JPH1150350A - Wiping cloth having durable removal of electricity - Google Patents

Wiping cloth having durable removal of electricity

Info

Publication number
JPH1150350A
JPH1150350A JP9206620A JP20662097A JPH1150350A JP H1150350 A JPH1150350 A JP H1150350A JP 9206620 A JP9206620 A JP 9206620A JP 20662097 A JP20662097 A JP 20662097A JP H1150350 A JPH1150350 A JP H1150350A
Authority
JP
Japan
Prior art keywords
fiber
fibers
wiping
layer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9206620A
Other languages
Japanese (ja)
Other versions
JP3665184B2 (en
Inventor
Kazuhiko Tanaka
和彦 田中
Mitsutake Ariga
三剛 有賀
Yoshinuki Maeda
佳貫 前田
Masao Kawamoto
正夫 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP20662097A priority Critical patent/JP3665184B2/en
Publication of JPH1150350A publication Critical patent/JPH1150350A/en
Application granted granted Critical
Publication of JP3665184B2 publication Critical patent/JP3665184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a wiping cloth excellent in cleaning power, dust resistance, washing durability and design, useful in the field of medicine industries, electronic precision industries, etc., by mixing a specific fabric with a fixed amount of prescribed electroconductive fibers. SOLUTION: This wiping cloth is obtained by mixing a fabric consisting essentially of an extrafine yarn having a single yarn fineness of 0.01-0.8 denier and a section of two or more angles with 20-120 degrees with <=3 wt.% of an electroconductive fibers having a three layer structure comprising a polyamide layer having <=9×10<8> Ω/cm.f electrical resistance at 1 kv application as an innermost layer, a polymer layer containing >=10 wt.% inorganic fine particles as an intermediate layer and an outermost layer composed of a fiber- forming polymer and <=7.0 μC/m<2> electric charge density after washing 250 times. Preferably the ratio of a hydrophilic yarn such as a polyamide yarn having 0.01-0.8 denier mixed in the fabric is 10-60 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は除塵性に優れたワイ
ピングクロスに関し、塵や埃が付着していないことが高
度に要求される分野で使用可能なワイピングクロスに関
し、また除塵性が250回洗濯した後でも低下しない、
いわゆる除塵性の持続効果が非常に高いワイピングクロ
スに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiping cloth having excellent dust-removing properties, and more particularly to a wiping cloth which can be used in a field where dust and dirt are not required to be adhered to. Does not drop even after
The present invention relates to a wiping cloth having a very high so-called dust removing effect.

【0002】[0002]

【従来の技術】ワイピングクロスとしてはセルロ−ス繊
維等からなるものが多いが、かかるものは強度、耐久性
の点で劣っており、かかる欠点を改良し、さらに清掃力
を向上させるために繊維表面積を大きくとり、これによ
り吸着表面を増大させて優れた清掃力を得る目的として
極細繊維を使用したワイピングクロスが提案されている
(特公昭59−30419号公報、特公昭61−585
73号公報等)。特公昭59−30419号公報には親
油性ポリマ−と親水性ポリマ−との組み合わせによって
親水性の汚れと親油性の汚れの両方を除去することが記
載されている。しかしながらこのようなポリマ−の組み
合わせは相溶性が悪く、このようなポリマ−を複合紡糸
して織編物を作成すると紡糸、延伸から製織までの工程
でフィブリル化が生じ易く、安定な加工が困難であると
いう問題があった。
2. Description of the Related Art Many wiping cloths are made of cellulose fibers or the like. However, such wiping cloths are inferior in strength and durability. Wiping cloths using ultrafine fibers have been proposed for the purpose of obtaining a large surface area, thereby increasing the adsorption surface and obtaining excellent cleaning power (JP-B-59-30419, JP-B-61-585).
No. 73, etc.). JP-B-59-30419 describes that both a hydrophilic stain and a lipophilic stain are removed by a combination of a lipophilic polymer and a hydrophilic polymer. However, such a combination of polymers has poor compatibility, and when a woven or knitted fabric is produced by compound spinning such a polymer, fibrillation is apt to occur in the steps from spinning, drawing to weaving, and stable processing is difficult. There was a problem.

【0003】また、特公昭61−58573号公報には
耳ほつれや目乱れの少ない、高密度の織編物を得る方法
として極細繊維からなる織編物に高圧水流を噴射し、該
織編物の糸−糸間および糸内の両方で極細繊維を交絡さ
せれば耳ほつれや目乱れの少ない織編物が得られること
が記載されている。しかしながら、これらいずれも合成
繊維の極細繊維を使用しているため、被清掃物との間に
摩擦による静電気帯電が高いという欠点があった。
Japanese Patent Publication No. 61-58573 discloses a method for obtaining a high-density woven or knitted fabric with little fraying or disturbed eyes, by jetting a high-pressure water stream onto a woven or knitted fabric made of ultrafine fibers, and by applying a yarn to the woven or knitted fabric. It is described that a woven or knitted fabric with less fraying and disturbed eyes can be obtained by entanglement of ultrafine fibers both between and within the yarn. However, since all of these use ultrafine synthetic fibers, there is a drawback that electrostatic charge due to friction between the object and the object to be cleaned is high.

【0004】一般に合成繊維は天然繊維に比較し、かか
る静電気帯電が大きいということはよく知られているこ
とであるが、この傾向は繊維の繊度が小さい程、極細繊
維を使用する程被清掃物との間の接触面積が大きくなる
ためより顕著となる問題があった。すなわち、極細繊維
により被清掃物表面の汚れを清拭しても、その際の摩擦
により被清掃物の表面に静電気が発生し、被清掃物の表
面に空気中の微小な塵埃が静電気により付着する現象が
生じるのである。近年、発塵や静電気帯電等を嫌う医薬
品工業、電子精密工業等の分野で使用する場合には、従
来のワイピングクロスでは静電気帯電による塵の付着、
放電による素子破壊といった問題が発生しており、不都
合をきたす場合が多かった。一方、合成繊維は静電気を
生じ易く、衣料として使用した時に衣服が体にまとわり
ついて不快な放電音が発生したり、埃が付着し易い等の
問題を引き起こしやすいため、静電気を防止し、制電性
あるいは導電性とすることは従来から研究が進められて
おり、数々の方法が提案されている。
It is well known that synthetic fibers generally have such a large electrostatic charge as compared to natural fibers, but the tendency is that the smaller the fineness of the fibers and the more the ultrafine fibers are used, the more the object to be cleaned. There is a problem that becomes more conspicuous because the contact area between them increases. In other words, even if the surface of the object to be cleaned is wiped off with ultrafine fibers, static electricity is generated on the surface of the object to be cleaned due to friction at that time, and minute dust in the air adheres to the surface of the object to be cleaned by the static electricity. That phenomenon occurs. In recent years, when used in the fields of the pharmaceutical industry, electronic precision industry, etc., which dislike dust generation and electrostatic charging, the conventional wiping cloth adheres dust due to electrostatic charging,
Problems such as element destruction due to discharge have occurred, and in many cases, inconvenience has been caused. On the other hand, synthetic fibers are liable to generate static electricity, and when used as clothing, garments may cling to the body, causing unpleasant discharge noise or causing dust to adhere easily. Research on making the material conductive or conductive has been conducted, and various methods have been proposed.

【0005】具体的には、帯電防止剤を後処理により繊
維に付与させる方法、帯電防止性の樹脂を繊維表面にコ
−ティングさせる方法、制電剤を繊維中に混在させて筋
状に分散させる方法、芯鞘複合繊維の芯部に制電性、導
電性物質を含有させる方法等が提案されている。かかる
方法を、優れた清掃力を得ることができる極細繊維を主
体とする布帛に適用しようとした場合、摩擦や洗浄等に
より帯電防止剤、コ−ティング樹脂が脱落したり、繊維
がフィブリル化したりと、耐久性のある帯電防止効果を
望むことはできなかった。また、芯鞘複合繊維では繊維
径が大きすぎて十分な清掃力を得ることができず、ワイ
ピングクロスとしての使用は不適であった。
Specifically, a method of applying an antistatic agent to fibers by post-treatment, a method of coating an antistatic resin on the fiber surface, and a method of mixing an antistatic agent in the fibers and dispersing them in a streak shape. A method of causing the core portion of the core-sheath conjugate fiber to contain an antistatic or conductive substance has been proposed. When this method is applied to a fabric mainly composed of ultrafine fibers capable of obtaining excellent cleaning power, the antistatic agent and the coating resin may fall off due to friction or washing, or the fibers may be fibrillated. And a durable antistatic effect could not be expected. Further, the core-sheath conjugate fiber has too large a fiber diameter to obtain a sufficient cleaning power, and is not suitable for use as a wiping cloth.

【0006】従来の制電性繊維、導電性繊維は埃や塵を
寄せ付けない防塵性を有しており、逆にゴミの吸着は繊
維表面への静電気吸着が主体と考えられることから、こ
れらの制電性、導電性繊維をワイピングクロスに使用す
ることが提案されてはいるが、初期の帯電電荷量、所謂
制電性、導電性が低く、その上制電性、導電性の持続性
が短いのでワイピング耐久性が非常に悪い問題点を有し
ていた。
[0006] Conventional antistatic fibers and conductive fibers have a dustproof property to keep out dust and dirt. On the contrary, it is considered that dust is mainly absorbed by electrostatic adsorption on the fiber surface. Although the use of antistatic and conductive fibers for wiping cloths has been proposed, the initial charge amount, so-called antistatic, low conductivity, and also low antistatic, continuous conductivity. Since it is short, the wiping durability is very poor.

