することができるが、史普こ
優れた導電性のものは一層好ましい。粉末の比抵抗(体
積抵抗率)は直径1crhの絶縁体の円筒に1ill料
を5fr詰め、上部からピストンによって200kQの
辻力を加え、自流電圧(例えば0001〜1,000V
)を印加して(電流1mA以Fで)測定する。
The conductivity of the conductive particles is such that the specific resistance in powder form is 1040.
It is preferably about a sawtooth or less, particularly about 102 Ω·crn or less, and most preferably about 101 Ω·6nii degrees or less. actually 1
About 020·m to 10-20·ctn can be obtained,
Although they can be used in any way for the purpose of the present invention, those with excellent electrical conductivity are more preferred. The specific resistance (volume resistivity) of the powder is determined by filling an insulating cylinder with a diameter of 1crh with 5fr of 1ill of material, applying a cross-cutting force of 200kQ from the top with a piston, and applying a self-current voltage (e.g. 0001 to 1,000V).
) is applied (at a current of 1 mA or more) and measured.

導町性V子は充分小さい粒径のものがよく、粒径が小さ
い程ホリマーと混合したとき、より少ない混合率で高い
導電性を小すことが多い。平均粒径が1〜2pmのもの
も使用可能ではないが、通常1μm以下、特に05μm
以下、最も好ましくは0.8μmのものが用いられる。
The conductive V-element should preferably have a sufficiently small particle size, and the smaller the particle size, the lower the high conductivity when mixed with a polymer, often with a smaller mixing ratio. Although particles with an average particle size of 1 to 2 pm cannot be used, they are usually 1 μm or less, especially 0.5 μm.
Hereinafter, a thickness of 0.8 μm is most preferably used.

−万、粒径が0.05μm以下の粒子では導電性に優れ
るが、均一分散が因島で曳糸性が劣る傾向が認められる
。結局、ポリマー干への分散が比較的容易で、得られる
混合物の導電性及び曳糸性の点で、粒e!!0.25μ
ff1GU後のもの、すなわち013μm〜045μm
程度、特に0.15μm〜0.85μm程度のものが最
も実用性が高い。
Particles with a particle size of 0.05 μm or less have excellent conductivity, but uniform dispersion tends to result in poor spinnability. After all, the particles e! ! 0.25μ
After ff1GU, i.e. 013μm~045μm
In particular, a thickness of about 0.15 μm to 0.85 μm is most practical.

さて、前述のように導電性粒子とポリマーとの混合物の
¥41@、性は粒子の大きさや混合率だりでなく、ポジ
マーの結晶性によっても大きく変化する。
Now, as mentioned above, the properties of the mixture of conductive particles and polymer vary greatly not only by the size of the particles and the mixing ratio, but also by the crystallinity of the positive polymer.

すなわち導電性の見地からは結晶性の高い(結晶化度6
0%以上、特に70%以上)ポリマーであるポリエチレ
ン、ポリプロピレンなとのポリオレフィン、ポリオキシ
メチレン、ポリオキシエチレン(ポリエチレンオキシド
)のようなポリエーテル及びその誌導体(例えばポリエ
チレンオキシド/ポリエチレンテレフタレートのブロッ
クコポリマー)、ホリヒニルアルコール、ポリカプロラ
クトンなどが好ましい。また、現在最も多量に主座され
ているナイロン6、ナイロン66、ナイロン12などの
ポリアミド、ポリエチレンテレフタレート、ボリブチレ
ンチレフタレートなどのポリエステル、アクリル系ポリ
マー、ポリウレタン及びそれらの父性物(共1合物又は
混合物)も導電性粒子を混合せしめるポリマーとして好
適である。
In other words, from the viewpoint of conductivity, it has high crystallinity (crystallinity 6).
0% or more, especially 70% or more) polymers such as polyethylene, polypropylene, polyolefins, polyoxymethylene, polyethers such as polyoxyethylene (polyethylene oxide), and their derivatives (e.g. block copolymers of polyethylene oxide/polyethylene terephthalate) ), phorinyl alcohol, polycaprolactone, etc. are preferred. In addition, polyamides such as nylon 6, nylon 66, and nylon 12, which are currently the most abundant, polyesters such as polyethylene terephthalate and polybutylene terephthalate, acrylic polymers, polyurethanes, and their paternal compounds (co-polymerized or Mixtures) are also suitable as polymers with which conductive particles are mixed.

上記毘結晶性ポリマーは融点が低いために耐熱性に問題
があるものが多く、他力中程度の結晶性を示す上記ポリ
アミド、ポリエステル、アクリル系ポリマーなど(結晶
化度20〜50%程度)は延伸倍率が高くなると導電性
及び制電性が低下してくる傾向があり、用途によって適
切なポリマーを選択する必要がある。
Many of the above-mentioned bi-crystalline polymers have problems with heat resistance due to their low melting points, and the above-mentioned polyamides, polyesters, acrylic polymers, etc., which exhibit moderate crystallinity (crystallinity of about 20 to 50%) As the stretching ratio increases, the conductivity and antistatic properties tend to decrease, so it is necessary to select an appropriate polymer depending on the application.

導電性粒子の混合率は、粒子の導電性、粒子径、粒子の
連鎖形成能及び混合する結合材ポリマーの性質や結晶性
などによって変るが、通常80〜85%(鳳凰)程度の
範囲内であり、多くの場合40〜80%程度である。8
0%以上では流動性が不足するので、通常&動性改善剤
の使用が必要となる。
The mixing ratio of conductive particles varies depending on the conductivity of the particles, particle size, chain-forming ability of the particles, and the properties and crystallinity of the binder polymer to be mixed, but is usually within a range of about 80 to 85% (Phoenix). Yes, and in most cases it is about 40-80%. 8
If it exceeds 0%, the fluidity will be insufficient, so it will be necessary to use a normal & kinetic improving agent.

