JPS63270811A - Electrically conductive composite fiber - Google Patents

Electrically conductive composite fiber

Info

Publication number
JPS63270811A
JPS63270811A JP10097087A JP10097087A JPS63270811A JP S63270811 A JPS63270811 A JP S63270811A JP 10097087 A JP10097087 A JP 10097087A JP 10097087 A JP10097087 A JP 10097087A JP S63270811 A JPS63270811 A JP S63270811A
Authority
JP
Japan
Prior art keywords
conductive
inorganic particles
fiber
polymer
composite fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10097087A
Other languages
Japanese (ja)
Inventor
Nobuo Tsukui
信夫 津久井
Fuyuhiko Kubota
冬彦 久保田
Giichi Arimatsu
有松 義一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP10097087A priority Critical patent/JPS63270811A/en
Publication of JPS63270811A publication Critical patent/JPS63270811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the titled fiber having high whiteness and excellent spinnability and fiber properties, by joining a fiber-forming polymer with a polymer containing a specific amount of inorganic particles and potassium titanate short fibers surface-coated with an electrically conductive metallic compound. CONSTITUTION:The objective fiber suitable for general clothes, antistatic cloth ing, etc., is produced by joining (A) one or more kinds of polymers such as polyethylene terephthalate and nylon containing (i) potassium titanate short fibers surface-coated with an electrically conductive metallic compound consisting of preferably tin oxide, zinc oxide, indium oxide, cuprous iodide or one or more kinds of metallic compounds composed mainly of the above compounds and (ii) inorganic particles which are preferably white inorganic particles having diameter of 0.01-2mu with (B) a fiber-forming polymer in the form of core-sheath structure, etc. The amount of the component (ii) is >=5pts.wt. based on 100pts.wt. of the component A.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、白色系の導電性複合繊維に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a white conductive composite fiber.

(従来の技術) 近年、カーボンファイバー、カーボンブラック系粒子を
含む導電性繊維が、黒色又は灰色でり、その用途が限定
されるという問題点を解決するために、白色で染色後も
良好な色調を存する導電性繊維の開発が盛んに行われて
いる。これらは、」1記の黒色導電性物質の代わりに、
白色または白色に近い色調の導電性物質を用いるもので
ある。その代表的な方法としては、特開昭55−107
504号公報に示されるヨウ素を吸nさせたポリエステ
ル又はポリアミドなどの繊維を第一銅化合物水溶液で処
理して、繊維中にヨウ化第−銅を含有させる方法、特開
昭58−223208号公報、同59−47474号公
報、特公昭62−11088号公報などに示される酸化
チタンの表面を酸化第二錫で被覆したものとポリアミド
などの樹脂を溶融混練する方法などが挙げられる。とこ
ろが、このような白色系導電性粒子を用いる方法では、
十分な導電性を得るために粒子の大量導入が必要となり
、その結果繊維の製糸性及び繊維物性の低下を生じると
いった欠点があった。この欠点を解消するために、特開
昭59−94818号公報に示されるように白色系の導
電性金属化合物で表面を被覆したガラス短繊維を用いる
方法が知られている。この方法は、粒子状導電性物質の
場合と比較して、導電性物質のより少ない導入により高
い導電性と良好な製糸性及び繊維物性を得ようとするも
のであった。しかしながら、実際は均一混合物を得るた
めに溶融混練を繰り返す工程で、ガラス短繊維が折れる
ために期待される程の効果が十分には得られないという
問題点があった。一方、繊維状白色導電性物質として特
公昭61−26933号公報に示される表面が酸化第二
錫で被覆されたチタン酸カリウム短繊維があり、さらに
これを含有する組成物及び成形物が成形加工性、安定性
に優れていることが、特開昭60−9005号公報に示
されている。しかしこれを繊維に応用した場合、紡糸延
伸などの製糸工程においてチタン酸カリウム短繊維の配
向が起こり、その結果チタン酸カリウム短繊維相互の接
触確率が低下するため、導電性の効果が十分には得られ
ないという問題点があった。
(Prior art) In recent years, in order to solve the problem that conductive fibers containing carbon fibers and carbon black particles are black or gray, which limits their uses, research has been conducted to develop a method that maintains a good color tone even after dyeing with white. The development of conductive fibers with These are, instead of the black conductive material mentioned in 1.
It uses a conductive material that is white or close to white in color. A typical method is JP-A-55-107
JP-A-58-223208 discloses a method of treating iodine-absorbed polyester or polyamide fibers with an aqueous solution of a cuprous compound to incorporate cuprous iodide into the fibers, as disclosed in Japanese Patent Application Laid-open No. 58-223208. , No. 59-47474, Japanese Patent Publication No. 62-11088, and the like, which involve melt-kneading titanium oxide whose surface is coated with tin oxide and a resin such as polyamide. However, in the method using such white conductive particles,
In order to obtain sufficient electrical conductivity, it is necessary to introduce a large amount of particles, resulting in a disadvantage that the spinnability of the fiber and the physical properties of the fiber deteriorate. In order to overcome this drawback, a method is known in which short glass fibers whose surfaces are coated with a white conductive metal compound are used, as disclosed in Japanese Unexamined Patent Publication No. 59-94818. This method attempts to obtain high electrical conductivity, good spinning properties, and fiber properties by introducing a smaller amount of electrically conductive material than in the case of particulate electrically conductive material. However, in reality, the short glass fibers break during the process of repeating melt-kneading to obtain a homogeneous mixture, resulting in a problem in that the desired effect cannot be obtained sufficiently. On the other hand, there is potassium titanate short fiber whose surface is coated with stannic oxide, which is disclosed in Japanese Patent Publication No. 61-26933 as a fibrous white conductive substance, and compositions and molded products containing it are molded. It is shown in JP-A-60-9005 that it has excellent properties and stability. However, when this is applied to fibers, the potassium titanate short fibers become oriented during the spinning process such as spinning and drawing, and as a result, the probability of contact between the potassium titanate short fibers decreases, so the conductive effect is not sufficient. There was a problem that I couldn't get it.