【0007】初期の導電性を高くする意味では導電性物
質としてカ−ボンブラックを使用することが提案され、
実施されているが、黒であることから、意匠性が求めら
れる分野には敬遠されがちである。ワイピングクロス分
野においても、近年は清掃力のみならず、意匠性をも求
められるようになってきており、優れた清掃力、防塵
性、洗濯耐久性、意匠性等を有するワイピングクロスが
要求されている。
It has been proposed to use carbon black as a conductive substance in the sense of increasing the initial conductivity.
Although it is implemented, it is often shunned in areas where design is required because of its black color. In the field of wiping cloths, in recent years, not only cleaning power but also design properties have been required, and wiping cloths having excellent cleaning power, dust resistance, washing durability, design properties, etc. have been required. I have.

【0008】[0008]

【発明が解決しようとする課題】本発明は、優れた清掃
力、防塵性、洗濯耐久性、意匠性等を有するワイピング
クロスであって、かかる諸性能が多数回の洗濯によりほ
とんど低下しない、耐久性のあるワイピングクロスを提
供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention relates to a wiping cloth having excellent cleaning power, dustproofness, washing durability, design and the like. It is intended to provide a wiping cloth having a certainty.

【0009】[0009]

【課題を解決するための手段】本発明は、単繊維繊度が
0.01〜0.8デニ−ルであって、かつ20度以上1
20度以下の角度を少なくとも2つ有する断面からなる
極細繊維を主体として構成された布帛に、1KV印加時
の電気抵抗値が9×108 Ω/cm・f以下の導電性繊
維を3重量%以下混入してなり、250回洗濯後の帯電
電荷密度が7.0μC/m2 以下であることを特徴とす
るワイピングクロスである。
According to the present invention, the fineness of the single fiber is 0.01 to 0.8 denier, and the fineness of the single fiber is not less than 20 degrees and not more than 1 degree.
3% by weight of a conductive fiber having an electric resistance of 9 × 10 8 Ω / cm · f or less when 1 KV is applied to a cloth mainly composed of ultrafine fibers having a cross section having at least two angles of 20 ° or less. A wiping cloth characterized by having a charge density after washing 250 times of 7.0 μC / m 2 or less.

【0010】[0010]

【発明の実施形態】本発明のワイピングクロスの構成要
素である極細繊維は従来一般的に用いられている円形断
面あるいは近似の断面に比較して、20度以上120度
以下の角度を少なくとも2つ有する断面であることが重
要である。かかる角度を有する断面にすることにより従
来の円形断面の繊維(糸条)では拭き取りにくかった微
小な汚れを簡単に拭き取ることができる。拭き取り面に
対する該クロスを構成する糸条の角度により拭き取り性
は大きく相違するのである。前記角度外の角度を少なく
とも2つ有する断面形状の繊維は、たとえ偏平断面形状
であっても微小な汚れを拭き取る効果が低下する。好ま
しい角度は30度以上、110度以下である。
BEST MODE FOR CARRYING OUT THE INVENTION The ultrafine fibers which are components of the wiping cloth of the present invention have at least two angles of not less than 20 degrees and not more than 120 degrees as compared with a generally used circular cross section or an approximate cross section. It is important that it has a cross section. By setting the cross section to have such an angle, it is possible to easily wipe off minute dirt that is difficult to wipe with a fiber (thread) having a conventional circular cross section. The wiping ability greatly differs depending on the angle of the yarn constituting the cloth with respect to the wiping surface. Fibers having a cross-sectional shape having at least two angles outside the above-mentioned angle have a reduced effect of wiping minute dirt even if they have a flat cross-sectional shape. A preferable angle is 30 degrees or more and 110 degrees or less.

【0011】とくに上記の角度を有し、断面形状が偏平
断面形状であることが微小な汚れの拭き取り性の点で好
ましい。この偏平断面とは3つまたは4つの角を有し、
偏平率(最長辺/最短辺)が1以上、とくに1.5以上
であることを示す。本発明のワイピングクロスは上述の
角度を有する極細繊維(糸条)で構成されているので糸
条間に適当な空隙が生じ、拭き取られた微小な汚れ成分
が順次該空隙内に押し込められ、極限に至るまで拭き取
られた汚れ部分は再付着することがない。また角度を有
することから腰があり、ワイピング作業耐久性をも有す
るのである。
In particular, it is preferable to have the above-mentioned angle and to have a flat cross-sectional shape from the viewpoint of wiping small dirt. This flat section has three or four corners,
Indicates that the flattening ratio (longest side / shortest side) is 1 or more, especially 1.5 or more. Since the wiping cloth of the present invention is formed of the ultrafine fibers (yarns) having the above-described angle, appropriate voids are generated between the yarns, and minute wiped-out dirt components are sequentially pushed into the voids. Until the limit, the wiped dirt does not adhere again. In addition, since it has an angle, it has a waist, and has wiping work durability.

【0012】また本発明の極細繊維は単繊維繊度が0.
01〜0.8デニ−ル、好ましくは0.05〜0.5で
ある。極細繊維の単繊維繊度が0.01デニ−ル未満の
場合には繊維強度が弱くなり過ぎて清掃中に繊維が切断
されて発塵する問題が生じやすくなる。一方、単繊維繊
度が0.8デニ−ルを越えると十分な清掃力が得られに
くい。かかる極細繊維を構成するポリマ−としては、ポ
リエステル、ポリアミド、ポリオレフィン、エチレン−
ビニルアルコ−ル系共重合体、これらの共重合体、多成
分の混合体等が好ましい。
The ultrafine fibers of the present invention have a single fiber fineness of 0.1.
It is from 01 to 0.8 denier, preferably from 0.05 to 0.5. If the single fiber fineness of the ultrafine fibers is less than 0.01 denier, the fiber strength becomes too weak, and the problem of cutting the fibers during cleaning and generating dust is likely to occur. On the other hand, if the single fiber fineness exceeds 0.8 denier, it is difficult to obtain sufficient cleaning power. Examples of the polymer constituting such ultrafine fibers include polyester, polyamide, polyolefin, and ethylene-
Vinyl alcohol-based copolymers, these copolymers, and mixtures of multiple components are preferred.

【0013】本発明においては、後述するように、水性
汚れおよび油性汚れ両方に対する拭き取り性が良好であ
ることも目的の1つであることから、極細繊維は疎水性
繊維と親水性繊維との混合であることが好ましい。そし
て親水性繊維の布帛(ワイピングクロス)中に占める割
合は10〜60重量%、とくに10〜50重量%である
ことが拭き取り性の点で好ましい。
In the present invention, as described later, since one of the objects is to have good wiping properties for both water-based stains and oil-based stains, the ultrafine fibers are a mixture of hydrophobic fibers and hydrophilic fibers. It is preferred that The proportion of the hydrophilic fibers in the cloth (wiping cloth) is preferably 10 to 60% by weight, particularly preferably 10 to 50% by weight in view of wiping properties.

【0014】そして、かかる単繊維繊度を有する極細繊
維は直接紡糸法により製造することも可能ではあるが、
以下に述べる方法により製造することが好ましい。具体
的には、2種類以上の繊維形成性ポリマ−からなる海島
型複合繊維や分割型複合繊維等から形成される脱海繊
維、分割繊維が好ましい。たとえば、ポリエステルとポ
リアミドとからなる多層貼合わせ型複合繊維を、ポリア
ミドに対し、膨潤性能を有するベンジルアルコ−ルまた
は安息香酸で処理、あるいは熱水で撹拌処理することに
より得られるフィブリル化繊維、該複合繊維をポリエス
テルの加水分解剤であるアルカリ水溶液で処理すること
により得られるフィブリル化繊維、該複合繊維を仮撚捲
縮加工とアルカリ減量加工との併用系で処理することに
より得られるフィブリル化繊維等を挙げることができ
る。また、ポリエステルを島成分に、ポリスチレンまた
はスルホイソフタル酸を共重合した共重合ポリエステル
を海成分にした海島型複合繊維の海成分を溶解除去して
得られる極細繊維を挙げることができる。複合繊維を構
成するポリマ−の組み合わせは目的に応じて設定し得る
が、水性汚れおよび油性汚れ両方に対する拭き取り性を
付与するには、親水性ポリマ−と親油性ポリマ−との組
み合わせ、たとえばポリエステルとポリアミド等の組み
合わせが好ましい。
The ultrafine fibers having the single fiber fineness can be produced by a direct spinning method.
It is preferable to manufacture by the method described below. Specifically, sea-island composite fibers composed of two or more types of fiber-forming polymers, desealed fibers formed from splittable composite fibers, and the like are preferable. For example, a fibrillated fiber obtained by treating a multilayer laminated conjugate fiber composed of a polyester and a polyamide with benzyl alcohol or benzoic acid having swelling performance, or by stirring with hot water, on the polyamide. Fibrillated fiber obtained by treating a conjugate fiber with an aqueous alkali solution that is a polyester hydrolyzing agent, and fibrillated fiber obtained by treating the conjugate fiber with a combined system of false twist crimping and alkali weight reduction And the like. Further, there can be mentioned an ultrafine fiber obtained by dissolving and removing the sea component of a sea-island composite fiber in which a copolyester obtained by copolymerizing polystyrene or sulfoisophthalic acid with a polyester as an island component and a sea component as a sea component. The combination of the polymers constituting the composite fiber can be set according to the purpose.However, in order to impart wiping properties to both water-based stains and oil-based stains, a combination of a hydrophilic polymer and a lipophilic polymer, for example, polyester and Combinations of polyamide and the like are preferred.