本鈍明の鞘成分に含有される導電性粒子としては、導電
性芯成分のとξろで記したように、白変の高い金属酸化
物又は着色の少ない金属化合物の導電性粒子或いは表面
にこれらの皮膜を有する粒子が使用しうる。導電性粒子
の粒径は鞘成分の最小厚さと同程度のものが好ましい。
As for the conductive particles contained in the sheath component of this dull light, conductive particles of metal oxides with high white discoloration or metal compounds with little coloring, or conductive particles with surface Particles with these coatings can be used. The particle size of the conductive particles is preferably comparable to the minimum thickness of the sheath component.

平均粒径が鞘成分の最小厚さの4倍を超えるものも使用
不可能ではないが、20μm以上の粒子はフィシュアイ
状の節が数多く生じて紡糸や延撚時の糸切れを誘発する
ので好ましくない。他方、平均粒径が鞘成分の最小厚さ
の0.2倍より小さいものでは、制電性能の改善効果が
消失してしまう。それ故、平均粒径は下記(1)Wを満
たす範囲のものが最も好ましい。
Although it is not impossible to use particles with an average particle diameter of more than four times the minimum thickness of the sheath component, particles with a diameter of 20 μm or more will cause many fisheye-shaped knots to occur and cause yarn breakage during spinning or twisting. Undesirable. On the other hand, if the average particle diameter is smaller than 0.2 times the minimum thickness of the sheath component, the antistatic performance improvement effect disappears. Therefore, the average particle diameter is most preferably within a range that satisfies (1) W below.

本発明の線維の鞘成分を構成する繊維形成性ポリマーは
IjAIL&形IA性のものであれば任意であるが、ナ
イロン6、ナイロン66、ナイロン12などのポリアミ
ド、ポリエチレンテレフタレート、ポリエチレンテレフ
タレートなどのポリエステル、アクリル系ポリマー、ポ
リウレタン及びポリプロピレンなどのポリオレフィン及
びそれらの変性物(共重合物又は混合物)が好適である
。特に上記ポリアミド、ポリエステル、アクリル系ポリ
マーは現在最も多産に商業生産されており、これらの合
成繊維と混用されて使用さnる機会が多い導電性複合繊
維の軸成分のポリマーとして最適である。
The fiber-forming polymer constituting the sheath component of the fiber of the present invention may be any IjAIL & type IA polymer, including polyamides such as nylon 6, nylon 66 and nylon 12, polyesters such as polyethylene terephthalate and polyethylene terephthalate, Acrylic polymers, polyolefins such as polyurethane and polypropylene, and modified products (copolymers or mixtures) thereof are suitable. In particular, the above-mentioned polyamides, polyesters, and acrylic polymers are currently most widely produced commercially, and are most suitable as polymers for the shaft component of conductive composite fibers, which are often used in combination with these synthetic fibers.

また、公知の方法によりその染色受容性を改善して(例
えば共重合させて塩基性又は酸性の染色部位を導入する
)合成繊維や天然繊維とのブレンド又は相互染色を容易
にすることもできる。或いは艶消剤、顔料、着色剤、安
定剤、制電剤(ポリアルキレンオキシド類、界面活性剤
など)などを添加することもできる。
It is also possible to improve its dye receptivity by known methods (for example by copolymerizing to introduce basic or acidic dyeing sites) to facilitate blending or interdying with synthetic or natural fibers. Alternatively, matting agents, pigments, coloring agents, stabilizers, antistatic agents (polyalkylene oxides, surfactants, etc.), etc. can also be added.

芯及び鞘成分のポリマーの組合せは延伸等による剥離を
防止するという点から、同種又は近似のポリマー同志の
組合せが望ましいが、本発明の繊維は芯鞘構造であるの
で、並列型とした場合に剥離を伴うポリマーの組合せ(
例えはポリエチレンとナイロン6の組合せ)でもさほど
電入な開繊となることは少ない。
The combination of polymers for the core and sheath components is preferably a combination of the same type or similar polymers from the viewpoint of preventing peeling due to stretching, etc. However, since the fiber of the present invention has a core-sheath structure, when it is made into a parallel type. Polymer combinations with exfoliation (
For example, even in the case of a combination of polyethylene and nylon 6), it is rare that the fibers are opened with such high electrical current.

用途によっては、例えば烏温スチームジェット嵩高加工
や仮撚加工時の高温処理を行う場合には、導電性の芯成
分が露出してくることがある。このような場合には鞘成
分のポリマーとして高い融点をもつポリマーを選択する
ことが必要である。
Depending on the application, for example, when performing high-temperature treatment during Uonen steam jet bulking or false twisting, the conductive core component may be exposed. In such cases, it is necessary to select a polymer with a high melting point as the polymer for the sheath component.

本発明の繊維は、上記導電性無機物粒子と結合材ポリマ
ーとからなる導電性の芯成分とこれを取囲む繊維形成性
ポリマーからなる鞘成分とが複合されたものである。導
電性の芯成分は充分な導電性を有していなくてはならず
、一般に10’Ω・m未満の比抵抗を有することが必要
であり、10’Q・m以下が好ましく、102Ω・α以
下が特に好ましい。
The fiber of the present invention is a composite of a conductive core component made of the above conductive inorganic particles and a binder polymer, and a sheath component surrounding the conductive core component made of a fiber-forming polymer. The conductive core component must have sufficient conductivity, and generally needs to have a specific resistance of less than 10'Q·m, preferably 10'Q·m or less, and 102Ω·α The following are particularly preferred.

−万、鞘成分は導電性粒子を0.001〜5重量%含有
しているが、非導電性であり1通常10’Ω・備程度以
上の比抵抗を官している。導電性の芯成分の複合比率(
断面積占有率)については、導電性無機物粒子を多量に
混合した導電成分は曳糸性(紡糸性)や強伸度などに劣
る傾[川かあるため。
Although the sheath component contains 0.001 to 5% by weight of conductive particles, it is non-conductive and exhibits a specific resistance of about 10'Ω. Composite ratio of conductive core components (
Regarding cross-sectional area occupancy), conductive components containing a large amount of conductive inorganic particles tend to be inferior in spinnability, strength, and elongation.