(発明が解決しようとする問題点) 本発明はかかる従来技術の問題点、すなわち粒子状導電
性物質の添加による製糸性の低下、繊維物性の低下を防
ぎ、一方、短繊維状導電性物質の添加による製造工程中
や長時間の使用に対する導電性の低下を起こさない優れ
た白色導電性複合繊維を提供することが目的である。
(Problems to be Solved by the Invention) The present invention prevents the problems of the prior art, that is, the deterioration of spinnability and the deterioration of fiber physical properties due to the addition of particulate conductive substances, and, on the other hand, prevents the problems of the prior art. The purpose is to provide an excellent white conductive conjugate fiber that does not cause a decrease in conductivity during the manufacturing process or during long-term use due to addition.

た。即ち本発明は、導電性金属化合物で表面を被覆され
たチタン酸カリウム短繊維(以下「導電性チタン酸カリ
ウム短繊維」と呼ぶ)と無機粒子とを含有する一種以上
の重合体[A]と、繊維形成性重合体[B]とが接合さ
れている導電性複合繊維であって、重合体[A]に含有
される無機粒子の量が重合体[A1100重量部に対し
て5重量部以上であることを特徴とする導電性複合繊維
である。
Ta. That is, the present invention provides at least one type of polymer [A] containing potassium titanate short fibers whose surfaces are coated with a conductive metal compound (hereinafter referred to as "conductive potassium titanate short fibers") and inorganic particles. , a conductive composite fiber bonded with a fiber-forming polymer [B], wherein the amount of inorganic particles contained in the polymer [A] is 5 parts by weight or more based on 1100 parts by weight of the polymer [A]. It is a conductive composite fiber characterized by the following.

本発明において用いられる導電性金属化合物としては、
酸化第二錫、酸化亜鉛、酸化インジウム、ヨウ化第1銅
が挙げられるが、色調、安定性、製造の容易さなどの点
から酸化第二錫が好ましく、さらに少量のアンチモンを
ドープしたものが好ましい。導電性チタン酸カリウム短
繊維は、繊維径0.01〜2μ、繊維長1〜500μの
ものが好適であるが、加工性、製糸性及び導電効果の而
から、繊維径0.1〜0.5μ、繊維長5〜20μの範
囲のものが一月好ましい。また分散性を向上させるため
に、短繊維の表面がシリコン系カップリング剤、チタネ
ート系カップリング剤等で表面処理されていてもよい。
The conductive metal compound used in the present invention includes:
Examples include stannic oxide, zinc oxide, indium oxide, and cuprous iodide, but stannic oxide is preferred from the viewpoint of color tone, stability, and ease of production, and those doped with a small amount of antimony are preferred. preferable. The conductive potassium titanate short fibers preferably have a fiber diameter of 0.01 to 2μ and a fiber length of 1 to 500μ; 5μ and fiber length in the range of 5 to 20μ is preferred. Further, in order to improve dispersibility, the surface of the short fibers may be surface-treated with a silicone-based coupling agent, a titanate-based coupling agent, or the like.

