JPS58149329A - Production of electroconductive conjugated fiber - Google Patents

Production of electroconductive conjugated fiber

Info

Publication number
JPS58149329A
JPS58149329A JP3168282A JP3168282A JPS58149329A JP S58149329 A JPS58149329 A JP S58149329A JP 3168282 A JP3168282 A JP 3168282A JP 3168282 A JP3168282 A JP 3168282A JP S58149329 A JPS58149329 A JP S58149329A
Authority
JP
Japan
Prior art keywords
component
fiber
conductive
melting point
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3168282A
Other languages
Japanese (ja)
Inventor
Masahiro Oshida
押田 正博
Hiroaki Tanaka
田中 広昭
Kiyokazu Tsunawaki
綱脇 清和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP3168282A priority Critical patent/JPS58149329A/en
Publication of JPS58149329A publication Critical patent/JPS58149329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:After drawn, a specific electroconductive conjugated fiber is heat treated under specific conditions to produce the titled conjugated fiber with good whiteness and suficient tenacity, showing scarce reduction in electroconductivity, when it is processed or used. CONSTITUTION:The objective electroconductive conjugated fiber consists of (A) a fiber-forming thermoplastic polymer and (B) a mixture of cuprous iodide and another thermoplastic polymer with a melting point more than 40 deg.C lower than that of polymer A. After drawn, the resultant fiber is heat treated at a temperature more than 30 deg.C lower than the melting point of polymer A. The share of component B in fiber cross section is 1-50% and the amount of cuprous iodide is preferably 50-80wt% in component B.

Description

【発明の詳細な説明】 本発明は導電性繊維、特に導電性物質として沃化第1鋼
微粉末を含有する新規な導電性複合繊維の製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing conductive fibers, particularly a novel conductive composite fiber containing fine iodized steel powder as a conductive substance.

合成繊維、例えばポリエステル系繊維、ポリアミド系繊
維郷は導電性が低いため、摩擦により静電気が発生し易
く、かかる合成繊維よりなる布帛は使用に際して数拾K
Vにも達する高電位の帯電が認められ、塵埃の付着、放
電に伴う各種の障害が発生する。
Synthetic fibers, such as polyester fibers and polyamide fibers, have low conductivity, so they easily generate static electricity due to friction.
A high potential charge of up to V is observed, and various problems occur due to dust adhesion and discharge.

かかる問題を解決するため、繊維製品に導電性繊維を混
合することが知られておシ、導電性繊維として金属繊給
、金属メッキを施した繊維。
To solve this problem, it is known that conductive fibers are mixed into textile products, and conductive fibers include metal fibers and metal-plated fibers.

導電性物質を配合したポリマードープを塗布した繊維、
カーボンブラックを配合した繊維等が提案されている。
Fibers coated with polymer dope containing conductive substances,
Fibers containing carbon black have been proposed.

しかしながら、これらの従来の導電性繊維は、いずれも
重大な欠点を有し、満足できるものではなかった。例え
ば金属繊維は、屈曲回復性がないため、使用時又は加工
時の屈曲により導電性能が低下すること、他繊維との混
合、交編。
However, all of these conventional conductive fibers had serious drawbacks and were not satisfactory. For example, metal fibers do not have bending recovery properties, so their conductive performance decreases when bent during use or processing, mixing with other fibers, and cross-knitting.

交織が容易でないこと、更には金属特有の色調を有する
こと等、多くの欠点を有している。金属メッキを施した
繊維は、繊維表面に均一で且つ連続したメッキ層が形成
する必要があるため、繊維表面には平滑性が要求され、
適用できる繊維の種類が大きく制限されること、メッキ
処理は精確に施さなければならず、製造コストが極めて
高くなること、使用時又は加工時にメッキ層が剥離し易
く耐久性が低いこと、更には金属特有の色調を呈するこ
と等、多くの欠点を有している。導電性物質を配合した
ポリマードープを塗布した縛維も、製造コストや剥離等
について上述の金属メッキ繊維と同様の欠点がある。
It has many drawbacks, such as not being easy to mix and match, and furthermore, having a color tone unique to metal. Metal-plated fibers require a uniform and continuous plating layer to be formed on the fiber surface, so the fiber surface must be smooth.
The types of fibers that can be applied are greatly limited, the plating process must be performed precisely and the manufacturing cost is extremely high, the plating layer easily peels off during use or processing, and the durability is low. It has many drawbacks, such as exhibiting a color tone unique to metals. A bound fiber coated with a polymer dope containing a conductive substance also has the same drawbacks as the above-mentioned metal-plated fiber in terms of manufacturing cost and peeling.