通常80%以tか好ましく、特に15%以下が好遍であ
る。他方、複合比率が小さくなると導電性が不安ボにな
り、浅いは低下する傾向が出てくるため、通″/¥J1
%以上が好ましく、特に2%以上が好遍である。
Normally, it is preferably 80% or more, particularly 15% or less. On the other hand, as the composite ratio decreases, the conductivity becomes unstable and tends to decrease at shallow depths.
% or more is preferable, and 2% or more is particularly preferable.

第1図〜第8図は本発明の!鞄の横断面の具体例であり
、また第4図と第5因は従来公知の導電性成分が繊維表
面に細円した構造の具体例である。
Figures 1 to 8 are of the present invention! This is a specific example of a cross section of a bag, and FIGS. 4 and 5 are specific examples of a structure in which a conventionally known conductive component is formed into thin circles on the fiber surface.

本発明の繊維の横断面(輪郭)は円形でもよく、非円形
でもよい。また導電性の芯成分は単数でも、複数でもよ
く、また、円形でも、非円形でもよい。
The cross-section (contour) of the fibers of the invention may be circular or non-circular. Further, the conductive core component may be singular or plural, and may be circular or non-circular.

本発明の繊維は鞘成分の厚さで部分的に薄いものか好ま
しく、通常の溶融又は乾式の複合紡糸方法によって製造
することができる1、特に鞘成分の岸さで最小の部位か
3μm以Fのものが好適である。
The fibers of the present invention are preferably partially thin in terms of the thickness of the sheath component, and can be produced by a conventional melt or dry composite spinning method. Preferably.

このような複合繊維は口金の設計において特別な工夫を
することで可能となる。すなわち、(A1口金の内部オ
リフィスにおいて、尋亀注の芯成分(2)と鞘成分(1
)とが合流する直前に1#1成分の最少厚さが8μm以
poH@反を形成させるためのホソマー導入#1(幅と
a!さが048w程度)を句加0゛ンに設(ブること、
ω)導電性の芯成分(2)と鞘成分(1)とが内部オリ
フィスで合流する前後のポリマーの流速をほぼ等しくし
、且つ合流する直前の導電性の芯成分(2)の流速をv
2、鞘成分+11の流速をvl、合流直後の複合流の流
速を■1+2としたとき、v2< v、 < VI+1
とすること、(0)導電性無機物粒子を多量に混合した
等電性の芯成分は、通常のm細形成性ポリマーに比べて
、IJ4g断速度が103sec−’ pjA度以下で
電融流動性が急激に急くなる傾向があるので、少なくと
も合流する直前の剪断速度を10” 5ec−16!度
以上にして、鞘成分の溶融流動性と同質の状態で合流さ
せることが必要である。
Such composite fibers are made possible by special consideration in the design of the cap. That is, (in the internal orifice of the A1 cap, the core component (2) and sheath component (1)
), the minimum thickness of the 1#1 component is 8 μm or more to form a poH@antibody. That,
ω) The flow velocity of the polymer before and after the conductive core component (2) and sheath component (1) merge at the internal orifice is approximately equal, and the flow velocity of the conductive core component (2) immediately before the merge is set to v.
2. When the flow velocity of the sheath component +11 is vl and the flow velocity of the composite flow immediately after merging is ■1+2, v2< v, < VI+1
(0) The isoelectric core component mixed with a large amount of conductive inorganic particles has high melt fluidity with an IJ4g breaking velocity of 103 sec-'pjA degrees or less, compared to ordinary m-thin-forming polymers. Since the shearing rate tends to become abrupt, it is necessary to set the shear rate at least immediately before merging to 10''5ec-16! degrees or higher to allow the merging to occur in a state that is the same as the melt fluidity of the sheath components.

通常、鞘成分の最小厚さを8μm以下に保持することは
′8易なことではない。例えば毘】図のような扁心型芯
鞘溝造で、導電性の芯成分(2)と鞘成分(1〕をP′
3都オリフィス1こおいて単に扁心的に合流させた場合
には、鞘成分の最小厚さが4μm程度以上になるか、或
いは導電性の芯成分が表向に突出してしまう。
Normally, it is not easy to maintain the minimum thickness of the sheath component below 8 μm. For example, in an eccentric core-sheath groove structure as shown in the figure, the conductive core component (2) and sheath component (1) are connected to P'
If the three orifices are simply converged eccentrically at one orifice 1, the minimum thickness of the sheath component will be approximately 4 μm or more, or the conductive core component will protrude to the surface.

第7図は鞘成分の最小厚さが1.5μmの導亀性複合纏
維について(横断面図は第1図、20デニールBフイラ
メント)鞘成分中の導電性粒子の混合帯と@電注龍の胸
係の例を示すものである。制電性は、堰富のナイロン6
の100テニール24フイラメントの仮撚糸を120の
九絢穢で編むとき、6本に1本の割合で導竜性複81a
維を台系して編み込んだ編物を染色、洗湘、乾燥し、温
湿度25°C20%の雰囲気中、木製の右上でウール布
で軽<151gJAlk抛し、1分侠の帯電比で評価し
た。このifP価方法によれば?1電圧がIKV以上で
あれば。
Figure 7 shows a mixed band of conductive particles in the sheath component and a conductive composite fiber with a minimum thickness of 1.5 μm (the cross section is shown in Figure 1, 20 denier B filament). This is an example of a dragon breastplate. The antistatic property is Nylon 6 from Weitomi.
When knitting 100 tenier 24 filament false twisted yarn with 120 nine yarns, one out of every six yarns has a
The knitted fabric made of fibers was dyed, washed, dried, and then covered with a wool cloth of <151g JAlk on the upper right side of a wooden board in an atmosphere with a temperature and humidity of 25°C and 20%, and evaluated by the charge ratio of 1 minute. . According to this ifP price method? 1 voltage is IKV or higher.