本発明において用いられる無機粒子としては、酸化チタ
ン、酸化ジルコニウム、酸化マグネシウム、シリカ、ア
ルミナ等、通常の繊維に用いられる白色系粒子が挙げら
れるが、導電効果をさらに向上させる目的で、酸化錫、
酸化亜鉛、酸化インジウム、ヨウ化第1銅及びこれらを
主成分とする白色系導電性粒子、あるいは酸化錫、酸化
亜鉛、酸化インジウム、ヨウ化第1銅及びこれらを主成
分とする一種以」二の白色系導電性物質により被覆され
た酸化チタン、酸化ジルコニウム、酸化マグネシウム、
シリカ、アルミナ等の無機粒子を用いることもできる。
Examples of the inorganic particles used in the present invention include white particles used in ordinary fibers such as titanium oxide, zirconium oxide, magnesium oxide, silica, and alumina.In order to further improve the conductive effect, tin oxide,
Zinc oxide, indium oxide, cuprous iodide, and white conductive particles containing these as main components, or tin oxide, zinc oxide, indium oxide, cuprous iodide, and one or more of these as main components. titanium oxide, zirconium oxide, magnesium oxide, coated with white conductive material,
Inorganic particles such as silica and alumina can also be used.

これらの粒子の大きさは加工性、製造の容易さなどの面
から、直径0.01〜2μのものが好適であるが、製糸
性及び導電効果の面から、直径0.1〜0.5μの範囲
のものが一層好ましい。また色調の面から、用いられる
無機粒子は白変の高いものが好ましい。さらに分散性を
向上させるために、粒子の表面がシリコン系カップリン
グ剤、チタネート系カップリング剤等で表面処理されて
いてもよい。
The size of these particles is preferably 0.01 to 2 μm in diameter from the viewpoint of processability and ease of manufacture, but from the viewpoint of spinning properties and conductivity, the diameter is 0.1 to 0.5 μm. It is more preferable to use a range of . In addition, from the viewpoint of color tone, it is preferable that the inorganic particles used have high white discoloration. In order to further improve dispersibility, the surfaces of the particles may be treated with a silicone coupling agent, a titanate coupling agent, or the like.

本発明における重合体[A]及び[B]に用いられる重
合体は特に限定されないが、例えばポリエチレンテレフ
タレート、ポリブチレンテレフタレート、ナイロン6、
ナイロン66、ポリエチレン、ポリエチレングリコール
、ポリプロピレングリコールなどが挙げられる。また重
合体[Aコ及び[B]の組み合わせについては特に限定
されないが、両成分の界面での剥離を生じないためには
、両者の親和性が良好な組み合わせが好ましく、さらに
は同一成分であることが最も好ましい。重合体[A]及
び[B]の接合形態は特に限定されないが、通常の複合
繊維における接合形態である、サイドバイサイド彫り、
芯−鞘形態、海−島形態などをとることができるが、色
、74の点からは、導電性チタン酸カリウム短繊維及び
無機粒子を含frする重合体[A]が、重合体[B]に
よって被覆、隠蔽される芯−鞘形態が最も好ましい。そ
の際、鞘部を形成する重合体[Bコに酸化チタンなどの
白色系粒子を含有させることにより、芯部を隠蔽する効
果を高め、複合繊維の白色度をさらに高めることができ
る。また複合繊維の導電性の面からは、鞘部を形成する
重合体[B]にポリエチレングリコールなどの親水性重
合体を繊維軸方向に筋状に分散させた物をmいる方が好
ましい。ここで重合体[A]及び[B]の接合界面に、
両成分の剥離を抑制するための接着層が存在しても差し
支えない。重合体[A]及び[B]の複合比率は、複合
繊維が良好な製糸性及び繊維物性を持つためには、その
断面積比で[A] : [Bコニ5=95〜30 : 
70となることが好ましい。重合体[Aコにおける導電
性チタン酸カリウム短繊維の含有量は、複合繊維が十分
な導電性と良好な加工性をもつためには、重合体[A]
を100重量部とした場合5〜65重量部であり、好ま
しくは20〜40重量部である。また、重合体[A]に
おける無機粒子の含有量は、重合体[A1100重量部
とした場合5〜55重量部であり、好ましくは10〜3
0重量部である。ただし重合体[A]における導電性チ
タン酸カリウム短繊維及び無機粒子の含有量の合計は、
複合繊維が良好な加工性をもつためには、重合体[A]
を100重量部とした場合70重量部以下であり、好ま
しくは50重量部以下である。また、導電性チタン酸カ
リウム短繊維及び導電性粒子の重合体[A]における分
散性を向上させる目的で、界面活性剤等を添加すること
もできる。
The polymers used for polymers [A] and [B] in the present invention are not particularly limited, but for example, polyethylene terephthalate, polybutylene terephthalate, nylon 6,
Examples include nylon 66, polyethylene, polyethylene glycol, polypropylene glycol, and the like. The combination of polymers [A and B] is not particularly limited, but in order to avoid peeling at the interface between the two components, a combination that has good affinity between the two is preferred, and furthermore, they are the same components. is most preferable. The joining form of polymers [A] and [B] is not particularly limited, but side-by-side carving, which is the joining form of ordinary composite fibers,
Although it can take a core-sheath form, a sea-island form, etc., from the point of view of color and 74, the polymer [A] containing conductive potassium titanate short fibers and inorganic particles is different from the polymer [B ] Most preferred is a core-sheath configuration covered and concealed by. At this time, by incorporating white particles such as titanium oxide into the polymer B that forms the sheath, it is possible to enhance the effect of hiding the core and further increase the whiteness of the composite fiber. From the viewpoint of the conductivity of the composite fiber, it is preferable that the polymer [B] forming the sheath portion includes a hydrophilic polymer such as polyethylene glycol dispersed in stripes in the fiber axis direction. Here, at the bonding interface of polymers [A] and [B],
An adhesive layer may be present to suppress peeling of both components. In order for the composite fiber to have good spinning properties and fiber physical properties, the composite ratio of polymers [A] and [B] should be the cross-sectional area ratio of [A]:[B]=95 to 30:
70 is preferable. In order for the composite fiber to have sufficient conductivity and good processability, the content of the conductive potassium titanate short fibers in the polymer [A]
When 100 parts by weight, the amount is 5 to 65 parts by weight, preferably 20 to 40 parts by weight. Further, the content of inorganic particles in the polymer [A] is 5 to 55 parts by weight, preferably 10 to 3 parts by weight when the polymer [A] is 1100 parts by weight.
It is 0 parts by weight. However, the total content of conductive potassium titanate short fibers and inorganic particles in polymer [A] is
In order for composite fibers to have good processability, polymer [A]
When 100 parts by weight, the amount is 70 parts by weight or less, preferably 50 parts by weight or less. Furthermore, a surfactant or the like may be added for the purpose of improving the dispersibility of the conductive potassium titanate short fibers and conductive particles in the polymer [A].