更にカーボンブラック含有繊維はカーポンプラスクの黒
色に着色しており、合成繊維と混合すると外観が著しく
損なわれるため、その使用分野が制限されるという致命
的欠点を有する。
Furthermore, carbon black-containing fibers are colored the black color of carpon plask, and when mixed with synthetic fibers, the appearance is significantly impaired, which has the fatal disadvantage of limiting the field of use.

本発明者は、上記欠点のない導電性繊維を提供せんとし
て鋭意検討した結果、導電性物質として沃化第1銅を使
用することに着目し、繊維形成性熱可塑性樹脂〔(A)
成分〕と沃化第1銅を配合した熱可塑性樹脂〔(B)成
分〕とを使用した複合繊維を製造せんと試みたところ、
未延伸糸では十分な導電性を示すが、糸強力をあけるた
めに延伸すると、導電性能i低下し、延伸倍率をあける
に従って導電性能の低下が著しくなる。このため、充分
な倍率の延伸ができず糸強力と導電性共に優れた導電性
複合繊維を得ることはできなかった。従って、(B)成
分中の沃化第1銅を配合する熱可塑性重合体について検
討を重ねた結果、この重合体として(A)成分の融点よ
り40℃以上低い融点を有する熱可塑性重合体を選択し
、延伸後(B)成分中の電合体の融点以上、好ましくは
融点より10℃以上高い温度で熱処理することによシ延
伸時に大幅に低下した導電性能が回復することを見い出
し、本発明を完成させた。
The inventor of the present invention, as a result of intensive studies aimed at providing a conductive fiber free from the above-mentioned drawbacks, focused on using cuprous iodide as a conductive substance, and developed a fiber-forming thermoplastic resin [(A).
When we attempted to manufacture a composite fiber using component] and a thermoplastic resin containing cuprous iodide [component (B)], we found that
Undrawn yarn exhibits sufficient conductivity, but when stretched to increase yarn strength, the conductive performance i decreases, and as the stretching ratio increases, the decrease in conductive performance becomes more significant. For this reason, it was not possible to draw the fiber at a sufficient magnification, and it was not possible to obtain a conductive composite fiber with excellent yarn strength and conductivity. Therefore, as a result of repeated studies on the thermoplastic polymer in which cuprous iodide in component (B) is blended, we found that a thermoplastic polymer having a melting point 40°C or more lower than the melting point of component (A) was selected as the polymer. It has been found that the electrical conductivity which was significantly reduced during stretching can be recovered by heat treatment at a temperature higher than the melting point of the electrolyte in component (B), preferably at least 10°C higher than the melting point after stretching, and the present invention completed.

即ち、本発明は繊維形成性熱可塑性重合体よりなる(A
)成分及び沃化第1銅と(A)成分の融点より40℃以
上低い融点を有する熱可塑性重合体との混合物よシなる
(B)成分から形成されてなる導電性複合繊維を延伸し
た後(B)成分中の熱可塑性重合体の融点以上で且つ(
A)成分の融点より30’O以上低い温度で熱処理する
ことを特徴とする導電性複合繊維の製造法に係るもので
ある。
That is, the present invention consists of a fiber-forming thermoplastic polymer (A
) and a mixture of cuprous iodide and a thermoplastic polymer having a melting point 40° C. or more lower than the melting point of component (A) after stretching a conductive composite fiber formed from component (B). (B) above the melting point of the thermoplastic polymer in component and (
A) This relates to a method for producing a conductive composite fiber characterized by heat treatment at a temperature 30'O or more lower than the melting point of the component.