フンピユータを使用するオフィスのカーペット或いは作
業服での静電気11害や皺埃付看のほとんどを防止する
ことができる。混合率は(1,001〜5富量%であり
、0.08〜1凰承%が最も実用性が為い。
Most of the damage caused by static electricity and wrinkles on carpets or work clothes in offices where the computer is used can be prevented. The mixing ratio is (1,001 to 5%), and 0.08 to 1% is the least practical.

0108京量%禾納では、帯電、圧か尚くなり、バラツ
キも大きくなる傾同かみられ、Q、 001ム量%未胸
では制電性能の改善効果か不光分である。他方、l氷九
%を超えると帯電圧は導電性かi紬表面に麺田したもの
と同じレベルに達し、改善効果は飽和に達し、史に5ム
に9bを粕える混合率では紡糸性や金me耗性が同鵬と
なる。
At 0108 kyo mass %, there is a tendency for the charge and pressure to become worse and the dispersion to become larger, and for Q, 001 mu mass %, the improvement in antistatic performance is due to the lack of light. On the other hand, when 9% of lice is exceeded, the electrostatic potential reaches the same level as that of conductive pongee surface, and the improvement effect reaches saturation. And money consumption is the same.

本兜四の繊維は白色又は白色に近<、@几は白皮(反射
率)609b以上のものを製造することができ、従来カ
ーボンブラック糸の導電性複台繊維が不泗当であった白
色又は淡色の繊維製品にも使用することができる。連続
フィラメント又はステーブル状で、巻縮しない状態又は
巻縮した状態で他の帯電性の天然繊維又は人造繊維と混
用して繊維製品に制電性能を付与することができる。混
用率は、適音01〜1(l程度であるが、勿論目的によ
っては10〜100%や01%以下の混用率が逆用さf
(、る場合がある。混合は、混繊、台系、廿撚糸、混紡
、交線、交編その他公知ああらゆる方法で行うことがで
きる。
The fibers of Honkabutsu are white or close to white, and @几 can produce white skin (reflectance) of 609b or higher, and conventional conductive multi-strand fibers of carbon black yarn were unsuitable. It can also be used for white or light colored textile products. It is in the form of a continuous filament or stable, and can be mixed with other chargeable natural fibers or man-made fibers in an uncrimped state or a crimped state to impart antistatic performance to textile products. The appropriate mixing rate is about 01 to 1 (l), but depending on the purpose, a mixing rate of 10 to 100% or less than 01% may be used adversely.
(In some cases, the mixing may be carried out by any known method such as blending, stand system, double twisting, blending, intersecting lines, interlacing knitting, etc.).

以上実施例によって不発朋を説明する。伽は特記り、な
い限り重重%を示す。
The above-mentioned example will explain the misfire. Figures indicate percentage by weight unless otherwise noted.

実施例1゜ 表面に酸化錫(Sr:o2)皮膜を自する酸化チタン粒
子に対して1.5%の酸化アンテモンを混合焼成して導
電性化した粒子をA1とする。、A、の平均粒径は0.
25μm(粒径のバラツキ範囲は020〜0.80μm
で比較的織っている)、酸化賂の含有率は15%、比抵
抗4.80・傷、外観は白色に近い淡灰青色で6艮(光
反射率)は88%であった。又、A、と同様に導電性化
した平均粒径1.5μm(粒径のバラツキ範囲は1.0
〜2.0μm)、比抵抗1.60・個、白皮88%の粒
子をA!とする。分子量14,000のナイロン6(結
晶化度45%)の粉末創25%と導電性初子A175%
を混合し、更に溶融混練して得た導電性ポリマーをCP
、とする。粒子分散剤としてポリエチレンオキシド/ポ
リブチレン第4シトのブロック共電金物で(共1合比3
/1)分子量4.000のものをA1に対して02%添
加し、ナイロン6粉末に混合するときは流動性改善剤と
してステアリン酪マグネシウム塩をA1に対し・て08
%添加した。
Example 1 A1 is a titanium oxide particle having a tin oxide (Sr:O2) film on its surface, mixed with 1.5% antemon oxide and fired to make the particle conductive. , A, has an average particle size of 0.
25 μm (the particle size variation range is 0.20 to 0.80 μm)
The content of oxidized fibers was 15%, the resistivity was 4.80, there were scratches, the appearance was pale gray-blue, almost white, and the light reflectance was 88%. In addition, the average particle size of conductive particles was 1.5 μm (the range of particle size variation was 1.0 μm) in the same way as A.
~2.0μm), specific resistance 1.60・particles, and 88% white skin A! shall be. 25% powder wound of nylon 6 (crystallinity 45%) with a molecular weight of 14,000 and 175% conductive first A
The conductive polymer obtained by mixing and melt-kneading the CP
, and so on. As a particle dispersant, polyethylene oxide/polybutylene 4th site block co-electrical metal material (combination ratio of 3 to 1) was used as a particle dispersant.
/1) Add 02% of a substance with a molecular weight of 4.000 to A1, and when mixing it with nylon 6 powder, add stearin butymagnesium salt to A1 as a fluidity improver.
% added.

分子法16,000のナイロン6に導電性粒子A2を0
49b、及び艶消剤として酸化チタン粒子を035%添
加したものを鞘成分(或いは保護成分)とし、前記導電
性ポリマーCP、を導電成分として、第1図及び第2図
のような複合構造で溶融紡糸した。
Molecular method 16,000 nylon 6 with conductive particles A2 0
49b and 0.35% titanium oxide particles added as a matting agent as a sheath component (or protective component), and the conductive polymer CP as a conductive component, with a composite structure as shown in FIGS. 1 and 2. Melt spun.