【0015】上述の単繊維繊度および断面形状を有する
極細繊維を主体構成要件とするワイピングクロスとして
は不織布や織編物が包含される。不織布は通常の長繊維
または短繊維からなるウエッブをニ−ドルパンチまたは
ウオ−タ−パンチによる処理を施したもの、メルトブロ
−法により形成されたもの等を挙げることができ、不織
布の製造法はとくに限定されるものではない。また織物
としては通常は平織物が適用されるが、朱子織、綾織、
梨地織、緯サテン二重織等、いかなる織組織でも適用で
きる。編み物としては経編、丸編いずれの編組織も適用
できる。このようなクロスは本発明の目的を阻害しない
範囲でバインダ−繊維や樹脂を含有していてもよい。さ
らには表面をカレンダ−加工したり、ニ−ドルやウオ−
タ−ジェトによるパンチング処理や起毛処理を施しても
さしつかえない。上述の極細化はクロスを形成した後に
脱海処理や剥離・分割処理が施されて極細繊維化されて
もよい。
Non-woven fabrics and woven or knitted fabrics are included as wiping cloths mainly composed of ultrafine fibers having the above-mentioned single fiber fineness and cross-sectional shape. Nonwoven fabrics include those obtained by subjecting a web composed of ordinary long fibers or short fibers to a treatment with a needle punch or a water punch, those formed by a melt blow method, and the like. It is not limited. In addition, plain woven fabric is usually applied, but satin weave, twill weave,
Any weave structure, such as satin weave and satin double weave, can be applied. As the knitting, any warp knitting or circular knitting structure can be applied. Such a cloth may contain a binder fiber or a resin as long as the object of the present invention is not hindered. In addition, the surface can be calendered, needles and watches
Punching or raising with a target may be performed. In the above-mentioned ultra-fine formation, after forming a cloth, a sea removal treatment or a separation / separation treatment may be performed to form an ultra-fine fiber.

【0016】そして、該クロスは上述の極細繊維100
%で形成されていてもよいが、本発明の効果を満足する
には該クロスを構成する繊維の20重量%以上が上述の
極細繊維であることが好ましい。
The cloth is made of the above-mentioned ultrafine fiber 100.
%, But in order to satisfy the effects of the present invention, it is preferable that at least 20% by weight of the fibers constituting the cloth are the above-mentioned ultrafine fibers.

【0017】該クロスに3重量%以下の割合で混入させ
る導電性繊維は、1KV印加時の電気抵抗値が9×10
8 Ω/cm・f以下であり、白色または無色の導電性繊
維であることが好ましい。かかる白色または無色の導電
性繊維を使用することにより、クロスの意匠性、審美性
に幅広い応用が可能である。本発明において、白色また
は無色の導電性繊維とは白度指数が25以上の繊維であ
ることを示す。該白度指数はJIS L 1013B法
に準拠して測定される値であり、後述の方法により測定
算出することができるものである。このような白度指数
を有する導電性繊維は、クロスに混入されても審美性が
劣ることはないのである。
The conductive fibers to be mixed into the cloth at a ratio of 3% by weight or less have an electric resistance value of 9 × 10 when 1 KV is applied.
It is preferably 8 Ω / cm · f or less, and is preferably a white or colorless conductive fiber. By using such white or colorless conductive fibers, it is possible to apply the cloth to a wide range of design and aesthetic properties. In the present invention, a white or colorless conductive fiber means a fiber having a whiteness index of 25 or more. The whiteness index is a value measured in accordance with JIS L 1013B method, and can be measured and calculated by a method described later. A conductive fiber having such a whiteness index does not deteriorate in aesthetics even when mixed into a cloth.

【0018】本発明に係わる導電性繊維としては、1K
V印加時の電気抵抗値が9×108Ω/cm・f以下で
あり、白色または無色の導電性繊維であれば、その種類
にとくに制限はないが、意匠性、審美性を考慮すると特
開平5−263318号公報に記載の導電性繊維を使用
することが好ましい。すなわち、繊維形成性のポリマ−
からなる最外層(A)、無機微粒子を含有するポリマ−
層からなる中間層(B)および導電カ−ボンブラックを
含有するポリアミド層からなる最内層(C)の三層から
なる複合繊維である。
As the conductive fiber according to the present invention, 1K
The type of the conductive fiber is not particularly limited as long as it is a white or colorless conductive fiber having an electric resistance value of 9 × 10 8 Ω / cm · f or less when V is applied. It is preferable to use the conductive fiber described in JP-A-5-263318. That is, a fiber-forming polymer
Outermost layer (A) made of a polymer containing inorganic fine particles
This is a composite fiber composed of three layers: an intermediate layer (B) composed of layers and an innermost layer (C) composed of a polyamide layer containing conductive carbon black.

【0019】かかる複合繊維について若干説明する。最
内層(C)に含有される導電性カ−ボンブラックは10
-3〜10-2Ω・cmの固有抵抗を有するものが好まし
く、種類は限定されるものではない。ポリマ−中でカ−
ボンブラックが完全に粒子状分散をしている場合には一
般に導電性は不良であって、ストラクチャ−と呼ばれる
連鎖構造をとると導電性が向上して導電性カ−ボンブラ
ックとなることはよく知られていることである。したが
って導電性カ−ボンブラックによってポリマ−を導電化
するにあたっては、カ−ボンブラックのストラクチャ−
構造を破壊しないようにポリマ−中に分散させることが
肝要となる。導電性カ−ボンブラックのポリマ−中への
混合分散は公知の任意の方法によって行うことができる
が、導電性カ−ボンブラックに過大な剪断応力が作用す
るとストラクチャ−構造が破壊され導電性が著しく低下
することがあるので、混合はこのような点に注意して行
われる必要がある。
The conjugate fiber will be described briefly. The conductive carbon black contained in the innermost layer (C) is 10
Those having a specific resistance of −3 to 10 −2 Ω · cm are preferable, and the type is not limited. Car in polymer
When the bon black is completely dispersed in a particulate form, the conductivity is generally poor, and when a chain structure called a structure is adopted, the conductivity is improved and the conductive carbon black is often formed. It is known. Therefore, in order to make the polymer conductive by the conductive carbon black, the structure of the carbon black is required.
It is important to disperse in the polymer so as not to destroy the structure. The conductive carbon black can be mixed and dispersed in the polymer by any known method. However, if an excessive shear stress acts on the conductive carbon black, the structure is destroyed and the conductivity is reduced. Mixing needs to be done with this in mind, as it can be significantly reduced.

【0020】導電性カ−ボンブラックを含有するポリマ
−層の電気伝導メカニズムとしてはカ−ボンブラック連
鎖の接触によるものと、トンネル効果によるものとが考
えられるが、一般には前者のほうが主であると考えられ
ている。したがって、カ−ボンブラックの連鎖は長い方
が、また高密度でポリマ−中に存在する方が接触確率が
大となり高い導電性が付与される。カ−ボンブラックに
よる導電性の発現効果を考慮すると、最内層(C)中の
導電カ−ボンブラックの含有量は、15〜50重量%、
とくに20〜40重量%が好ましい。該含有量が50重
量%を越えても導電性能の向上効果は認められず、かえ
って最内層(C)の流動性が悪くなり、導電性繊維の紡
糸性が悪くなる。
The electrical conduction mechanism of the polymer layer containing conductive carbon black can be thought to be due to the contact of carbon black chains and the tunnel effect, but the former is generally the main. It is believed that. Therefore, the longer the chain of carbon black and the higher the density of the carbon black in the polymer, the higher the contact probability and the higher the conductivity. Considering the effect of carbon black to develop conductivity, the content of conductive carbon black in the innermost layer (C) is 15 to 50% by weight,
Particularly, 20 to 40% by weight is preferable. Even if the content exceeds 50% by weight, the effect of improving the conductive performance is not recognized, and the fluidity of the innermost layer (C) is rather deteriorated, and the spinnability of the conductive fiber is deteriorated.

【0021】上述のように、該カ−ボンブラックはポリ
マ−中でそのストラクチャ−構造を破壊しないように分
散されている必要がある。そのためにはカ−ボンブラッ
クを含有させるポリマ−としてポリアミド系樹脂が最適
であり、具体的にはナイロン6、ナイロン66、ナイロ
ン12、メタキシレンジアミンナイロンまたはこれらを
主成分とする樹脂を挙げることができる。最内層(C)
を形成するポリマ−としてポリアミド系樹脂を使用する
ことにより、カ−ボンブラックの分散性が良好で、紡糸
時の異常なフィルタ−詰まりが生じず、最内層(C)の
機械物性が良好となるのである。
As mentioned above, the carbon black must be dispersed in the polymer so as not to destroy its structure. For this purpose, a polyamide resin is most suitable as a polymer containing carbon black, and specific examples thereof include nylon 6, nylon 66, nylon 12, meta-xylene diamine nylon or a resin containing these as a main component. it can. Innermost layer (C)
The use of a polyamide resin as a polymer to form a carbon black improves the dispersibility of carbon black, prevents abnormal filter clogging during spinning, and improves the mechanical properties of the innermost layer (C). It is.