本発明の導電性繊維の一部を構成する(A)成分となる
重合体は、溶融紡糸可能な繊維形成性重合体であればよ
い。かかる重合体の具体例としては、ポリエチレンテレ
フタレートやポリブチレンテレフタレートの如きポリエ
ステル、ナイロン6やナイロン66の如きポリアミド、
ポリエチレンやポリプロピレンの如きポリオレフィン等
又はこれらを主成分とする共重合体若しくは混合重合体
等をあげることができる。tた、かかる(A)成分を構
成する重合体には、必要に応じて任意の添加剤、例えば
艶消剤2着色剤。
The polymer serving as component (A) constituting a part of the conductive fiber of the present invention may be any fiber-forming polymer that can be melt-spun. Specific examples of such polymers include polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamides such as nylon 6 and nylon 66,
Examples include polyolefins such as polyethylene and polypropylene, and copolymers or mixed polymers containing these as main components. In addition, the polymer constituting component (A) may contain optional additives, such as a matting agent and a coloring agent, if necessary.

酸化安定剤、染色向上剤等を含有させてもよい。Oxidation stabilizers, dyeing improvers, etc. may also be included.

また、本発明の導電性繊維の導電部を構成する(B)成
分は、沃化第1銅微粉末と熱可塑性重合体とからなる。
Further, the component (B) constituting the conductive part of the conductive fiber of the present invention consists of fine cuprous iodide powder and a thermoplastic polymer.

この(B)成分を構成する重合体は、(A)成分の重合
体の融点よシ40℃以上、好ましくは50℃以上低い融
点を有するもので紡糸温度において分解等を生じない熱
安定性を有し、且つ溶融押出し可能なものであればそれ
自体は繊維形成能を有していても有していなくて本よい
。(B)成分中の重合体の融点差が40’OK *たな
い場合は、後述する延伸後の熱処理に際して、繊維強度
の低下や繊維間の融着が発生する。かかる(B)成分中
の重合体の具体例としては、ポリエステル、ポリアミド
、ポリエーテル、ポリオレフィン等又はこれらを主成分
とする重合体をあげることができる。
The polymer constituting component (B) has a melting point lower than the melting point of the polymer of component (A) by at least 40°C, preferably by at least 50°C, and has thermal stability that does not cause decomposition at the spinning temperature. It may or may not have fiber-forming ability as long as it can be melt-extruded. If the melting point difference of the polymers in component (B) is less than 40'OK*, a decrease in fiber strength or fusion between fibers will occur during the heat treatment after stretching, which will be described later. Specific examples of the polymer in component (B) include polyester, polyamide, polyether, polyolefin, etc., and polymers containing these as main components.

上記(B)成分中の重合体と沃化第1銅とを混合するに
は、良好に分散できる方法であれば任意に採用される。
Any method can be used to mix the polymer in component (B) and cuprous iodide as long as it can be dispersed well.

沃化第1銅の混合量は、要求される導電性能によって異
なるが、制電用途の導電性繊維としてはI KVの直流
電圧に対して1012Ω/α以下の電気抵抗が要求され
るので、(B)成分の体積抵抗11103Ω・α以下が
必要になるため50重量%以上にする必要がある。一方
、沃化第1銅の混合量をあまりに多くすると、(B)成
分の調整及び紡糸が困難になるので、80重t%以下に
するのが適当である。また、(B)成分中にも必要に応
じて任意の添加剤、例えば艶消剤2着色剤、酸化安定剤
等を含有させることができる。
The amount of cuprous iodide mixed varies depending on the required conductive performance, but since conductive fibers for antistatic purposes are required to have an electrical resistance of 1012 Ω/α or less with respect to a DC voltage of I KV, ( Since the volume resistivity of component B) needs to be 11103 Ω·α or less, it is necessary to make it 50% by weight or more. On the other hand, if the amount of cuprous iodide mixed is too large, it will be difficult to adjust the component (B) and spin, so it is appropriate to keep it at 80% by weight or less. Further, optional additives such as a matting agent 2, a coloring agent, an oxidation stabilizer, etc. can be included in the component (B) as required.