本発明複合繊維を得る方法としては、従来の公知の方法
で製造することができ、例えば導電性チタン酸カリウム
短繊維及び無機粒子と重合体成分[A]との混合は、重
合体溶融物に導電性チタン酸カリウム短繊維及び無機粒
子を加えて混合するか、重合体溶液に導電性チタン酸カ
リウム短繊維及び無機粒子、またはそれらの懸濁液を加
えて混合した後、溶剤を除去すればよい。また複合繊維
の紡糸は、通常の複合紡糸装置を用いて溶融紡糸法、湿
式紡糸法、または乾式紡糸法により行うことができる。
The composite fibers of the present invention can be produced by conventionally known methods. For example, mixing the conductive potassium titanate short fibers and inorganic particles with the polymer component [A] is carried out in a polymer melt. If conductive potassium titanate short fibers and inorganic particles are added and mixed, or conductive potassium titanate short fibers and inorganic particles, or a suspension thereof are added to a polymer solution and mixed, then the solvent is removed. good. Further, the composite fiber can be spun by a melt spinning method, a wet spinning method, or a dry spinning method using an ordinary composite spinning device.

その際、目の粗いフィルターや口径の大きいノズルを用
いることにより、導電性チタン酸カリウム短繊維及び無
機粒子のフィルターでのつまりによるノズル背圧の上昇
を抑制することができる。複合繊維の延伸条件は、良好
な糸物性と十分な導電性を得るためには、延伸倍率が1
.5〜4倍であることが好ましい。
At this time, by using a coarse filter or a nozzle with a large diameter, it is possible to suppress an increase in nozzle back pressure due to clogging of the filter with conductive potassium titanate short fibers and inorganic particles. The drawing conditions for composite fibers are such that the drawing ratio is 1 in order to obtain good yarn physical properties and sufficient conductivity.
.. It is preferable that it is 5 to 4 times.