【0022】中間層(B)は最内層(C)の着色性の改
良に寄与され、かかる中間層(B)には二酸化チタン、
酸化亜鉛、酸化マグネシウム、酸化アルミニウム、二酸
化ケイ素、硫酸バリウム、炭酸カルシウム、炭酸ナトリ
ウム、タルク、カオリン等の白色系顔料、白色系充填剤
が含有されている。最内層(C)の着色性の改良、すな
わち隠蔽性を考慮すると中間層(B)に含有される物は
二酸化チタン、酸化亜鉛が好ましく、平均粒径が5μm
以下、とくに1μm以下のものが好ましい。さらにこれ
らの無機微粒子の含有量は10〜80重量%、とくに2
0〜70重量%であることが隠蔽性の点で好ましい。
The intermediate layer (B) contributes to improvement of the coloring property of the innermost layer (C), and the intermediate layer (B) includes titanium dioxide,
It contains white pigments such as zinc oxide, magnesium oxide, aluminum oxide, silicon dioxide, barium sulfate, calcium carbonate, sodium carbonate, talc and kaolin, and white fillers. Taking into account the improvement of the coloring property of the innermost layer (C), that is, the hiding property, the substance contained in the intermediate layer (B) is preferably titanium dioxide or zinc oxide, and has an average particle size of 5 μm.
Hereinafter, those having a thickness of 1 μm or less are particularly preferable. Furthermore, the content of these inorganic fine particles is 10 to 80% by weight,
It is preferably 0 to 70% by weight from the viewpoint of concealability.

【0023】中間層(B)を構成するポリマ−としては
繊維形成性のポリマ−であればとくに制限されるもので
はない。具体的にはナイロン6、ナイロン66、ナイロ
ン12、メタキシレンジアミンナイロン等のポリアミド
系樹脂、ポリエチレンテレフタレ−ト、ポリブチレンテ
レフタレ−ト、ポリヘキサメチレンテレフタレ−ト等の
ポリエステル系樹脂、ポリエチレン、ポリプロピレン等
のポリオレフィン系樹脂、ポリスチレン系樹脂、ポリウ
レタン系熱可塑性エラストマ−、ポリエステル系熱可塑
性エラストマ−等を挙げることができる。中でも多量の
無機微粒子を含有した際の流動性、耐熱性、無機微粒子
との接着性等の点でポリアミド系樹脂、熱可塑性エラス
トマ−等が好ましい。
The polymer constituting the intermediate layer (B) is not particularly limited as long as it is a fiber-forming polymer. Specifically, polyamide resins such as nylon 6, nylon 66, nylon 12, and metaxylene diamine nylon; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyhexamethylene terephthalate; and polyethylene. And polyolefin resins such as polypropylene, polystyrene resins, polyurethane thermoplastic elastomers, polyester thermoplastic elastomers, and the like. Of these, polyamide resins, thermoplastic elastomers, and the like are preferable in terms of fluidity, heat resistance, and adhesion to inorganic fine particles when a large amount of inorganic fine particles are contained.

【0024】最外層(A)を構成するポリマ−としては
融点が150℃以上の熱可塑性ポリマ−樹脂が好適であ
り、曵糸性に優れていることがより好ましい。具体的に
はポリエチレンテレフタレ−ト、ポリブチレンテレフタ
レ−ト等のポリエステル系樹脂、ナイロン6、ナイロン
66、メタキシレンジアミンナイロン等のポリアミド系
樹脂を挙げることができ、中でもポリエチレンテレフタ
レ−ト、ポリブチレンテレフタレ−ト等のポリエステル
系樹脂が加工性の点で好ましい。
The polymer constituting the outermost layer (A) is preferably a thermoplastic polymer resin having a melting point of 150 ° C. or higher, and more preferably has excellent spinnability. Specific examples include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, and polyamide resins such as nylon 6, nylon 66, and meta-xylene diamine nylon, among which polyethylene terephthalate, Polyester resins such as polybutylene terephthalate are preferred in view of workability.

【0025】上述の層(A)、層(B)および層(C)
の複合比率は1KV印加時の繊維の電気抵抗値が9×1
8 Ω/cm・f以下を満足するような複合比率であれ
ばとくに制限はなく、層(B)の隠蔽効果が十分に発揮
できて白色または無色に近い繊維となるような複合比率
であることがより好ましい。具体的には、繊維断面の最
内層(C)の最長径をx、中間層(B)の最小厚をy、
最外層(A)の最小厚をzとしたときに、下記式(1)
(2)を満足する複合形態であることが好ましい。 0.11≦y/x≦1.82 ・・・・(1) 0.35≦z/(x+y) ・・・・(2)
The above-mentioned layer (A), layer (B) and layer (C)
The composite ratio of the fiber is 9 × 1 when the electric resistance value of the fiber when 1 KV is applied is 9 × 1.
0 8 Ω / cm · f especially if the composite ratio so as to satisfy the following restriction is not, is a composite ratio such that fibers close to white or colorless concealing effect of the layer (B) is able to exert enough Is more preferable. Specifically, the longest diameter of the innermost layer (C) of the fiber cross section is x, the minimum thickness of the intermediate layer (B) is y,
When the minimum thickness of the outermost layer (A) is z, the following expression (1)
It is preferable that the composite form satisfies (2). 0.11 ≦ y / x ≦ 1.82 (1) 0.35 ≦ z / (x + y) (2)

【0026】ここでxは最内層(C)の最長径を示す
が、該層(C)の形状は円、楕円、多角形と多々考えら
れ、該層(C)が円、楕円の場合には直径、長軸を示
し、多角形の場合には辺、対角線を含め、その中で最も
長いものを示す。また、yは中間層(B)の最小厚を示
すが、これは最内層(C)の外周と中間層(B)の外周
とで形成される中間層(B)の最小厚を示す。さらにz
は最外層(A)の最小厚を示すが、これは中間層(B)
の外周と最外層(A)の外周とで形成される最外層
(A)の最小厚を示す。
Here, x indicates the longest diameter of the innermost layer (C). The shape of the layer (C) can be considered to be a circle, an ellipse, or a polygon in many cases. Indicates a diameter and a major axis, and in the case of a polygon, indicates the longest one including sides and diagonal lines. Also, y indicates the minimum thickness of the intermediate layer (B), which indicates the minimum thickness of the intermediate layer (B) formed by the outer periphery of the innermost layer (C) and the outer periphery of the intermediate layer (B). And z
Indicates the minimum thickness of the outermost layer (A), which is the intermediate layer (B)
And the minimum thickness of the outermost layer (A) formed by the outer periphery of the outermost layer (A).

【0027】上述の導電性繊維の複合形状は、最内層
(C)、中間層(B)が繊維の長さ方向に連続してお
り、かつ最内層(C)の周囲に中間層(B)、その外周
に最外層(A)が位置する繊維断面を有していればよ
く、他は限定されることはない。また上述のように最内
層(C)および中間層(B)の断面形状は種々あり、と
くに導電ポリマ−層である最内層(C)が鋭角や凹凸を
もつ形状であることは除電性能上好ましいものである。
導電性繊維の断面形状も円形であっても非円形であって
もよい。
In the above-described composite shape of the conductive fiber, the innermost layer (C) and the intermediate layer (B) are continuous in the longitudinal direction of the fiber, and the intermediate layer (B) is provided around the innermost layer (C). It is sufficient that the outermost layer (A) has a fiber cross section located at the outer periphery thereof, and the others are not limited. As described above, there are various cross-sectional shapes of the innermost layer (C) and the intermediate layer (B), and it is particularly preferable that the innermost layer (C), which is a conductive polymer layer, has a shape having an acute angle or irregularities in terms of static elimination performance. Things.
The cross-sectional shape of the conductive fiber may be circular or non-circular.

【0028】上述の導電性繊維は最内層(C)が中間層
(B)に完全に被覆されていなくてもよく、また中間層
(B)が最外層(A)に完全に被覆されていなくてもよ
い。白色または無色であれば、最内層(C)や中間層
(B)が繊維表面に露出していてもよい。
In the above-mentioned conductive fiber, the innermost layer (C) may not be completely covered with the intermediate layer (B), or the intermediate layer (B) may not be completely covered with the outermost layer (A). You may. If it is white or colorless, the innermost layer (C) and the intermediate layer (B) may be exposed on the fiber surface.

【0029】該導電性繊維は従来公知の複合繊維の製造
方法で得ることができる。たとえば、500〜2500
m/分の速度で通常の紡糸を行い、その延伸、熱処理を
行う方法、1500〜5000m/分の速度で紡糸を行
い、つづいて延伸・仮撚加工を行う方法、5000m/
分以上の高速で紡糸し、延伸工程を省略する方法等、任
意の製造方法を採用することができる。
The conductive fiber can be obtained by a conventionally known method for producing a composite fiber. For example, 500-2500
A method of performing normal spinning at a speed of m / min, and performing stretching and heat treatment, a method of performing spinning at a speed of 1500 to 5000 m / min, and subsequently performing a stretching and false twisting process, 5000 m / min.
Any production method such as a method of spinning at a high speed of at least minutes and omitting the stretching step can be adopted.

【0030】上述の導電性繊維の単繊維繊度はクロスを
主として構成する極細繊維の単繊維繊度と同じであるこ
とが好ましいが、該極細繊維より太繊度でもよい。ただ
し、クロスとしての拭き取り作業性等を考慮して15デ
ニ−ル以下であることが好ましい。
The fineness of single fibers of the above-mentioned conductive fibers is preferably the same as the fineness of single fibers of the fine fibers mainly constituting the cloth, but may be larger than the fine fibers. However, it is preferably 15 denier or less in consideration of the wiping workability as a cloth.