上記(A)成分と(B)成分とによって構成される複合
繊維の形状は、(B)成分が繊維軸方向に沿って連続し
さえすればどのようなものでもよい。しかし、(B)成
分が完全に(A)成分によって包まれた芯−鞘型は、(
8)成分の一部が繊維表面上に露出した形状に比べて若
干制電性能が劣るため、カーペット用途では問題ないが
、より厳しい性能を必要とする衣料用途には、(B)成
分の少なくとも一部が繊維表面上に露出した形状が好ま
しい。また(A)成分、(B)成分に使用される重合体
の組み合わせは、完全芯−鞘型の場合は任意でよいが、
一部表面露出型の場合は剥離を防止する意味から同系統
の重合体を用いるのが好ましい。
The shape of the composite fiber constituted by the above-mentioned (A) component and (B) component may be any shape as long as the (B) component is continuous along the fiber axis direction. However, the core-sheath type in which component (B) is completely surrounded by component (A) is (
8) The antistatic performance is slightly inferior to that in which some of the components are exposed on the fiber surface, so this is not a problem for carpet applications, but for clothing applications that require more severe performance, at least one of component (B) is required. A shape in which a portion is exposed on the fiber surface is preferable. In addition, the combination of polymers used for component (A) and component (B) may be arbitrary in the case of a complete core-sheath type, but
In the case of a partially surface-exposed type, it is preferable to use a polymer of the same type to prevent peeling.

また繊維横断面における(A)成分と(B)成分の割合
は、極めて広い範囲にすることができるが、(B)成分
の割合があまりに大になると得られる導電性繊維の強度
が低下するようになるので繊維横断面における(B)成
分の占める面積は50%以下が好ましい。また、この(
B)成分の下限は、(B)成分が繊維軸方向に沿って連
続しさえすれはよく、特に設ゆる必要はないが、通常繊
維横断面において面積で1tlI以−ヒ、特に3チ以上
にするのが好ましい。
Furthermore, the ratio of component (A) and component (B) in the fiber cross section can be set within a very wide range, but if the ratio of component (B) becomes too large, the strength of the resulting conductive fiber will decrease. Therefore, the area occupied by component (B) in the fiber cross section is preferably 50% or less. Also, this (
The lower limit of component (B) is not particularly necessary as long as component (B) is continuous along the fiber axis direction, but it usually has an area of 1 tlI or more in the cross section of the fiber, especially 3 or more tlI. It is preferable to do so.

かかる複合繊維を製造するには格別の方法。A special method for producing such composite fibers.

条件を採用する必要はなく、2成分よシなる複合繊維を
製造する溶融紡糸方法及び条件を(A)成分に與じて任
意に適用することができる。
It is not necessary to adopt these conditions, and the melt spinning method and conditions for producing a two-component composite fiber can be arbitrarily applied to component (A).

本発明にあっては、紡糸して得られた繊維は充分な強度
を得るために延伸する。この延伸方法及び条件について
は任意の方法が適宜採用される。
In the present invention, the fibers obtained by spinning are stretched to obtain sufficient strength. Any method and conditions for this stretching may be used as appropriate.

前にも述べたように本発明の導電性複合繊維は、通常に
紡糸、延伸した状態では、充分な導電性能を有しないが
、(B)成分中の重合体の融点以上、好ましくは融点よ
り10°C以上高い温度で熱処理することにより必要導
電性能を有するようになる。しかし複合繊維の主成分で
ある(A)成分の重合体の融点近傍での熱処理は、繊維
の強度低下や繊維間の融着をひき起こすため、熱処理温
度は(A)成分の重合体の融点より30℃以上低いこと
が必要である。延伸後に行なうかかる熱処理には任意の
手段が採用される。また延伸によシ低下した導電性能を
充分に1回復するためには少なくとも10分の処理時間
が必要であるが、60分以上続けてもその効果は飽和す
るので60分程度までが適当である。
As mentioned before, the conductive composite fiber of the present invention does not have sufficient conductive performance when normally spun and drawn, but it does not have sufficient conductive performance when it is normally spun and drawn. By heat-treating at a temperature higher than 10°C, it will have the necessary electrical conductivity. However, heat treatment near the melting point of the polymer of component (A), which is the main component of composite fibers, causes a decrease in fiber strength and fusion between fibers, so the heat treatment temperature is set at the melting point of the polymer of component (A). It is necessary to lower the temperature by 30°C or more. Any means may be employed for such heat treatment after stretching. In addition, at least 10 minutes of processing time is required to fully recover the conductive performance that has decreased due to stretching, but the effect will be saturated even if it continues for more than 60 minutes, so it is appropriate to use up to about 60 minutes. .