(作用) 本発明の作用は明らかではないが、おおむね以下のよう
に考えられる。重合体[A]中に導電性チタン酸カリウ
ム短繊維のみを用いた場合は、複合繊維の導電性は効率
よく発現しないが、これは、導電性チタン酸カリウム短
繊維が繊維軸と平行方向に配向して、導電性チタン酸カ
リウム短繊維相互の接触確率が低下し、複合繊維の導電
性が低下するためと考えられる。そこで重合体[A]中
に導電性チタン酸カリウム短繊維以外に、無機粒子を特
定量添加することにより、該無機粒子が導電性チタン酸
カリウム短繊維の配向を阻害させ、そのため導電性チタ
ン酸カリウム短繊維相互の接触確率が大きくなり、紡糸
延伸時の導電性低下を抑えることができるものと考えら
れる。従って、この効果を効率良く発現させるためには
、無機粒子の直径0.01μ以上が好ましく、更に0.
1μ以上が一層好ましい。一方、複合繊維の糸物性及び
加工性を良好に保つためには、無機粒子の直径は2μ以
下が好ましく、更に0.5μ以下が一月好ましい。さら
に無機粒子として白色系の導電性無機粒子を用いること
により、複合繊維の導電性を一層向上させることもでき
る。また、これらの白色系無機粒子を重合体[A]中に
添加することにより複合繊維の色調を良好にする効果も
同時に発現する。
(Function) Although the function of the present invention is not clear, it is generally thought to be as follows. When only conductive potassium titanate short fibers are used in the polymer [A], the conductivity of the composite fibers is not efficiently developed. It is thought that this is because the contact probability between the conductive potassium titanate short fibers decreases due to orientation, and the conductivity of the composite fiber decreases. Therefore, by adding a specific amount of inorganic particles to the polymer [A] in addition to the conductive potassium titanate short fibers, the inorganic particles inhibit the orientation of the conductive potassium titanate short fibers, and therefore the conductive potassium titanate short fibers are inhibited. It is thought that the probability of contact between potassium short fibers increases, and it is possible to suppress a decrease in conductivity during spinning and drawing. Therefore, in order to efficiently express this effect, the diameter of the inorganic particles is preferably 0.01 μm or more, and more preferably 0.01 μm or more.
More preferably, it is 1μ or more. On the other hand, in order to maintain good yarn physical properties and processability of the composite fiber, the diameter of the inorganic particles is preferably 2 μm or less, more preferably 0.5 μm or less. Furthermore, by using white conductive inorganic particles as the inorganic particles, the conductivity of the composite fiber can be further improved. Furthermore, by adding these white inorganic particles to the polymer [A], the effect of improving the color tone of the composite fibers is also exhibited at the same time.

(実施例) 以下実施例により本発明をさらに具体的に説明するが、
本発明の技術的範囲は本実施例によって限定されるもの
ではない。なお、実施例中、フィラメントのデニール、
強度、伸度、色差り値はJIS−L −1070及び1
073に基づいて測定し、また電気抵抗値はYOKOG
AWA−HEWLETT−PACKARD製高抵抗測定
器で測定した。
(Example) The present invention will be explained in more detail with reference to Examples below.
The technical scope of the present invention is not limited by this example. In addition, in the examples, the denier of the filament,
Strength, elongation, and color difference values are JIS-L-1070 and 1
073, and the electrical resistance value is YOKOG
It was measured with a high resistance measuring device manufactured by AWA-HEWLETT-PACKARD.

実施例1 少量のアンチモンでドーピングされた酸化錫(重量比で
SnO,: Sb、O−=99 : 1)で表面を被覆
されたチタン酸カリウム短繊維(大塚化学Q力製、商品
名「デントールJWK−200,比抵抗10’ 〜10
1Ω/ c+s 、平均繊維径0.4 u、平均繊維長
20μ、平均被膜厚さ0.02μ)30′重量部と、少
量のアンチモンでドーピングされた酸化錫(重量比で5
nO−: Sb−0,=9981)で表面を被覆された
酸化チタン粒子(三菱金属91)製、商品名「白色導電
性粒子W−IJ、比抵抗io’ 〜to” Ω/ C1
M 、平均粒径0.2μ)10ffiffi部と、ポリ
エチレンテレフタレー)(IV=0.35)EtO重量
部を270℃で溶融混練、チップ化して白色の導電性重
合体を得た。この白色導電性重合体を芯成分とし、鞘成
分として酸化チタン3%を含仔するポリエチレンテレフ
タレート(IV=0.63)とを、断面積比が20 :
 80となるように280℃、2500m/分で複合紡
糸し、210℃で1.5倍に延伸して40 d/4fの
フィラメントを得た。得られたフィラメントは、強度3
.1g/d、伸度60%、色差し値85であり、lOV
で測定した電気抵抗値(YOKOGAWA−HEfLE
TT−PACKARD製高抵抗測定器)は、1.lX1
05Ω/ cmであった。また紡糸時に糸切れ等の間圧
はほとんど発生せず、製糸性は良好であった。
Example 1 Potassium titanate short fibers (manufactured by Otsuka Kagaku Q-Riki, trade name: "Dentol") whose surface was coated with tin oxide doped with a small amount of antimony (weight ratio of SnO:Sb:O-=99:1) JWK-200, specific resistance 10' ~ 10
1 Ω/c+s, average fiber diameter 0.4 u, average fiber length 20 μ, average coating thickness 0.02 μ) and 30 parts by weight of tin oxide doped with a small amount of antimony (5 by weight).
Made of titanium oxide particles (Mitsubishi Metals 91) whose surface is coated with nO-: Sb-0, = 9981), product name: "White conductive particles W-IJ, specific resistance io' ~ to" Ω/C1
A white conductive polymer was obtained by melt-kneading 10 ffiffi parts of polyethylene terephthalate (IV=0.35) and EtO (polyethylene terephthalate) (IV=0.35) and forming them into chips at 270°C. This white conductive polymer is used as a core component, and polyethylene terephthalate (IV=0.63) containing 3% titanium oxide is used as a sheath component, with a cross-sectional area ratio of 20:
Composite spinning was carried out at 280° C. and 2500 m/min to give a filament of 80 d/4f and drawn at 210° C. by a factor of 1.5. The obtained filament has a strength of 3
.. 1g/d, elongation 60%, color difference value 85, lOV
Electrical resistance value measured with (YOKOGAWA-HEfLE
TT-PACKARD high resistance measuring device) is 1. lX1
The resistance was 0.05Ω/cm. In addition, almost no interpressure such as thread breakage occurred during spinning, and the spinning properties were good.