【0031】本発明においては、かかる導電性繊維をク
ロス中に3.0重量%以下、とくに0.2〜2.0重量
%の範囲で混入させることが防塵性、埃、塵の再付着防
止性、導電性の洗濯耐久性の点で好ましい。混入量が3
重量%を越えても、クロスとしての拭き取り性、塵・埃
の再付着防止性の向上効果は認められない。導電性繊維
のクロスへの混入の方法はとくに制限されるものではな
く、クロスを構成する繊維または糸条に導電性繊維を混
合してもよく、あるいは交編、交織してもよい。クロス
が織物の場合には適当な間隔で経糸、緯糸の少なくとも
一方に導電性繊維を挿入してもよい。導電性繊維はモノ
フィラメントの形態、マルチフィラメントの形態、カッ
トステ−プルの形態などの任意の形態で極細繊維または
極細繊維からなる布帛に混入される。
In the present invention, it is preferable that the conductive fiber be mixed in the cloth in an amount of 3.0% by weight or less, particularly in the range of 0.2 to 2.0% by weight, to prevent dust and prevent reattachment of dust and dust. It is preferred in terms of washing properties and washing durability. 3 mixed
Even if it exceeds 10% by weight, the effect of improving the wiping property as a cloth and the property of preventing the reattachment of dust and dirt is not recognized. The method of mixing the conductive fibers into the cloth is not particularly limited, and the fibers or yarns constituting the cloth may be mixed with conductive fibers, or may be knitted or woven. When the cloth is a woven fabric, conductive fibers may be inserted into at least one of the warp and the weft at appropriate intervals. The conductive fiber may be mixed with the ultrafine fiber or the cloth made of the ultrafine fiber in any form such as a monofilament form, a multifilament form, and a cut staple form.

【0032】上述のように、特定の電気抵抗値を有する
導電性繊維を3.0重量%以下の割合で混入させてな
り、特定の断面形状を有する極細繊維を主体としてなる
クロスは、250回の洗濯後の帯電電荷密度が7μC/
2 以下という高い除電性を維持することができ、した
がって防塵性、防汚性はもとより、布帛の白度維持性、
すなわち優れた意匠性、ワイピング作業耐久性、塵・埃
の再付着性の防止に優れたクロスを得ることができる。
本発明で使用する導電性繊維は導電カ−ボンブラックを
使用しているにもかかわらず、染色が可能であり、極細
繊維と同じ色に染色が可能であるので、本発明のワイピ
ングクロスは、ワイピングクロスとしての使用域が拡大
されるものである。
As described above, a cloth mainly composed of microfibers having a specific cross-sectional shape is obtained by mixing conductive fibers having a specific electric resistance at a ratio of 3.0% by weight or less, and having a cross section of 250 times. Has a charge density after washing of 7 μC /
m 2 or less, it is possible to maintain a high static elimination property. Therefore, not only the dust resistance and the stain resistance, but also the whiteness maintenance property of the fabric,
That is, it is possible to obtain a cloth excellent in design, durability in wiping work, and prevention of reattachment of dust.
The conductive fiber used in the present invention can be dyed even though the conductive carbon black is used, and can be dyed in the same color as the ultrafine fiber. The use area as a wiping cloth is expanded.

【0033】[0033]

【実施例】以下、実施例により本発明を詳述するが、本
発明はこれら実施例により何等限定されるものではな
い。なお、実施例中の各測定値は以下の方法により測定
・算出された値である。 (1)極細繊維の断面における角度の測定 電子顕微鏡により繊維断面の写真を撮り、任意の20本
の繊維の断面を紙に写しとり、3つまたは4つの角度を
測定し、20〜120度の範囲内の角度の数の平均値
と、その個々の角度の平均値を示した。 (2)導電性繊維の電気抵抗値 試料を10cm長に切断し、切断面に導電塗料(ド−タ
イト)を塗布して繊維端部を固定した後、該端部を電極
として印加電圧1KVにおける電気抵抗値を測定した。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples. Each measured value in the examples is a value measured and calculated by the following method. (1) Measurement of angle in cross section of ultrafine fiber A photograph of the cross section of the fiber is taken with an electron microscope, the cross section of any 20 fibers is copied on paper, and three or four angles are measured. The average value of the number of angles in the range and the average value of the individual angles are shown. (2) Electric resistance value of conductive fiber After cutting the sample to a length of 10 cm and applying a conductive paint (doteite) to the cut surface to fix the end of the fiber, the end was used as an electrode at an applied voltage of 1 KV. The electric resistance was measured.

【0034】(3)導電性繊維の白度指数 JIS L 1013B法に準拠して求めた。すなわち
試料の筒編地を作製し、それを8つ折にして分光光度計
(307型、日立製作所製)を用いて、標準白板に対す
る波長450nm、550nmの反射率を測定し、下記
式により白度指数を算出した。 白度指数=4R1 −3R21 :450nmにおける反射率 R2 :550nmにおける反射率 (4)クロスの拭き取り性能評価 汚染物質を付着させたスライドグラスを摩擦試験機(J
IS l 0823に準拠した試験機)の平面型試験台
に仮接着し、試験布を装着した摩擦子により拭き取りを
実施した。拭き取り荷重は200g、拭き取り幅は20
mm、拭き取り応力は100g/mmの条件で拭き取り
を数回行い、拭き取り前後の透過光率を測定し、下記に
より算出した。 拭き取り率(%)=[(Wn−W0 )/(Wb−
0 )]×100 Wb:スライドグラスの380nmまたは580nmに
おける透過率 Wn:拭き取り後の透過率 W0 :拭き取り前の透過率 [汚染物質] a.ニコチンに対する清掃力 燻蒸箱中にスライドグラス(20枚)を水平に設置し、
タバコ(ピ−ス)約20本にて燻蒸し、ニコチンを主体
として汚染物質を付着させた。可視光線透過率は20%
以下になるように調整した。 b.潤滑油に対する清掃力 スライドグラスに枠を設置し、市販の潤滑油を30cm
の距離から3秒間スプレ−して試料とした。 c.糊に対する清掃力 スライドグラスにコ−ンスタ−チ10g/lよりなる糊
(0.5g/cm2 )を塗布した。
(3) Whiteness index of the conductive fiber The whiteness index was determined in accordance with JIS L 1013B method. That is, a tubular knitted fabric of a sample was prepared, and the sample was folded in eight, and the reflectance at a wavelength of 450 nm and 550 nm with respect to a standard white plate was measured using a spectrophotometer (type 307, manufactured by Hitachi, Ltd.). An index was calculated. Whiteness index = 4R 1 -3R 2 R 1 : Reflectance at 450 nm R 2 : Reflectance at 550 nm (4) Evaluation of cloth wiping performance The slide glass on which the contaminant was adhered was subjected to a friction tester (J
The test piece was temporarily bonded to a flat test table of a testing machine based on IS 10823, and wiped off with a friction element fitted with a test cloth. Wiping load is 200g, wiping width is 20
The wiping was performed several times under the conditions of 100 mm / mm and the wiping stress was 100 g / mm, and the transmittance before and after the wiping was measured. Wiping rate (%) = [(Wn−W 0 ) / (Wb−)
W 0 )] × 100 Wb: transmittance of slide glass at 380 nm or 580 nm Wn: transmittance after wiping W 0 : transmittance before wiping [contaminant] a. Cleaning power for nicotine Place slide glass (20 pieces) horizontally in the fumigation box,
Approximately 20 cigarettes (pieces) were fumigated, and contaminants were attached mainly to nicotine. Visible light transmittance is 20%
It was adjusted to be as follows. b. Cleaning power for lubricating oil A frame is set on the slide glass, and 30 cm of commercially available lubricating oil is applied.
Was sprayed from the distance of 3 seconds to obtain a sample. c. Cleaning power for glue Glue (0.5 g / cm 2 ) consisting of 10 g / l of cone starch was applied to a slide glass.

【0035】(5)クロスの帯電電荷密度 労働省安全研究所発行の静電気安全指針のRIISTR
78−1によって行った。(22℃、30%RHの部屋
に24時間放置後測定) 洗濯は、浴比1:30、合成洗剤(弱アルカリ性)を標
準使用量添加して、40℃で5分間洗濯し、ついで浴比
1:30の水で2回溜め濯ぎを行い5分間脱水を行う過
程を250回繰り返した。 (6)摩擦帯電圧 測定装置は図1に示すように、樹脂平板(アクリル板ま
たはポリエチレン板)が金属製の架台上に、また樹脂平
板の背後に表面電位計(スタチロンM:回転セクタ−型
/1〜100KV)が設置され、清拭後の樹脂平板の帯
電圧が測定できる。洗濯は上記(5)記載の方法によっ
て行った。
(5) Charge Density of Cloth RISTR of electrostatic safety guideline issued by Ministry of Labor Safety Research Institute
78-1. (Measurement after standing in a room at 22 ° C. and 30% RH for 24 hours) Washing was carried out at a bath ratio of 1:30, a standard amount of a synthetic detergent (weakly alkaline) was added, and washing was performed at 40 ° C. for 5 minutes. The process of pooling and rinsing twice with 1:30 water and dehydrating for 5 minutes was repeated 250 times. (6) As shown in FIG. 1, the frictional band voltage measuring device is such that a resin flat plate (acrylic plate or polyethylene plate) is placed on a metal base, and a surface voltmeter (Statiron M: rotating sector type) is provided behind the resin flat plate. / 1 to 100 KV), and the charged voltage of the resin flat plate after wiping can be measured. Washing was performed by the method described in the above (5).