本発明の導電性繊維は導電性物質として白変の高い沃化
第1銅粉体を使用し、且つ通常の合成繊維を形成する(
A)成分部分を保有しているため、極めて良好な白変及
び充分な強度を有し、常法によって任意の色に染色可能
であシ、その導電性能も加工時や使用時に低下すること
がない等従来の導電性繊維の有する欠点を全て解消し得
たものであって、導電性能が要求される何れの分野にお
いても適用可能である。
The conductive fiber of the present invention uses cuprous iodide powder with high white discoloration as a conductive substance, and forms a common synthetic fiber (
A) Because it contains the component parts, it has extremely good white discoloration and sufficient strength, and can be dyed into any color by conventional methods, and its conductive performance does not deteriorate during processing or use. This method can overcome all the drawbacks of conventional conductive fibers, such as the lack of electrical conductivity, and can be applied to any field where conductive performance is required.

以下に実施例をあげて本発明を更に詳述する。The present invention will be explained in further detail by giving examples below.

実施例にお岐る導電性組成物及−び導電性繊維の体積抵
抗値の測定条件は20℃、ao%aH。
The conditions for measuring the volume resistivity of the conductive compositions and conductive fibers used in Examples were 20° C. and ao% aH.

IKV直流電圧である。また導電性微粉末の体積抵抗値
測定条件は20°C230チRH,3V直流電圧、40
0mf/−圧力下である。重合体の融□点の測定はデュ
ポン900型示差熱分析゛□装置を用いて行なった。
IKV DC voltage. The conditions for measuring the volume resistivity of the conductive fine powder were 20°C, 230°C RH, 3V DC voltage, and 40°C.
It is under 0 mf/- pressure. The melting point of the polymer was measured using a DuPont 900 differential thermal analyzer.

実施例1 ポリエチレン(宇部興産KK製J 3519.111点
110°0)100重量部と沃化第1銅微粉末(体積抵
抗値5×100・α)250重量部とを常圧窒素気流下
250℃で30分間溶溶融金して体積抵抗値?、2X1
0”Ω・備の導電性組成物を得た。
Example 1 100 parts by weight of polyethylene (J 3519.111 point 110°0 manufactured by Ube Industries KK) and 250 parts by weight of cuprous iodide fine powder (volume resistivity 5 x 100・α) were heated for 250 parts by weight under a nitrogen stream at normal pressure. What is the volume resistance value of melted gold at ℃ for 30 minutes? , 2X1
A conductive composition with a resistance of 0''Ω was obtained.

上記導電性組成物を(B)成分とし、ポリプロピレン(
宇部興産KK製S−115M、融点175℃)を(A)
成分としてサイド・パイ・サイド型紡糸孔(0,3m$
)を12孔有する紡糸口金を使用し、紡糸温度280℃
、紡糸速度400m/分で450デニール、繊維横断面
における(A)成分と(B)成分の面積比が5:1で表
面の約20チが(B)成分である未延伸複合繊維を得た
。この未延伸複合繊維の電気抵抗値は9.2 X 10
’vxであった。次いで、延伸温度120℃で4.0倍
に延伸した。得られた延伸繊維の電気抵抗値は10Lt
Ω/1以上であシ、その導電性能は大幅に低下した。こ
の繊維を140°Cで30分間熱処理したところ、強力
2409.伸度33%、電気抵抗値3.I X 10’
Ω/傭の導電性繊維が得られた。
The above conductive composition is used as component (B), polypropylene (
S-115M manufactured by Ube Industries KK, melting point 175℃) (A)
As a component, side pie side type spinning hole (0.3m$
) using a spinneret with 12 holes, and the spinning temperature was 280°C.
At a spinning speed of 400 m/min, an undrawn composite fiber of 450 denier was obtained, with an area ratio of component (A) and component (B) in the fiber cross section of 5:1, and approximately 20 inches of the surface being component (B). . The electrical resistance value of this undrawn composite fiber is 9.2 x 10
It was 'vx. Then, it was stretched 4.0 times at a stretching temperature of 120°C. The electrical resistance value of the obtained drawn fiber was 10Lt.
When it was Ω/1 or more, its conductive performance was significantly reduced. When this fiber was heat treated at 140°C for 30 minutes, the strength was 2409. Elongation 33%, electrical resistance value 3. I x 10'
A conductive fiber of Ω/min was obtained.