得られたフィラメントを少量のフェノール/テトラクロ
ロエタン混合溶剤(重量比でフェノール:テトラクロロ
エタン=3 : 2)に溶解し、光学顕微鏡で導電性チ
タン酸カリウム短繊維の長さを測定したところ、平均長
さ18μで混練前と大きくかわらなかった。
The obtained filament was dissolved in a small amount of phenol/tetrachloroethane mixed solvent (phenol:tetrachloroethane = 3:2 by weight), and the length of the conductive potassium titanate short fibers was measured using an optical microscope. The diameter was 18μ, which was not significantly different from before kneading.

実施例2 実施例1において白色導電性粒子W−tのかわりに、酸
化チタン粒子(平均粒径0.2μ、色差し値95)10
重量部を用いた以外は、すべて実施例1と同条件で溶融
混練、紡糸、延伸して、強度3.0g/d、伸度58%
、色差し値91、電気抵抗値5.0X10’ Ω/ c
arの白色フィラメントを得た。
Example 2 In Example 1, instead of the white conductive particles W-t, titanium oxide particles (average particle size 0.2μ, color difference value 95) 10
Melt-kneading, spinning, and stretching were carried out under the same conditions as in Example 1 except that parts by weight were used, and the strength was 3.0 g/d and the elongation was 58%.
, color difference value 91, electrical resistance value 5.0X10' Ω/c
A white filament of ar was obtained.

比較例1 実施例1において白色導電性粒子W−1を用いずに、導
電性チタン酸カリウム短繊維WK200を30重量部と
、ポリエチレンテレフタレート(IV=0.35)70
重量部とを用いた以外は、すべて実施例1と同条件で溶
融混練、紡糸、延伸して複合繊維を得たところ、強度3
.5g/d。
Comparative Example 1 In Example 1, instead of using the white conductive particles W-1, 30 parts by weight of conductive potassium titanate short fibers WK200 and 70 parts by weight of polyethylene terephthalate (IV=0.35) were used.
A composite fiber was obtained by melt-kneading, spinning, and drawing under the same conditions as in Example 1 except that parts by weight were used, and the strength was 3.
.. 5g/d.

伸度62%、色差り値82であったが、電気抵抗値1.
0X10@Ω/ carであり導電性繊維としては実用
化できなかった。
The elongation was 62% and the color difference value was 82, but the electrical resistance was 1.
0x10@Ω/car, and could not be put to practical use as a conductive fiber.

比較例2 実施例1において白色導電性粒子W−1を用いずに、導
電性チタン酸カリウム短繊維WK200を40重量部用
いた以外は、すべて実施例1と同条件で溶融混練、紡糸
、延伸して、強度2.9g/d、伸度56%、色差り値
79、電気抵抗値8.4×105Ω/ C1の白色フィ
ラメントを得たが繊維物性および導電性ともに悪い繊維
であった。
Comparative Example 2 Melt-kneading, spinning, and stretching were carried out under the same conditions as in Example 1, except that 40 parts by weight of conductive potassium titanate short fibers WK200 were used instead of using white conductive particles W-1 in Example 1. As a result, a white filament having a strength of 2.9 g/d, an elongation of 56%, a color difference value of 79, and an electrical resistance value of 8.4×10 5 Ω/C1 was obtained, but the fiber was poor in both fiber physical properties and conductivity.