両成分の複曾比(体積)を10:1とし、紡糸温度28
0℃で、直径0.25mのオリフィスから紡出し、冷却
・オイリング【ノながら800m/分の速度で捲取った
。次いで90℃、24倍で延伸し、更に170℃の熱板
に接触させた後、12T/mで加熱しながらパーンに巻
取り、20−r′ニール3フィラメントの延伸糸Y1、
Y、を得た。又、比較例伸糸YL Y4 (複合構造は
それぞれ第4図、第1図)を得た。尚、Y、の延伸はお
いては8001以下の巻量で90%近くが糸切れし、す
べてのトラベラ−にするどい切込みキズが発生していた
。これらの延伸糸の導電性、制電性、金属摩耗性等の性
能を第1表に示す。
The ratio (volume) of both components was 10:1, and the spinning temperature was 28.
It was spun from an orifice with a diameter of 0.25 m at 0°C and wound up at a speed of 800 m/min while cooling and oiling. Next, it was stretched at 90° C. and 24 times, and then brought into contact with a hot plate at 170° C., and then wound into a pirn while heating at 12 T/m to obtain a drawn yarn Y1 of 20-r′ 3-filament filament.
I got Y. In addition, comparative yarn drawing YL Y4 (composite structures are shown in FIGS. 4 and 1, respectively) was obtained. In addition, when drawing Y, nearly 90% of the threads were broken when the winding amount was 8001 or less, and incision scratches occurred in all the travelers. Table 1 shows the properties of these drawn yarns, such as conductivity, antistatic properties, and metal abrasion properties.

導電性は、長さ10譚の単糸80本を束ねて両端を金属
端子と導電性接着剤で接看し、IKVの直流電圧を印加
して抵抗値を測足し、それから算出した導電成分の比抵
抗で評価した。
Conductivity was determined by bundling 80 single yarns of 10 lengths, connecting both ends with metal terminals and conductive adhesive, applying IKV DC voltage, measuring the resistance value, and calculating the conductive component from that. Evaluation was made by specific resistance.

金鵬単耗性は、直径85μ雷のステンレス線上を100
m/分の速度で糸を走行させた時の(接触前の糸張力4
〜5F、接触角45°)ステンレス線の切断時間で評価
した。
Kinpeng's single wear resistance is 100% on a stainless steel wire with a diameter of 85μ.
When the thread is run at a speed of m/min (thread tension before contact 4
~5F, contact angle 45°) The cutting time of the stainless steel wire was evaluated.

Y、〜Y4はいずれも比抵抗で10”Ω・cIn程度の
優れた導電性を示すが、制電性能は鞘成分に導電性粒子
を混合していないY4が著しく劣る。又、金鵬膠耗性に
おいてはサイドバイサイド構造のY、が著しく不良であ
る。−万1本発明の繊維であるYlとYつは制電性、金
11I4N!耗性ともに優れていることが判る。
Both Y and ~Y4 show excellent conductivity with a specific resistance of about 10"Ω・cIn, but Y4, which does not mix conductive particles in the sheath component, is significantly inferior in antistatic performance. In terms of properties, Y with a side-by-side structure is extremely poor. - It can be seen that Yl and Y, which are the fibers of the present invention, are excellent in both antistatic properties and gold 11I4N! abrasion resistance.

次にY、〜Y4をそれぞれナイロン6の糸2600デニ
ール140フィラメントと合糸して巻縮加工したものを
8コースに1本用い、他の2コースはナイロン6巻編加
工糸2600デニール140フイラメントを用いてタフ
子ッドカーペット(ループ、混用率0.26%)を製造
した。得られたカーペット上を皮靴で歩行(25°Cl
2o%RH)L、たときの人体帯[肚を測定したところ
、本発明の繊維吻Y7、Y、を混用したカーペットでぃ
それぞれ−1,OKV、−0,9KVと優れた訓電性能
を有していた。
Next, each of Y and ~Y4 was combined with a 2600 denier 140 filament of nylon 6 thread and crimped, and used in one of the 8 courses, and for the other 2 courses, a 2600 denier 140 filament of nylon 6 thread was used. Tafkod carpet (loop, blending rate 0.26%) was produced using the same. Walking on the resulting carpet with leather shoes (25°C
2o%RH) L, human body belt [abdominal measurements] showed that the carpets mixed with fibers Y7 and Y of the present invention had excellent electrical training performance of -1, OKV and -0,9 KV, respectively. had.

−万、Y3、Y4を混用したカーペットではそれそn−
0,9K V、−1,7KVであった。尚、ナイロン6
巻縮加工糸2600デニール140フイラメントのみか
らなるカーペットでは人体帯電圧が−9,2KVで、接
地した把手に触れた時の放電シラツクは激しいもので、
かなりの恐怖感を生せしめるものであった。
-For carpets that use a mixture of 10,000, Y3, and Y4, that's the case.-
They were 0.9KV and -1.7KV. In addition, nylon 6
In a carpet made only of crimped yarn 2600 denier 140 filament, the human body voltage is -9.2 KV, and the electric discharge when touching the grounded handle is severe.
It caused a considerable sense of fear.