【0036】(7)放電現象 清拭過程における放電現象は、樹脂平板の背後に設置し
たル−プアンテナで放電ノイズを、アナライジングレコ
−ダ(横河電機3655E/DC RANGE2.0V) で放電現象を観測
することができる。評価は樹脂平板上を試料で拭く動作
を行った場合の樹脂平板の帯電圧と、拭き取り過程の放
電現象(パチパチ放電音)により行った。なお、条件は
22℃、30%RH、摩擦回数は10回であった。ま
た、拭き取り過程に発生する静電気を帯電圧のみにより
測定した場合、帯電圧はある値を越えると拭き取り過程
の放電現象(パチパチ放電音)を伴い、図2に示すよう
に、同じ帯電圧でも放電現象が異なる場合があり、帯電
圧単独で拭き取り過程に発生する静電気を評価すること
はできないことがわかる。放電現象の判定 ◎:放電音、放電パルス共に観測されない。 ○:放電音は観測されないが、放電パルスは観測され
る。 △:放電音、放電パルス共に観測される。 ×:放電音、放電パルス共に著しい。 なお、洗濯は上記(5)記載の方法によって行った。
(7) Discharge Phenomena Discharge phenomena in the wiping process are as follows. Discharge noise is generated by a loop antenna installed behind a resin flat plate, and discharged by an analyzing recorder (Yokogawa Electric 3655E / DC RANGE2.0V). Can be observed. The evaluation was made based on the charged voltage of the resin plate when the sample was wiped on the resin plate and the discharge phenomenon (crackling discharge noise) in the wiping process. The conditions were 22 ° C., 30% RH, and the number of times of friction was 10. In addition, when the static electricity generated in the wiping process is measured only by the charged voltage, if the charged voltage exceeds a certain value, a discharge phenomenon (a crackling sound) occurs in the wiping process, and as shown in FIG. It can be seen that the phenomena may be different, and it is not possible to evaluate the static electricity generated in the wiping process by the charged voltage alone. Judgment of discharge phenomenon A : Neither discharge sound nor discharge pulse is observed. :: no discharge sound is observed, but a discharge pulse is observed. Δ: Both discharge sound and discharge pulse are observed. ×: Both discharge sound and discharge pulse are remarkable. Washing was performed by the method described in (5) above.

【0037】(8)除電性能の評価 帯電球と放電球との距離を1cmに設定し、起電機を用
いて帯電球に帯電せしめ、放電を起こして置く。この帯
電球に試料を近接させたときの放電の有無を観測した。
放電が停止することは除電が行われていることを意味す
る。 ○:放電が停止 ×:放電が持続 なお、洗濯は上記(5)の方法によって行った。
(8) Evaluation of static elimination performance The distance between the charged sphere and the discharge sphere is set to 1 cm, the charged sphere is charged using an electromotive machine, and a discharge is generated. The presence or absence of discharge when the sample was brought close to the charged sphere was observed.
Stopping the discharge means that static elimination is being performed. O: Discharge stopped X: Discharge continued The washing was performed by the method (5).

【0038】実施例1 まず、特開平5−263318号公報に記載の方法にし
たがって下記に示す条件で電気抵抗値が3.0×107
Ω/cm・fの25デニ−ル/2フィラメントの導電性
繊維を得た。 最外層(A)・・・・平均粒径0.18μmの二酸化チタンを0.5重量%含有ポ リエチレンテレフタレ−ト[極限粘度:0.65(フェノ− ル/テトラクロロエタン等重量混合溶液を使用して30℃で 測定)] 中間層(B)・・・・平均粒径0.2μmの二酸化チタンを50重量%含有したナ イロン6[宇部興産社製、1013BK] 最内層(C)・・・・導電性カ−ボンブラックを35重量%含有したナイロン6 [宇部興産社製、1013BK] 複合比率(重量%)・・・・・・層(A)/層(B)/層(C)=70/25/5
Example 1 First, according to the method described in JP-A-5-263318, the electric resistance value was 3.0 × 10 7 under the following conditions.
A conductive fiber of 25 denier / 2 filaments of Ω / cm · f was obtained. Outermost layer (A) ··· Polyethylene terephthalate containing 0.5% by weight of titanium dioxide having an average particle size of 0.18 µm [Intrinsic viscosity: 0.65 (mixed solution of phenol / tetrachloroethane, etc. by weight) Measured at 30 ° C. using an intermediate layer)] Intermediate layer (B) Nylon 6 containing 10% by weight of titanium dioxide having an average particle size of 0.2 μm [1013BK manufactured by Ube Industries, Ltd.] Innermost layer (C) ... Nylon 6 containing 35% by weight of conductive carbon black [1013BK manufactured by Ube Industries, Ltd.] Composite ratio (% by weight) ... Layer (A) / layer (B) / layer (C ) = 70/25/5

【0039】次にナイロン6[宇部興産社製、1013
BK]と極限粘度0.70のポリエチレンテレフタレ−
トを用い、別々の押出機で溶融押出し、複合割合がナイ
ロン6:ポリエチレンテレフタレ−ト=33:67(重
量比)となるようにそれぞれギアポンプで計量した後、
紡糸パック内に供給し、口金温度290℃で吐出し、速
度1000m/分で巻き取った。ついで倍率2.9倍で
75℃のロ−ラヒ−タ−で延伸を施し、130℃のプレ
−トヒ−タ−で熱セットして75デニ−ル/24フィラ
メントの延伸糸を得た。糸条の断面は、縦割り分割型断
面(11層交互貼り合わせ型)構造とした。続いて、こ
の延伸糸に仮撚数3390T/M、温度170℃で仮撚
を施し、分割処理を行った。得られたポリエステルおよ
びポリアミドからなる捲縮加工糸の単繊維繊度は約0.
3デニ−ルであった。この極細繊維を用いて筒編地を作
成し、リラックス、水洗、乾燥、プレセット、アルカリ
減量、水洗処理を施して乾燥し、布帛を得た。この布帛
に上述の導電性繊維を0.9重量%混入させて、ワイピ
ングクロスとしての性能評価を行った。結果を表1およ
び表2に示す。
Next, nylon 6 [1013 manufactured by Ube Industries, Ltd.]
BK] and polyethylene terephthalate having an intrinsic viscosity of 0.70
And melt-extruded with separate extruders, and weighed with a gear pump so that the composite ratio becomes nylon 6: polyethylene terephthalate = 33: 67 (weight ratio).
It was fed into a spin pack, discharged at a die temperature of 290 ° C., and wound up at a speed of 1000 m / min. Then, drawing was carried out at a magnification of 2.9 with a roller heater at 75 ° C, and heat setting was carried out with a plate heater at 130 ° C to obtain a drawn yarn of 75 denier / 24 filaments. The cross section of the yarn was a vertically split cross section (11-layer alternating bonding type). Subsequently, the drawn yarn was subjected to false twisting at a number of false twists of 3390 T / M and a temperature of 170 ° C. to perform a splitting treatment. The single fiber fineness of the obtained crimped yarn made of polyester and polyamide is about 0.5.
It was 3 denier. A tubular knitted fabric was prepared using the ultrafine fibers and subjected to relaxation, washing with water, drying, presetting, alkali reduction, washing with water, and drying to obtain a fabric. 0.9% by weight of the above-mentioned conductive fiber was mixed into this cloth, and the performance as a wiping cloth was evaluated. The results are shown in Tables 1 and 2.

【0040】実施例2 実施例1において、分割処理後の捲縮加工糸の単繊維繊
度を0.50デニ−ルに代えた以外は同様にして、筒編
地を作成し、各種の処理を施して乾燥し、布帛を得た。
この布帛に上述の導電性繊維を0.9重量%混入させ
て、ワイピングクロスとしての性能評価を行った。結果
を表1および表2に示す。分割処理後の極細繊維の単繊
維繊度が大きくなったので拭き取り性能が実施例1で得
られたクロスに比較して若干低くなっている程度であっ
た。
Example 2 A cylindrical knitted fabric was prepared in the same manner as in Example 1 except that the single fiber fineness of the crimped yarn after the splitting treatment was changed to 0.50 denier. And dried to obtain a fabric.
0.9% by weight of the above-mentioned conductive fiber was mixed into this cloth, and the performance as a wiping cloth was evaluated. The results are shown in Tables 1 and 2. Since the single fiber fineness of the ultrafine fibers after the splitting treatment was increased, the wiping performance was slightly lower than that of the cloth obtained in Example 1.

【0041】実施例3 実施例1において、極細繊維中に占める親水性繊維の割
合を49重量%にした以外は同様にして、筒編地を作成
し、各種の処理を施して乾燥し、布帛を得た。この布帛
に上述の導電性繊維を0.9重量%混入させて、ワイピ
ングクロスとしての性能評価を行った。結果を表1およ
び表2に示す。
Example 3 A tubular knitted fabric was prepared in the same manner as in Example 1 except that the proportion of the hydrophilic fibers in the ultrafine fibers was changed to 49% by weight, and various treatments were performed, followed by drying. I got 0.9% by weight of the above-mentioned conductive fiber was mixed into this cloth, and the performance as a wiping cloth was evaluated. The results are shown in Tables 1 and 2.