比較例3 実施例1において導電性チタン酸カリウム短繊維WK2
00のかわりに、少量のアンチモンでドーピングされた
酸化錫(重量比で5nO−: S b−0s=99 :
 1)で表面を被覆されたガラス短繊維(比抵抗10’
 −10” Ω/ am 、平均繊維径0.4μ、平均
繊維長20μ、平均被覆厚さ0.02μ)を30mmK
用いた以外は、すべて実施例1と同条件で溶融混練、紡
糸、延伸して、強度3.1g/d、伸度60%、色差し
値84、電気抵抗値3.5×10’ Ω/ Cmの白色
フィラメントを得た。
Comparative Example 3 Conductive potassium titanate short fibers WK2 in Example 1
Instead of 00, tin oxide doped with a small amount of antimony (5nO- by weight: S b-0s = 99:
1) Short glass fibers (specific resistance 10'
−10” Ω/am, average fiber diameter 0.4μ, average fiber length 20μ, average coating thickness 0.02μ) to 30mmK.
The material was melt-kneaded, spun, and stretched under the same conditions as in Example 1 except for the following conditions: strength 3.1 g/d, elongation 60%, color difference value 84, electrical resistance value 3.5 x 10' Ω/ A white filament of Cm was obtained.

得られたフィラメントを少量のフェノール/テトラクロ
ロエタン混合溶剤(重量比でフェノール:テトラクロロ
エタン=3:2)に溶解し、光学顕微鏡でガラス短繊維
の長さを測定したところ、平均長さ5 ttで混練1】
1Jと比べて大きく低下していた。
The obtained filament was dissolved in a small amount of phenol/tetrachloroethane mixed solvent (phenol:tetrachloroethane = 3:2 in weight ratio), and the length of the short glass fiber was measured using an optical microscope.The average length was 5 tt. Kneading 1]
It was significantly lower than 1J.

比較例4 実施例1において導電性チタン酸カリウム短繊1(tW
K200を用いずに、白色導電性粒子W−1を40重量
部用いた以外はすべて実施例1と同条件で溶融混練、紡
糸、延伸して1強度3.2g/d。
Comparative Example 4 In Example 1, conductive potassium titanate short fibers 1 (tW
Melt-kneading, spinning, and stretching were carried out under the same conditions as in Example 1, except that 40 parts by weight of white conductive particles W-1 were used without using K200, and the strength per unit was 3.2 g/d.

伸度65%、色差り値87、電−を抵抗値7.2×10
@Ω/ asの白色フィラメントを得た。
Elongation 65%, color difference value 87, electric resistance value 7.2 x 10
A white filament of @Ω/as was obtained.

以上実施例及び比較例の結果をまとめたものを表1より
明ら゛かなように本発明複合繊維では強度3.0 g/
 d以上、伸度58%以上、色差し値85以上、電気抵
抗値5.0X10″Ω/ ell以下の全てを滴定して
いることが判る。
As is clear from Table 1, which summarizes the results of the above examples and comparative examples, the composite fiber of the present invention has a strength of 3.0 g/
d or more, elongation of 58% or more, color difference value of 85 or more, and electrical resistance value of 5.0×10″Ω/ell or less.

(発明の効果) 本発明の導電性複合繊維は、十分な導電性、高い白色度
、及び良好な製糸性と繊維物性を有し、一般衣料、防塵
服、制電服などに用いられる繊維として非常に作用なも
のである。
(Effects of the Invention) The conductive composite fiber of the present invention has sufficient conductivity, high whiteness, and good spinnability and fiber properties, and can be used as a fiber for general clothing, dustproof clothing, antistatic clothing, etc. It is very effective.

Claims (6)