第1表 実施例2 分子1tso、oooのポリエチレン(結晶化度78%
)の粉末約25%と実施例で使用した導電性粒子A17
5%を混合し、更に溶融混練して導電性ポリマーCP2
を得た。但し、粒子分散剤としてポリエチレンオキシド
/ポリブチレンオキシドのブロック共重合物をA、に対
して0.2%添加し、ポリエチレン粉末に混合するとき
は流動性改善剤としてステアリン酸マグネシウム塩をA
1に対して0.3%添加した。分子& 15,000の
ポリエチレンテレフタレートで導電性粒子A、を0.2
%及び酸化チタン粒子を0.35%含むものを鞘成分と
し、上記導電性ポリマーOF、を導電性の芯成分とし、
第1図及び第8図の複合構造で溶融紡糸した(但し、導
電性フィラメントは1本で、残りの5本は導電性の芯成
分のない非導電性フィラメントからなる混成糸)。すな
わち、導電性フィラメントにおける両成分の複合比(体
積)は10:1、紡糸温度295°Cで直径0.25 
mのオリフィスから紡出し、冷却、オイリングしながら
1000m/分の速度で巻取った。次いで90℃、2.
6倍で延伸し、更に170℃の熱板に接触させた後、1
2T/mで加熱しなかラハーンに巻取1)、20デニー
ル6フイラメントの延伸糸Y6、Y6を得た。又、比較
例として鞘成分に導電性粒子ム2を混合していない延伸
糸Y7(複合構造は第1図)を得た。これら延伸糸の構
造及び性能を第2表に示す。尚、制電性はポリエチレン
テレフタレート150デニール48フノラメントの仮撚
糸の丸編物に上記導電性混成糸を6本に1本の割合で編
み込んだ編物の摩擦帯電圧で評価した。
Table 1 Example 2 Molecule 1tso, ooo polyethylene (crystallinity 78%
) and about 25% of the conductive particles A17 used in the examples.
5% and further melt-kneaded to form conductive polymer CP2.
I got it. However, 0.2% of polyethylene oxide/polybutylene oxide block copolymer is added to A as a particle dispersant, and magnesium stearate salt is added as a fluidity improver when mixed with polyethylene powder.
It was added in an amount of 0.3% based on 1. conductive particles A, with polyethylene terephthalate of 15,000 molecules & 0.2
% and titanium oxide particles at 0.35% as a sheath component, and the above conductive polymer OF as a conductive core component,
The composite structure shown in FIGS. 1 and 8 was melt-spun (however, there was one conductive filament, and the remaining five were hybrid yarns consisting of non-conductive filaments without a conductive core component). That is, the composite ratio (volume) of both components in the conductive filament is 10:1, and the diameter is 0.25 at a spinning temperature of 295°C.
The material was spun from an orifice of 1,000 m/min and wound at a speed of 1,000 m/min while cooling and oiling. Then 90°C, 2.
After stretching 6 times and further contacting a hot plate at 170°C,
While heating at 2 T/m, the yarn was wound on a lahan (1) to obtain drawn yarns Y6 and Y6 of 20 denier 6 filaments. Further, as a comparative example, drawn yarn Y7 (composite structure is shown in FIG. 1) in which conductive particles M2 were not mixed in the sheath component was obtained. The structure and performance of these drawn yarns are shown in Table 2. The antistatic property was evaluated by the frictional charging voltage of a circular knitted fabric of false twisted yarn of polyethylene terephthalate 150 denier 48 funolament, in which one in six of the above conductive hybrid yarns was knitted.

Y、〜Y7はいずれも比抵抗で1020・個程度の優れ
た導電性を有しているが、制電性においては本発明の繊
維Y、〜Y6を混用した編物は鞘成分に導電性粒子を混
合していないY7を混合した編物に比べ、制電性能が大
巾に改善されていることが判る。尚、ポリエチレンテレ
フタレート150デニール48フイラメントの仮撚糸の
みからなる編物で測定した帯電圧は−14,5KVであ
った。
Both Y and ~Y7 have excellent electrical conductivity with a specific resistance of about 1020 fibers, but in terms of antistatic properties, the knitted fabric mixed with the fibers Y and ~Y6 of the present invention has conductive particles in the sheath component. It can be seen that the antistatic performance is greatly improved compared to the knitted fabric in which Y7 is not mixed. The electrostatic voltage measured on a knitted fabric consisting only of false twisted yarn of polyethylene terephthalate 150 denier 48 filaments was -14.5 KV.

次にY、−Y、をそれぞれ通常のポリエチレンテレフタ
レート50デニール24フイラメントと合糸した糸条を
通常のポリエチレンテレフタレート70デニール86フ
イラメントからなるiQ+密度タフタ(経緯密度800
本/インチ)に経糸として5.1W間隔で織り込み、染
色仕上げ加工を施した。
Next, the yarns Y and -Y were combined with ordinary polyethylene terephthalate 50 denier 24 filaments, respectively, and the iQ+ density taffeta (warp/warp density 800
The warp threads were woven at intervals of 5.1 W into the yarn (1/inch), and dyed and finished.

これら染色布の帯電電荷量は(労働省産業安全研究所発
行の静電気安全指針に準じて測定)、それぞれ8.5.
2.6.7.2X10−’クーロン/dであり、本発明
の繊維Y5、Y6を混用した織物は前記静電気安全指針
の基準値7X10−’クーロン/−以下に適合しており
、優れた制電性能を有しているのに対し、鞘成分の導電
性粒子を混合していないY7を混用した織物は制電性能
が今一つ不足していることが判る。尚、ポリエチレンテ
レフタレート70デニール36フイラメントのみからな
る高扮度タフタゐ細物で測定した帯電電荷爪は22X1
0−’クーロン/扉であった。
The amount of electrical charge of these dyed cloths (measured according to the static electricity safety guidelines issued by the Industrial Safety Research Institute of the Ministry of Labor) was 8.5.
2.6.7.2 x 10-' coulombs/d, and the fabric using the fibers Y5 and Y6 of the present invention complies with the standard value of 7 x 10-' coulombs/- or less of the static electricity safety guideline, and has excellent control. It can be seen that the fabric containing Y7, which is not mixed with conductive particles as a sheath component, is lacking in antistatic performance. In addition, the electrostatic charge nail measured with a highly durable tuff material made only of polyethylene terephthalate 70 denier 36 filament is 22X1.
It was 0-' coulomb/door.