比較例1 実施例1と全く同様にして4倍延伸複合繊維を製造し、
この繊維を100℃で30分間熱処理した。得られた繊
維の電気抵抗値は1.3 x 1611Ω/1であシ、
導電性繊維としては不合格であった。
Comparative Example 1 A 4-fold drawn composite fiber was produced in exactly the same manner as in Example 1,
This fiber was heat treated at 100°C for 30 minutes. The electrical resistance value of the obtained fiber was 1.3 x 1611Ω/1,
It was rejected as a conductive fiber.

実施例2 ポリプロピレン(宇部興産KKIIS−115M。Example 2 Polypropylene (Ube Industries KKIIS-115M.

融点175℃)100重量部と沃化第1銅(体積抵抗値
5X10Ω・cs+)22s重量部とを常圧窒素気流下
250 ’Oで30分間溶溶融金して体積抵抗値7.4
 X 10”Ω・1の導電性組成物を得た。
100 parts by weight (melting point: 175°C) and 22 parts by weight of cuprous iodide (volume resistivity: 5 x 10 Ω/cs+) were melted at 250'O under normal pressure nitrogen flow for 30 minutes to give a volume resistivity of 7.4.
A conductive composition of X 10''Ω·1 was obtained.

上記導電性組成物を(B)成分とし、固有粘度0.65
 dt/yのポリエチレンテレフタレート(融点265
℃)を(A)成分とし、同心の芯−鞘紡糸孔(o、3m
φ)を12孔有する紡糸口金を使用して(B)成分を芯
部に、(A)成分を鞘部に適用し、紡糸温度280℃、
紡糸速度400m1分で450デニール、繊維横断面に
おける(A)成分と(B)成分の面積比が5:1である
未延伸複合繊維を得た。この未延伸複合繊維の電気抵抗
体は8.3 X 1 G’Ω廊であった。次いで延伸温
度120℃で4.0倍に延伸した。得られた延伸繊維の
電気抵抗値は10LtΩ/c−以上であった。この繊維
を180℃で30分間熱処理したところ強力277り、
伸度31チ、電気抵抗値2.5 X 10’Ω/傷の導
電性繊維が得られた。
The above conductive composition is the component (B), and the intrinsic viscosity is 0.65.
dt/y polyethylene terephthalate (melting point 265
°C) as component (A), concentric core-sheath spinning hole (o, 3m
Component (B) was applied to the core and component (A) was applied to the sheath using a spinneret with 12 holes of φ), and the spinning temperature was 280°C.
At a spinning speed of 400 m/min, an undrawn conjugate fiber of 450 denier and an area ratio of component (A) and component (B) in the fiber cross section of 5:1 was obtained. The electrical resistance of this undrawn composite fiber was 8.3×1 G'Ω. The film was then stretched 4.0 times at a stretching temperature of 120°C. The electrical resistance value of the obtained drawn fiber was 10 LtΩ/c- or more. When this fiber was heat-treated at 180°C for 30 minutes, the strength was 277%.
A conductive fiber with an elongation of 31 inches and an electrical resistance value of 2.5 x 10'Ω/flaw was obtained.

比較例2 実施例2と全く同様にして4倍延伸複合繊維を製造し、
この繊維を140℃で30分間熱処理したが、得られた
繊維の電気抵抗値は10謔Ω〉以上であつ九。
Comparative Example 2 A 4-fold drawn composite fiber was produced in exactly the same manner as in Example 2,
This fiber was heat-treated at 140°C for 30 minutes, and the electrical resistance value of the obtained fiber was 10Ω or more.