【特許請求の範囲】[Claims] (1)導電性金属化合物で表面を被覆されたチタン酸カ
リウム短繊維と無機粒子とを含有する一種以上の重合体
[A]と、繊維形成性重合体[B]とが接合されている
導電性複合繊維であって、重合体[A]に含有される無
機粒子の量が重合体[A]100重量部に対して5重量
部以上であることを特徴とする導電性複合繊維。
(1) A conductive material in which one or more polymers [A] containing short potassium titanate fibers and inorganic particles whose surfaces are coated with a conductive metal compound are joined to a fiber-forming polymer [B] 1. A conductive composite fiber characterized in that the amount of inorganic particles contained in the polymer [A] is 5 parts by weight or more based on 100 parts by weight of the polymer [A].
(2)導電性金属化合物が、酸化錫、酸化亜鉛、酸化イ
ンジウム、ヨウ化第1銅及びこれらを主成分とする一種
以上の金属化合物である特許請求の範囲第一項記載の導
電性複合繊維。
(2) The conductive composite fiber according to claim 1, wherein the conductive metal compound is tin oxide, zinc oxide, indium oxide, cuprous iodide, or one or more metal compounds containing these as main components. .
(3)チタン酸カリウム短繊維が、繊維径0.01〜2
μ、繊維長1〜500μである特許請求の範囲第一項記
載の導電性複合繊維。
(3) Potassium titanate short fibers have a fiber diameter of 0.01 to 2.
The conductive composite fiber according to claim 1, wherein the conductive composite fiber has a fiber length of 1 to 500 μ.
(4)重合体[A]に含有される無機粒子が、直径0.
01〜2μの白色系無機粒子である、特許請求の範囲第
一項記載の導電性複合繊維。
(4) The inorganic particles contained in the polymer [A] have a diameter of 0.
The conductive composite fiber according to claim 1, which is white inorganic particles having a diameter of 01 to 2μ.
(5)重合体[A]に含有される無機粒子が、酸化錫、
酸化亜鉛、酸化インジウム、ヨウ化第1銅及びこれらを
主成分とする一種以上の導電性金属化合物である特許請
求の範囲第一項記載の導電性複合繊維。
(5) The inorganic particles contained in the polymer [A] are tin oxide,
The conductive composite fiber according to claim 1, which is zinc oxide, indium oxide, cuprous iodide, and one or more conductive metal compounds containing these as main components.
(6)重合体[A]に含有される無機粒子が、酸化錫、
酸化亜鉛、酸化インジウム、ヨウ化第1銅及びこれらを
主成分とする一種以上の導電性金属化合物で被覆された
無機粒子である特許請求の範囲第一項記載の導電性複合
繊維。
(6) The inorganic particles contained in the polymer [A] are tin oxide,
The conductive composite fiber according to claim 1, which is an inorganic particle coated with zinc oxide, indium oxide, cuprous iodide, and one or more conductive metal compounds containing these as main components.
JP10097087A 1987-04-23 1987-04-23 Electrically conductive composite fiber Pending JPS63270811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10097087A JPS63270811A (en) 1987-04-23 1987-04-23 Electrically conductive composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10097087A JPS63270811A (en) 1987-04-23 1987-04-23 Electrically conductive composite fiber

Publications (1)

Publication Number Publication Date
JPS63270811A true JPS63270811A (en) 1988-11-08

Family

ID=14288208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10097087A Pending JPS63270811A (en) 1987-04-23 1987-04-23 Electrically conductive composite fiber

Country Status (1)

Country Link
JP (1) JPS63270811A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191707A (en) * 1988-12-07 1990-07-27 Showa Denko Kk Production of ultrafine fiber-containing conjugated organic short fiber
JPH02289118A (en) * 1989-04-21 1990-11-29 Kuraray Co Ltd Electrically conductive white conjugate fiber
CN102877286A (en) * 2012-11-05 2013-01-16 东华大学 Conductive composite fiber and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191707A (en) * 1988-12-07 1990-07-27 Showa Denko Kk Production of ultrafine fiber-containing conjugated organic short fiber
JPH02289118A (en) * 1989-04-21 1990-11-29 Kuraray Co Ltd Electrically conductive white conjugate fiber
CN102877286A (en) * 2012-11-05 2013-01-16 东华大学 Conductive composite fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
CA1158816A (en) Conductive composite filaments and methods for producing said composite filaments
WO2001021867A1 (en) Core-sheath composite conductive fiber
CN1245539C (en) Composite electric conductive fibers coloreld at original liquid
CN105780190A (en) Macromolecular composite antistatic fiber
JPS60224812A (en) Electrically conductive composite fiber
JPS63270811A (en) Electrically conductive composite fiber
JPS63270860A (en) Production of conductive composite fiber
JPH01292116A (en) Electrically conductive fiber and production thereof
JPS63196717A (en) Electrically conductive conjugate fiber
JP2721599B2 (en) Composite fiber
JPS5994618A (en) Electrically conductive composite fiber
JPS61102474A (en) Production of conductive composite fiber
JP3210787B2 (en) Conductive mixed yarn
JPH02289118A (en) Electrically conductive white conjugate fiber
JPS58201828A (en) Electrically condutive polymer composition
JP2988818B2 (en) Polyolefin-based conductive composite fiber
JPS5921722A (en) Preparation of electrically-conductive filament
JPH01183520A (en) Electrically conductive fiber
JPS61132626A (en) Conjugated fiber of high conductivity
JPS5860015A (en) Preparation of electrically conductive composite fiber
JPH1150350A (en) Wiping cloth having durable removal of electricity
JP3133633B2 (en) Conductive composite fiber
JP3046509B2 (en) Conductive composite fiber
JPS58132120A (en) Preparation of electrically conductive fiber
JP3113054B2 (en) Conductive composite fiber