第2表Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は本発明Mの横断面図の具体例である。 第4図と用5図は導電成分が1ia紬表面に露出した構
造の例である。用6図は鞘成分の最小厚さが1.5μm
の導電性*@、12紬について鞘成分中の導電性粒子の
混合率と摩擦?4)電圧の開係の具体例を示すものであ
る。 〃 カネボウ−ei、m株式会社 − 律11 イ2j 肴3回 第4記 才50 材6図 混合率(’/、) 手 続 補 正 書 昭和59年7月17日 1、事件の表示 昭和59年特許願第77781号 2、発明の名称 導電注飯合細帷 8、補正をする者 事件との関係 特杆出願人 住所 東京都坐田区撥田五丁目17番4号連絡先 〒584 大阪市部島区友淵町1丁目5番90号鐘紡株
式会社特許部 6、補正の内容 (1) 明細書の記載を次の通り補正する。 (2)明細書第20頁第1表中のY2の伸度を[’l’
lJ 、Y、の金kI4摩托性をr8.1jと夫々補正
する。 以 上
1 to 8 are specific examples of cross-sectional views of the present invention M. Figures 4 and 5 are examples of structures in which conductive components are exposed on the surface of 1ia pongee. Figure 6 shows that the minimum thickness of the sheath component is 1.5 μm.
Conductivity *@, 12 What is the mixing ratio of conductive particles in the sheath component and friction for Tsumugi? 4) This shows a specific example of voltage opening. 〃 Kanebo-EI, M Co., Ltd. - Law 11 I2j Appetizer 3rd Part 4 Sai 50 Material 6 Mixing Ratio ('/,) Procedure Amendment Book July 17, 1980 1, Display of Incident 1982 Patent Application No. 77781 2, Title of the invention: Conductive Injection Thread 8, Relationship with the person making the amendment: Tokusho Applicant address: 5-17-4 Hakuda, Zata-ku, Tokyo Contact address: Osaka City, 584 Kanebo Co., Ltd. Patent Department 6, 1-5-90 Tomobuchi-cho, Bejima-ku Contents of amendment (1) The description of the specification is amended as follows. (2) The elongation of Y2 in Table 1 on page 20 of the specification is ['l'
Correct the gold kI4 friction properties of lJ and Y to r8.1j, respectively. that's all

Claims (1)

【特許請求の範囲】 (1)導電性粒子と熱可塑性ポリマーとからなる比抵抗
が1070・α未満の導電性芯成分と、導電性の金属酸
化物又は金属化合物の粒子或いは表面にこれらの皮膜を
有する粒子を0.001〜5凰量%含有する比抵抗が1
070・傳以上の繊維形成性ポリマーからなる非導電性
鞘成分とを複合してなる導電性複合繊維。 (2)縁組横断面において鞘成分の厚さで最小の部位が
8μm以下である特許請求の範囲第1項記載の繊維。 (8)鞘成分に含まれる導電性粒子の粒径が下記中成を
満たす範囲である特許請求の範囲第1項記載の繊維。 (4)鞘成分に含まれる導電性粒子の比抵抗が102Ω
・備以下である特許請求の範囲第1項記載の繊維。 (5)導電性芯成分に含まれる導電性粒子が導電性の金
属酸化物、金属化合物又は金属酸いは表面にこれらの皮
膜を有する粒子の群から選ばれた1種又は2種以上の混
合物である特許請求の範囲第1項記載の繊維。
[Scope of Claims] (1) A conductive core component having a specific resistance of less than 1070·α consisting of conductive particles and a thermoplastic polymer, and a conductive metal oxide or metal compound particle or a film thereof on the surface. Containing 0.001 to 5% of particles having a specific resistance of 1
A conductive composite fiber formed by combining a non-conductive sheath component made of a fiber-forming polymer of 070.0 or higher. (2) The fiber according to claim 1, wherein the sheath component has a minimum thickness of 8 μm or less in the cross section. (8) The fiber according to claim 1, wherein the particle size of the conductive particles contained in the sheath component is within a range that satisfies the following intermediate conditions. (4) The specific resistance of the conductive particles contained in the sheath component is 102Ω
- The fiber according to claim 1, which is less than or equal to B. (5) The conductive particles contained in the conductive core component are one type or a mixture of two or more types selected from the group of conductive metal oxides, metal compounds, metal acids, or particles having a film thereof on the surface. The fiber according to claim 1, which is
JP7778184A 1984-04-17 1984-04-17 Electrically conductive composite fiber Granted JPS60224812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7778184A JPS60224812A (en) 1984-04-17 1984-04-17 Electrically conductive composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7778184A JPS60224812A (en) 1984-04-17 1984-04-17 Electrically conductive composite fiber

Publications (2)

Publication Number Publication Date
JPS60224812A true JPS60224812A (en) 1985-11-09
JPH0364603B2 JPH0364603B2 (en) 1991-10-07

Family

ID=13643507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7778184A Granted JPS60224812A (en) 1984-04-17 1984-04-17 Electrically conductive composite fiber

Country Status (1)