【0042】実施例4 実施例1において、導電性繊維の中間層に含有させる無
機微粒子の量を70重量%に変更した以外は同様にし
て、極細繊維からなる筒編地を作成し、各種処理を施し
て乾燥し布帛を得た。この布帛に、中間層に含有させる
無機微粒子の含有量を変更した導電性繊維を0.9重量
%混入させて、ワイピングクロスとしての性能評価を行
った。結果を表1および表2に示す。
Example 4 In the same manner as in Example 1, except that the amount of the inorganic fine particles to be contained in the intermediate layer of the conductive fiber was changed to 70% by weight, a tubular knitted fabric made of ultrafine fibers was prepared. And dried to obtain a fabric. 0.9% by weight of conductive fibers in which the content of the inorganic fine particles to be contained in the intermediate layer was changed was mixed into this cloth, and the performance as a wiping cloth was evaluated. The results are shown in Tables 1 and 2.

【0043】実施例5 実施例4において、縦割り分割型断面形状の複合繊維を
構成するポリマ−として、ナイロン6の代わりにエチレ
ン−ビニルアルコ−ル系共重合体(エチレン含有量44
モル%、ケン化度99%、クラレ製E−105)を使用
して複合繊維を得、分割処理を施して極細繊維を得た以
外は同様にして布帛を作成した。この布帛に実施例4で
使用した導電性繊維を混入させてワイピングクロスとし
ての性能評価を行った。結果を表1および表2に示す。
Example 5 In Example 4, instead of nylon 6, an ethylene-vinyl alcohol-based copolymer (ethylene content: 44)
A woven fabric was prepared in the same manner except that a composite fiber was obtained using mol%, a saponification degree of 99%, and Kuraray's E-105), and an ultrafine fiber was obtained by performing a division treatment. The conductive fibers used in Example 4 were mixed into this cloth to evaluate the performance as a wiping cloth. The results are shown in Tables 1 and 2.

【0044】実施例6 実施例5において、極細繊維の単繊維繊度を0.19デ
ニ−ルに変更した以外は同様にして布帛を作成した。こ
の布帛に実施例4で使用した導電性繊維を混入させてワ
イピングクロスとしての性能評価を行った。結果を表1
および表2に示す。
Example 6 A fabric was prepared in the same manner as in Example 5, except that the single fiber fineness of the ultrafine fibers was changed to 0.19 denier. The conductive fibers used in Example 4 were mixed into this cloth to evaluate the performance as a wiping cloth. Table 1 shows the results
And Table 2.

【0045】実施例7 5−ナトリウムスルホイソフタル酸2.5モル%、ポリ
エチレングリコ−ル8重量%共重合したポリエチレンテ
レフタレ−ト(極限粘度0.61)とポリエチレンテレ
フタレ−ト(極限粘度0.68)からなる縦割り分割型
断面構造の複合繊維を得、ついでアルカリ減量加工を施
して、前者の共重合ポリエチレンテレフタレ−トを溶解
除去して、ポリエチレンテレフタレ−トからなる極細繊
維を得た。この極細繊維を使用して、実施例1と同様に
布帛を作成し、この布帛に実施例1で使用した導電性繊
維を混入させて、ワイピングクロスとしての性能評価を
行った。結果を表1および表2に示す。親水性繊維を含
んでいないので、拭き取り性能は実施例1で得られたワ
イピングクロスに比較して若干劣っていた。
Example 7 Polyethylene terephthalate (intrinsic viscosity 0.61) and polyethylene terephthalate (intrinsic viscosity 0) copolymerized with 2.5 mol% of 5-sodium sulfoisophthalic acid and 8% by weight of polyethylene glycol 68), a composite fiber having a vertically split cross-sectional structure of 68) is obtained, and then an alkali weight reduction process is performed to dissolve and remove the former copolymerized polyethylene terephthalate to obtain an ultrafine fiber made of polyethylene terephthalate. Obtained. Using the ultrafine fibers, a fabric was prepared in the same manner as in Example 1, and the conductive fibers used in Example 1 were mixed into the fabric to evaluate the performance as a wiping cloth. The results are shown in Tables 1 and 2. Since it did not contain hydrophilic fibers, the wiping performance was slightly inferior to the wiping cloth obtained in Example 1.

【0046】比較例1 実施例1において、導電性繊維として電気抵抗値が5×
1011Ω/cm・fの繊維を使用した以外は同様にし
て、極細繊維からなる筒網地を作成し、各種の処理を施
して乾燥し布帛を得た。この布帛に上記の導電性繊維を
混入させて、ワイピングクロスとしての性能評価を行っ
た。結果を表1および表2に示す。電気対抗値が小さい
導電性繊維が混入されているので、帯電電荷量が高く、
放電音が観測されるなど、除電性能はないに等しいもの
であった。
Comparative Example 1 In Example 1, the conductive fiber had an electric resistance of 5 ×
In the same manner except that fibers of 10 11 Ω / cm · f were used, a tubular net made of ultrafine fibers was prepared, subjected to various treatments, and dried to obtain a fabric. The above-mentioned conductive fibers were mixed into this cloth, and the performance as a wiping cloth was evaluated. The results are shown in Tables 1 and 2. Since the conductive fiber with a small electric resistance value is mixed, the charge amount is high,
There was no static elimination performance, for example, discharge noise was observed.

【0047】比較例2 実施例1において布帛に導電性繊維を混入させなかった
以外は同様にして極細繊維からなる筒網地を作成し、各
種の処理を施して乾燥し布帛を得た。このワイピングク
ロスとしての性能評価を行った。結果を表1および表2
に示す。拭き取り性能は高いものであったが、被清掃面
の表面を拭き取った後、しばらくして空気中の塵や埃が
被清掃面に再付着した。
Comparative Example 2 In the same manner as in Example 1, except that the conductive fiber was not mixed into the cloth, a tubular net made of ultrafine fibers was prepared, subjected to various treatments, and dried to obtain a cloth. The performance of this wiping cloth was evaluated. Tables 1 and 2 show the results.
Shown in The wiping performance was high, but after wiping the surface of the surface to be cleaned, some time after the dust in the air adhered to the surface to be cleaned.

【0048】比較例3 実施例1において、導電性繊維の最内層(C)を形成す
るポリマ−として高密度ポリエチレンを使用した以外は
同様にして、極細繊維からなる筒編地を作成し、各種の
処理を施して乾燥し布帛を得た。この布帛に上記の導電
性繊維を混入してワイピングクロスとしての性能評価を
行った。結果を表1および表2に示す。初期の拭き取り
性能は優れていたが、250回の洗濯後の除電性能には
著しい低下が見られ、耐久性はないといってよいもので
あった。
Comparative Example 3 In the same manner as in Example 1, except that high-density polyethylene was used as the polymer for forming the innermost layer (C) of the conductive fibers, a tubular knitted fabric made of ultrafine fibers was prepared. And dried to obtain a fabric. The above-mentioned conductive fibers were mixed into this cloth, and the performance as a wiping cloth was evaluated. The results are shown in Tables 1 and 2. Although the initial wiping performance was excellent, the static elimination performance after 250 washes was markedly reduced, and it could be said that there was no durability.

【0049】比較例4 実施例1において、極細繊維の単繊維繊度を0.90デ
ニ−ルにした以外は同様にして極細繊維からなる筒編地
を作成し、各種の処理を施して乾燥し布帛を得た。この
布帛に導電性繊維を混入し、ワイピングクロスとしての
性能評価を行った。結果を表1および表2に示す。極細
繊維の単繊維繊度が大きくなれば、拭き取り性能が著し
く低下することがわかる。
Comparative Example 4 A tubular knitted fabric made of ultrafine fibers was prepared in the same manner as in Example 1 except that the single fiber fineness of the ultrafine fibers was changed to 0.90 denier, subjected to various treatments, and dried. A fabric was obtained. Conductive fibers were mixed into this cloth, and the performance as a wiping cloth was evaluated. The results are shown in Tables 1 and 2. It can be seen that when the single fiber fineness of the ultrafine fibers increases, the wiping performance significantly decreases.

【0050】比較例5 実施例1において、導電性繊維として導電カ−ボンブラ
ックを35重量%含有するナイロン6を芯部、ポリエチ
レンテレフタレ−トを鞘部とし、芯:鞘=10:90
(重量比)の二層構造の導電性繊維を使用した以外は同
様にして、極細繊維からなる筒編地を作成し、各種の処
理を施して乾燥し布帛を得た。この布帛に上記の二層構
造の導電性繊維を混入し、ワイピングクロスとしての性
能評価を行った。結果を表1および表2に示す。除電性
能の耐久性は有するものの、導電性繊維のクロが目立
ち、意匠性が劣るものであった。
Comparative Example 5 In Example 1, the core was made of nylon 6 containing 35% by weight of conductive carbon black as the conductive fiber, the sheath was made of polyethylene terephthalate, and the core: sheath = 10: 90.
(Weight ratio) A tubular knitted fabric made of ultrafine fibers was prepared in the same manner except that the conductive fibers having a two-layer structure (weight ratio) were used, subjected to various treatments, and dried to obtain a fabric. The above-described conductive fibers having a two-layer structure were mixed into the cloth, and the performance as a wiping cloth was evaluated. The results are shown in Tables 1 and 2. Although having the durability of the static elimination performance, the color of the conductive fiber was conspicuous, and the design was poor.