Claims (4)

【特許請求の範囲】[Claims] (1)  繊維形成性熱可塑性重合体よりなる(A)成
分及び沃化第1銅と(A)成分の融点より40°0以上
低い融点を有する熱可塑性重合体との混合物よシなる(
B)成分から形成されてなる導電性複合繊維を延伸1.
た後(B)成分中の熱可塑性重合体の融点以上で且つ(
A)成分の融点よシ30℃以上低い温度で熱処理するこ
とを特徴とする導電性複合繊維の製造法。
(1) Component (A) consisting of a fiber-forming thermoplastic polymer and a mixture of cuprous iodide and a thermoplastic polymer having a melting point 40° or more lower than the melting point of component (A).
B) Stretching the conductive composite fiber formed from component 1.
and (B) above the melting point of the thermoplastic polymer in component (B).
A) A method for producing conductive composite fibers, characterized by heat treatment at a temperature 30° C. or more lower than the melting point of the components.
(2)  熱処理時間が少なくとも10分である特許請
求の範囲第1項記載の導電性複合繊維の製造法っ
(2) The method for producing conductive composite fibers according to claim 1, wherein the heat treatment time is at least 10 minutes.
(3)  導電性複合繊維の横断面における(B)成分
の占める面積割合が1〜50%である特許請求の範囲第
1項又は第2項記載の導電性複合繊維の製造法。
(3) The method for producing a conductive conjugate fiber according to claim 1 or 2, wherein the area ratio occupied by component (B) in the cross section of the conductive conjugate fiber is 1 to 50%.
(4)  (B)成分中の氷化第1@(導饗會吻膚の配
合量が50〜80重量%である特許請求の範囲第1項〜
第3項のいずれか1項記載の導電性複合繊維の製造法。
(4) Claims 1 to 3 in which the amount of ice cream in component (B) is 50 to 80% by weight.
The method for producing a conductive composite fiber according to any one of Item 3.
JP3168282A 1982-03-02 1982-03-02 Production of electroconductive conjugated fiber Pending JPS58149329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3168282A JPS58149329A (en) 1982-03-02 1982-03-02 Production of electroconductive conjugated fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3168282A JPS58149329A (en) 1982-03-02 1982-03-02 Production of electroconductive conjugated fiber

Publications (1)

Publication Number Publication Date
JPS58149329A true JPS58149329A (en) 1983-09-05

Family

ID=12337862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3168282A Pending JPS58149329A (en) 1982-03-02 1982-03-02 Production of electroconductive conjugated fiber

Country Status (1)

Country Link
JP (1) JPS58149329A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998014647A1 (en) * 1996-09-30 1998-04-09 Hoechst Celanese Corporation Electrically conductive heterofil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711213A (en) * 1980-06-19 1982-01-20 Kanebo Synthetic Fibers Ltd Electrically conductive conjugate fiber and its production
JPS5716920A (en) * 1980-07-01 1982-01-28 Teijin Ltd Electrically conductive fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711213A (en) * 1980-06-19 1982-01-20 Kanebo Synthetic Fibers Ltd Electrically conductive conjugate fiber and its production
JPS5716920A (en) * 1980-07-01 1982-01-28 Teijin Ltd Electrically conductive fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998014647A1 (en) * 1996-09-30 1998-04-09 Hoechst Celanese Corporation Electrically conductive heterofil

Similar Documents

Publication Publication Date Title
US5916506A (en) Electrically conductive heterofil
US4085182A (en) Process for producing electrically conductive synthetic fibers
JPS6346170B2 (en)
JP3216131B2 (en) Two-component filament and its melt spinning method
JPS58149329A (en) Production of electroconductive conjugated fiber
JP2005194650A (en) Conductive conjugate fiber
JPS5860015A (en) Preparation of electrically conductive composite fiber
KR100510767B1 (en) Conductive polyester fiber
JPS61201008A (en) Production of electrically conductive monofilament
JPS6240444B2 (en)
JPS6250569B2 (en)
JP2778981B2 (en) Conductive composite fiber and method for producing the same
JPS60444B2 (en) conductive fiber
JPS6385113A (en) Electrically conductive conjugate fiber
JP2501855B2 (en) Conductive monofilament and manufacturing method thereof
JPS6346171B2 (en)
JP2004044035A (en) Conductive conjugate fiber
JPS63196717A (en) Electrically conductive conjugate fiber
JP3113054B2 (en) Conductive composite fiber
JPS5921722A (en) Preparation of electrically-conductive filament
JPH03137224A (en) Electroconductive conjugate fiber and its production
JPS63288215A (en) Electrically conductive conjugate fiber
JPH02242916A (en) Electroconductive conjugate yarn
JPS6211086B2 (en)
JPS58149330A (en) Electroconductive conjugate fiber