Country Link
JP (1) JPS60224812A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224813A (en) * 1984-04-18 1985-11-09 Kanebo Ltd Antistatic conjugated fiber
EP0212626A2 (en) * 1985-08-27 1987-03-04 Teijin Limited Electroconductive composite fiber and process for preparation thereof
JPS6253416A (en) * 1985-08-27 1987-03-09 Teijin Ltd Electrically conductive fiber and production thereof
JPS62185715A (en) * 1986-02-13 1987-08-14 Mitsui Toatsu Chem Inc Colorless polyimide film
JPS63219624A (en) * 1987-03-06 1988-09-13 Teijin Ltd Electrically conductive yarn and production thereof
JPH01213411A (en) * 1988-02-18 1989-08-28 Teijin Ltd Electrically conductive yarn
JPH026613A (en) * 1988-04-08 1990-01-10 E I Du Pont De Nemours & Co Production of conductive filament and antistatic yarn containing polystyrene
JPH042808A (en) * 1990-04-13 1992-01-07 Kanebo Ltd Electrically conductive conjugate fiber
EP2037015A1 (en) * 2006-07-03 2009-03-18 Kuraray Co., Ltd. Conductive sheath-core conjugate fiber and process for producing the same
US7575826B2 (en) 2002-08-21 2009-08-18 Delphi Technologies, Inc. Fuel cell with metal alloy contacts that form passivating conductive oxide surfaces
US7575827B2 (en) 2002-08-21 2009-08-18 Delphi Technologies, Inc. Conductive coatings for PEM fuel cell electrodes
CN103320891A (en) * 2013-05-24 2013-09-25 宁波三邦日用品有限公司 Antistatic polyester and polypropylene fiber composite superfine fiber and production method thereof
JP2018016925A (en) * 2016-07-30 2018-02-01 Kbセーレン株式会社 Sea-island type composite fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551337A (en) * 1978-06-15 1980-01-08 Toray Ind Inc Electrically conducitive synthetic fiber and its production
JPS5729611A (en) * 1980-07-28 1982-02-17 Kuraray Co Ltd Multicore type sheath-core conjugate fiber with high antistatic properties
JPS57161126A (en) * 1981-03-23 1982-10-04 Kanebo Synthetic Fibers Ltd Electrically conductive conjugate fiber
JPS58132119A (en) * 1982-01-25 1983-08-06 Kuraray Co Ltd Multicore type sheath-core composite fiber having improved antistatic performance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551337A (en) * 1978-06-15 1980-01-08 Toray Ind Inc Electrically conducitive synthetic fiber and its production
JPS5729611A (en) * 1980-07-28 1982-02-17 Kuraray Co Ltd Multicore type sheath-core conjugate fiber with high antistatic properties
JPS57161126A (en) * 1981-03-23 1982-10-04 Kanebo Synthetic Fibers Ltd Electrically conductive conjugate fiber
JPS58132119A (en) * 1982-01-25 1983-08-06 Kuraray Co Ltd Multicore type sheath-core composite fiber having improved antistatic performance

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224813A (en) * 1984-04-18 1985-11-09 Kanebo Ltd Antistatic conjugated fiber
EP0212626A2 (en) * 1985-08-27 1987-03-04 Teijin Limited Electroconductive composite fiber and process for preparation thereof
JPS6253416A (en) * 1985-08-27 1987-03-09 Teijin Ltd Electrically conductive fiber and production thereof
US4756926A (en) * 1985-08-27 1988-07-12 Teijin Limited Process for preparation of electroconductive composite fiber
JPH0137487B2 (en) * 1985-08-27 1989-08-08 Teijin Ltd
JPS62185715A (en) * 1986-02-13 1987-08-14 Mitsui Toatsu Chem Inc Colorless polyimide film
JPH0364604B2 (en) * 1987-03-06 1991-10-07 Teijin Ltd
JPS63219624A (en) * 1987-03-06 1988-09-13 Teijin Ltd Electrically conductive yarn and production thereof
JPH01213411A (en) * 1988-02-18 1989-08-28 Teijin Ltd Electrically conductive yarn
JPH026613A (en) * 1988-04-08 1990-01-10 E I Du Pont De Nemours & Co Production of conductive filament and antistatic yarn containing polystyrene
JPH042808A (en) * 1990-04-13 1992-01-07 Kanebo Ltd Electrically conductive conjugate fiber
US7575826B2 (en) 2002-08-21 2009-08-18 Delphi Technologies, Inc. Fuel cell with metal alloy contacts that form passivating conductive oxide surfaces
US7575827B2 (en) 2002-08-21 2009-08-18 Delphi Technologies, Inc. Conductive coatings for PEM fuel cell electrodes
EP2037015A1 (en) * 2006-07-03 2009-03-18 Kuraray Co., Ltd. Conductive sheath-core conjugate fiber and process for producing the same
EP2037015A4 (en) * 2006-07-03 2009-07-15 Kuraray Co Conductive sheath-core conjugate fiber and process for producing the same
JP4902652B2 (en) * 2006-07-03 2012-03-21 株式会社クラレ Conductive core-sheath type composite fiber and method for producing the same
CN103320891A (en) * 2013-05-24 2013-09-25 宁波三邦日用品有限公司 Antistatic polyester and polypropylene fiber composite superfine fiber and production method thereof
JP2018016925A (en) * 2016-07-30 2018-02-01 Kbセーレン株式会社 Sea-island type composite fiber

Also Published As

Publication number Publication date
JPH0364603B2 (en) 1991-10-07

Similar Documents

Publication Publication Date Title
JPS60224812A (en) Electrically conductive composite fiber
GB2077182A (en) Conductive composite filaments
DE2623672A1 (en) ANTISTATIC SYNTHETIC TEXTILE FILLS
CN100497781C (en) Fiber complex and its use
JPS5841910A (en) Electrically conductive mixed filament yarn
JPS60110920A (en) Electrically conductive composite fiber
JP3132791B2 (en) Conductive composite fiber
JPS6156334B2 (en)
JPS5947474A (en) Conductive staple fiber
JPS60224813A (en) Antistatic conjugated fiber
JPS5831111A (en) Mixed yarn containing electrically conductive conjugated fiber
JPS61152823A (en) Conductive conjugated fiber
JP3210787B2 (en) Conductive mixed yarn
JPS61113824A (en) Electrically conductive composite fiber
JP2854747B2 (en) Conductive composite fiber
JP3245491B2 (en) Conductive mixed yarn with excellent concealment
JP3210793B2 (en) Durable conductive mixed yarn
JPH10310944A (en) Antistatic sewing yarn
JPH0122366B2 (en)
JPS63270811A (en) Electrically conductive composite fiber
JPH01183520A (en) Electrically conductive fiber
SE435072B (en) ANTISTATIC WIRE EDUCATION OF MULTI-COMPONENT TRADES OF AT LEAST TWO SYNTHETIC POLYMER COMPONENTS
JPS58201828A (en) Electrically condutive polymer composition
JPH02154021A (en) Antistatic conjugate spun yarn
JPH042808A (en) Electrically conductive conjugate fiber