【0051】比較例6 海成分として5−ナトリウムスルホイソフタル酸2.5
モル%、ポリエチレングリコ−ル8重量%共重合したポ
リエチレンテレフタレ−ト(極限粘度0.61)を、島
成分としてポリエチレンテレフタレ−ト(極限粘度0.
68)を用いて海島型複合繊維(島数17)を製糸し、
ついでアルカリ減量加工により海成分である共重合ポリ
エチレンテレフタレ−トを溶解除去して、単繊維繊度
0.29デニ−ルで丸断面のポリエチレンテレフタレ−
ト極細繊維を得た。この極細繊維を使用して筒編地を作
成し、各種の処理を施して乾燥し、布帛を作成した。こ
の布帛に、実施例1で使用した導電性繊維を混入し、ワ
イピングクロスとしての性能評価を行った。結果を表1
および表2に示す。極細繊維であっても断面形状が丸断
面であるために拭き取り性能が悪いものであった。
Comparative Example 6 5-sodium sulfoisophthalic acid 2.5 as a sea component
Mol%, polyethylene glycol 8 wt% copolymerized polyethylene terephthalate (intrinsic viscosity 0.61), and polyethylene terephthalate (intrinsic viscosity 0. 1) as an island component.
68) is used to produce sea-island composite fibers (17 islands).
Then, the polyethylene terephthalate copolymer as a sea component was dissolved and removed by alkali reduction treatment, and the polyethylene terephthalate having a single fiber fineness of 0.29 denier and a round cross section was used.
A very fine fiber was obtained. A tubular knitted fabric was prepared using the ultrafine fibers, subjected to various treatments and dried to prepare a fabric. The conductive fibers used in Example 1 were mixed into this cloth, and the performance as a wiping cloth was evaluated. Table 1 shows the results
And Table 2. Even ultrafine fibers had poor wiping performance due to their round cross-sectional shape.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【発明の効果】本発明のワイピングクロスは、除電効果
が高いので塵・埃を拭き取った後も、被清掃物の表面に
空気中の塵・埃が再付着することがなく、綺麗な面を保
持することができる。さらにこの性能は250回の洗濯
後にも保持されており、非常に耐久性のあるワイピング
クロスが得られるのである。
The wiping cloth of the present invention has a high static elimination effect, so that even after wiping off dust and dirt, dust and dirt in the air do not adhere to the surface of the object to be cleaned. Can be held. In addition, this performance is maintained after 250 washes, resulting in a very durable wiping cloth.

【図面の簡単な説明】[Brief description of the drawings]

【図1】摩擦帯電圧および放電現象を測定する装置の該
略図である。
FIG. 1 is a schematic diagram of an apparatus for measuring a triboelectric voltage and a discharge phenomenon.

【図2】放電パルスの一状態を示す図である。FIG. 2 is a diagram showing one state of a discharge pulse.

【図3】実施例1で得られたクリ−ニングクロスの放電
パルスを示す図である。
FIG. 3 is a diagram showing a discharge pulse of a cleaning cross obtained in Example 1.

【図4】比較例2で得られたクリ−ニングクロスの放電
パルスを示す図である。
FIG. 4 is a view showing a discharge pulse of a cleaning cross obtained in Comparative Example 2.

【符号の説明】 1:アナライジングレコ−ダ(放電ノイズ記録計) 2:帯電圧記録計 3:表面電位計 4:ル−プアンテナ 5:プロ−ブ 6:樹脂平板[Description of Signs] 1: Analyzing recorder (discharge noise recorder) 2: Charger recorder 3: Surface electrometer 4: Loop antenna 5: Probe 6: Resin flat plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河本 正夫 愛媛県西条市朔日市892番地 株式会社ク ラレ内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masao Kawamoto 892 Sakuhi-shi, Saijo-shi, Ehime Pref.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】単繊維繊度が0.01〜0.8デニ−ルで
あって、かつ20度以上120度以下の角度を少なくと
も2つ有する断面からなる極細繊維を主体として構成さ
れた布帛に、1KV印加時の電気抵抗値が9×108 Ω
/cm・f以下の導電性繊維を3重量%以下混入してな
り、250回洗濯後の帯電電荷密度が7.0μC/m2
以下であることを特徴とするワイピングクロス。
1. A fabric mainly composed of ultrafine fibers having a single fiber fineness of 0.01 to 0.8 denier and having a cross section having at least two angles of 20 to 120 degrees. The electric resistance value when applying 1KV is 9 × 10 8 Ω
/ Cm · f or less by 3% by weight or less, and the charge density after washing 250 times is 7.0 μC / m 2.
A wiping cloth characterized by the following.
【請求項2】導電性繊維が、導電性カ−ボンブラックを
含有するポリアミド層を最内層、無機微粒子を10重量
%以上含有するポリマ−層を中間層、繊維形成性のポリ
マ−からなる最外層よりなる三層構造の導電性繊維であ
ることを特徴とする請求項1記載のワイピングクロス。
2. A conductive fiber comprising a polyamide layer containing conductive carbon black as an innermost layer, a polymer layer containing at least 10% by weight of inorganic fine particles as an intermediate layer, and a conductive fiber comprising a fiber-forming polymer. The wiping cloth according to claim 1, wherein the wiping cloth is a conductive fiber having a three-layer structure including an outer layer.
【請求項3】単繊維繊度が0.01〜0.8デニ−ルの
親水性繊維が布帛中に占める割合が10〜60重量%で
あることを特徴とする請求項1記載のワイピングクロ
ス。
3. The wiping cloth according to claim 1, wherein the proportion of hydrophilic fibers having a single fiber fineness of 0.01 to 0.8 denier in the fabric is 10 to 60% by weight.
【請求項4】親水性繊維がポリアミド繊維であることを
特徴とする請求項3記載のワイピングクロス。
4. The wiping cloth according to claim 3, wherein the hydrophilic fiber is a polyamide fiber.
【請求項5】親水性繊維がエチレン−ビニルアルコ−ル
系共重合体からなる繊維であることを特徴とする請求項
3記載のワイピングクロス。
5. The wiping cloth according to claim 3, wherein the hydrophilic fiber is a fiber comprising an ethylene-vinyl alcohol copolymer.
JP20662097A 1997-07-31 1997-07-31 Wiping cloth with durable static elimination Expired - Fee Related JP3665184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20662097A JP3665184B2 (en) 1997-07-31 1997-07-31 Wiping cloth with durable static elimination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20662097A JP3665184B2 (en) 1997-07-31 1997-07-31 Wiping cloth with durable static elimination

Publications (2)

Publication Number Publication Date
JPH1150350A true JPH1150350A (en) 1999-02-23
JP3665184B2 JP3665184B2 (en) 2005-06-29

Family

ID=16526399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20662097A Expired - Fee Related JP3665184B2 (en) 1997-07-31 1997-07-31 Wiping cloth with durable static elimination

Country Status (1)

Country Link
JP (1) JP3665184B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105651A (en) * 2001-09-28 2003-04-09 Kanebo Ltd Cleaning fabric having antistatic performance
JP2008013902A (en) * 2006-06-08 2008-01-24 Komatsu Seiren Co Ltd Antistatic wiping cloth having high durability
JP2008272183A (en) * 2007-04-27 2008-11-13 Unitika Ltd Anti-static wiper
CN114248515A (en) * 2020-09-24 2022-03-29 无锡市正龙无纺布有限公司 PET-based disposable electrostatic dust-sticking wiping cloth

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105651A (en) * 2001-09-28 2003-04-09 Kanebo Ltd Cleaning fabric having antistatic performance
JP4726365B2 (en) * 2001-09-28 2011-07-20 Kbセーレン株式会社 Cleaning fabric having antistatic performance
JP2008013902A (en) * 2006-06-08 2008-01-24 Komatsu Seiren Co Ltd Antistatic wiping cloth having high durability
JP2008272183A (en) * 2007-04-27 2008-11-13 Unitika Ltd Anti-static wiper
CN114248515A (en) * 2020-09-24 2022-03-29 无锡市正龙无纺布有限公司 PET-based disposable electrostatic dust-sticking wiping cloth

Also Published As

Publication number Publication date
JP3665184B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
KR101029515B1 (en) Porous fiber
JP4367038B2 (en) Fiber and fabric
JP6271856B2 (en) Fabric manufacturing method and textile manufacturing method
JP2008194329A (en) Rotating brush for vacuum cleaner
JP2010095813A (en) Woven and knitted fabric of multilayer structure and textile product
JP3132791B2 (en) Conductive composite fiber
JPH1150350A (en) Wiping cloth having durable removal of electricity
JPS6037203B2 (en) Manufacturing method of water-absorbing artificial fiber
JP3128349B2 (en) Composite magnetic fiber
JP6672641B2 (en) Extra fine polyester fiber with uneven surface
JP2705096B2 (en) Material for antistatic wiping
JP2005133250A (en) Core-sheath conjugate fiber
JP2009256865A (en) Ultrafine fiber fabric and method for producing the same
JP5662007B2 (en) Standing fabric and standing fabric product
JP2011157647A (en) Wiping cloth
JP2010255143A (en) Stain-resistant polyester fabric and manufacturing method of the same and fiber product
JP2010216037A (en) Production method for pile fabric, pile fabric, and textile product
JPH1150351A (en) Cleaning cloth having durable removal of electricity
JP4292893B2 (en) Polymer alloy crimped yarn
JP2004332186A (en) Nanoporous fiber
JP3210787B2 (en) Conductive mixed yarn
JP2004270110A (en) Polymer alloy fiber
JP2012207361A (en) Ultra fine fiber and wiping cloth containing ultra fine fiber
JP3210793B2 (en) Durable conductive mixed yarn
US20240110314A1 (en) Conjugate fiber and multifilament

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees