JPS6250569B2 - - Google Patents

Info

Publication number
JPS6250569B2
JPS6250569B2 JP8849280A JP8849280A JPS6250569B2 JP S6250569 B2 JPS6250569 B2 JP S6250569B2 JP 8849280 A JP8849280 A JP 8849280A JP 8849280 A JP8849280 A JP 8849280A JP S6250569 B2 JPS6250569 B2 JP S6250569B2
Authority
JP
Japan
Prior art keywords
component
fiber
conductive
fibers
melt viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8849280A
Other languages
Japanese (ja)
Other versions
JPS5716920A (en
Inventor
Masahiro Oshida
Hiroaki Tanaka
Kyokazu Tsunawaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP8849280A priority Critical patent/JPS5716920A/en
Publication of JPS5716920A publication Critical patent/JPS5716920A/en
Publication of JPS6250569B2 publication Critical patent/JPS6250569B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Description

【発明の詳細な説明】 本発明は導電性繊維、特に導電性物質として沃
化第1銅を含有する新規な導電性複合繊維に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to conductive fibers, particularly novel conductive composite fibers containing cuprous iodide as a conductive substance.

合成繊維例えばポリエステル系繊維、ポリアミ
ド系繊維等は導電性が低いため、摩擦により静電
気が発生する。かかる合成繊維よりなる布帛は使
用に際して数拾KVにも達する高電位の帯電が認
められ、塵埃の付着、放電に伴なう各種の障害が
発生する。
Synthetic fibers such as polyester fibers and polyamide fibers have low conductivity, so static electricity is generated due to friction. When cloth made of such synthetic fibers is used, it is observed that it is charged with a high potential of several tens of KV, and various problems occur due to the adhesion of dust and discharge.

かかる問題を解決するため、繊維製品に導電性
繊維を混合することが知られており、導電性繊維
として金属繊維、金属メツキを施した繊維、導電
性物質を配合したポリマードープを塗布した繊
維、カーボンブラツクを配合した繊維等が提案さ
れている。
In order to solve this problem, it is known to mix conductive fibers into textile products, and conductive fibers include metal fibers, metal-plated fibers, fibers coated with polymer dope containing conductive substances, Fibers containing carbon black have been proposed.

しかしながら、これら従来の導電性繊維は、い
ずれも重大な欠点を有し、満足できるものではな
かつた。例えば金属繊維は、屈曲回復性がないた
め、使用時又は加工時の屈曲により導電性能が低
下すること、他繊維との混合、交編、交織が容易
でないこと、更には金属特有の色調を有すること
等多くの欠点を有している。金属メツキを施した
繊維は、繊維表面に均一で且つ連続したメツキ層
を形成する必要があるため、繊維表面には平滑性
が要求され、適用できる繊維の種類が大きく制限
されること、メツキ処理は精確に施さなければな
らず、製造コストが極めて高くなること、使用時
又は加工時にメツキ層が剥離し易く耐久性が低い
こと、更には金属特有の色調を呈すること等多く
の欠点を有している。導電性物質を配合したポリ
マードープを塗布した繊維も、製造コスト、剥離
等について上述の金属メツキ繊維と同様の欠点が
ある。更にカーボンブラツク含有繊維は、カーボ
ンブラツクの黒色に着色しており、合成繊維と混
合すると外観が著しく損なわれるため、その使用
分野が制限されるという致命的欠点を有する。
However, all of these conventional conductive fibers had serious drawbacks and were not satisfactory. For example, metal fibers do not have bending recovery properties, so their conductive performance decreases when bent during use or processing, they are not easy to mix with other fibers, inter-knit, or inter-weave, and furthermore, they have a color tone unique to metals. It has many drawbacks such as: Metal-plated fibers require a uniform and continuous plating layer to be formed on the fiber surface, which requires smoothness on the fiber surface, which greatly limits the types of fibers that can be applied. It has many disadvantages such as extremely high manufacturing costs as it must be applied precisely, the plating layer tends to peel off during use or processing and has low durability, and it also exhibits a color characteristic of metal. ing. Fibers coated with a polymer dope containing a conductive substance also have the same drawbacks as the above-mentioned metal-plated fibers in terms of manufacturing cost, peeling, and the like. Furthermore, carbon black-containing fibers are colored carbon black, and when mixed with synthetic fibers, the appearance is significantly impaired, which has the fatal disadvantage of limiting the field of use.

本発明者は、上記欠点のない導電性繊維を提供
せんとして鋭意検討した結果、導電性物質として
沃化第1銅を使用することに着目し、ポリエチレ
ンテレフタレートと沃化第1銅を配合したポリエ
チレンテレフタレートとを使用して複合繊維を製
造せんと試みたところ、導電性を付与するために
は、相当多量の沃化第1銅を配合する必要がある
ため、紡糸特性が極めて悪く、目的を達成するに
到らなかつた。更に、沃化第1銅を配合する熱可
塑性重合体について検討を重ねた結果、沃化第1
銅の配合量を特定割合にし、且つこれを配合する
重合体として特定条件を満足するものを選択すれ
ば、目的とする導電性繊維が得られることを知
り、本発明を完成させた。
The inventor of the present invention, as a result of intensive study in an attempt to provide a conductive fiber free of the above-mentioned drawbacks, focused on using cuprous iodide as a conductive substance, and found that polyethylene terephthalate and cuprous iodide were blended together. Attempts were made to manufacture composite fibers using terephthalate, but in order to impart conductivity, it was necessary to incorporate a considerable amount of cuprous iodide, resulting in extremely poor spinning properties and the goal was not achieved. It was not worth it. Furthermore, as a result of repeated studies on thermoplastic polymers containing cuprous iodide,
The present invention was completed based on the knowledge that the desired conductive fiber could be obtained by blending copper in a specific proportion and selecting a polymer that satisfies specific conditions.

即ち、本発明は繊維形成性重合体よりなる(A)成
分及び紡糸温度において(A)成分の繊維形成性重合
体の溶融粘度より1000〜2500ポイズ低い溶融粘度
を有する熱可塑性重合体と該熱可塑性重合体に対
して1.4〜3.4倍重量の沃化第1銅との混合物によ
りなる(B)成分から形成された複合繊維よりなり、
且つその表面の少なくとも一部は(B)成分によつて
形成されてなる導電性繊維に係るものである。
That is, the present invention comprises component (A) consisting of a fiber-forming polymer, a thermoplastic polymer having a melt viscosity 1000 to 2500 poise lower than the melt viscosity of the fiber-forming polymer of component (A) at the spinning temperature, and the Consists of composite fibers formed from component (B), which is a mixture of cuprous iodide in an amount of 1.4 to 3.4 times the weight of the plastic polymer;
In addition, at least a part of the surface is related to conductive fibers formed from component (B).

本発明の導電性繊維の一部を構成する(A)成分と
なる重合体は、溶融紡糸可能な繊維形成性重合体
であればよく、溶融紡糸時の溶融粘度が1200〜
5000ポイズのものが好ましく、特に1500〜4000ポ
イズのものが好ましい。かかる重合体の具体例と
しては、ポリエチレンテレフタレートやポリブチ
レンテレフタレートの如きポリエステル、ナイロ
ン6やナイロン66の如きポリアミド、ポリエチレ
ンやポリプロピレンの如きポリオレフイン等又は
これらを主成分とする重合体等をあげることがで
き、なかでもポリエステル系及びポリアミド系の
重合体が好ましい。また、かかる(A)成分を構成す
る重合体には、必要に応じて任意の添加剤、例え
ば艶消剤、着色剤、酸化安定剤、染色性向上剤等
を含有させてもよい。
The polymer serving as component (A) constituting a part of the conductive fiber of the present invention may be a fiber-forming polymer that can be melt-spun, and has a melt viscosity of 1,200 to 1,200 during melt-spinning.
5000 poise is preferred, and 1500 to 4000 poise is particularly preferred. Specific examples of such polymers include polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamides such as nylon 6 and nylon 66, polyolefins such as polyethylene and polypropylene, and polymers containing these as main components. Among these, polyester-based and polyamide-based polymers are preferred. Further, the polymer constituting component (A) may contain arbitrary additives such as a matting agent, a coloring agent, an oxidation stabilizer, a dyeability improver, etc., as necessary.

また、本発明の導電性繊維の導電部を構成する
(B)成分は沃化第1銅と熱可塑性重合体とからな
る。この(B)成分中の重合体は、溶融紡糸温度にお
いて、(A)成分である繊維形成性重合体の溶融粘度
より1000〜2500ポイズ低い溶融粘度を有し、紡糸
温度において分解等を生じない熱安定性を有し且
つ溶融押出し可能なものであれば、それ自体は繊
維形成能を有していても、有していなくてもよ
い。溶融紡糸温度において、(B)成分中の重合体の
溶融粘度が〔(A)成分の溶融粘度−1000(ポイ
ズ)〕より高いと、沃化第1銅を混合したときに
(B)成分の溶融粘度が高くなり過ぎて、導電性繊維
を安定した状態で紡糸できず、また(B)成分の溶融
粘度が〔(A)成分の溶融粘度−2500(ポイズ)〕よ
り低いと、得られる導電性繊維の使用時に、その
(B)成分部分に亀裂が生じて導電性能が著しく低下
するようになる。かかる(B)成分中の重合体の具体
例としては、ポリエステル、ポリアミド、ポリエ
ーテル、ポリオレフイン等又はこれらを主成分と
する重合体等をあげることができ、その重合度及
び/又は第3成分の種類や量を適宜選択して所定
の溶融粘度のものにすればよい。これら重合体の
なかでも、前記(A)成分の重合体と同種の重合体又
は同種の重合体を主成分とする重合体が好まし
い。
Further, it constitutes the conductive part of the conductive fiber of the present invention.
Component (B) consists of cuprous iodide and a thermoplastic polymer. The polymer in component (B) has a melt viscosity 1000 to 2500 poise lower than the melt viscosity of the fiber-forming polymer as component (A) at the melt spinning temperature, and does not cause decomposition etc. at the spinning temperature. As long as it is thermally stable and melt-extrudable, it may or may not have fiber-forming ability. If the melt viscosity of the polymer in component (B) is higher than [melt viscosity of component (A) - 1000 (poise)] at the melt spinning temperature, when cuprous iodide is mixed,
The melt viscosity of component (B) becomes too high, making it impossible to spin conductive fibers in a stable state, and the melt viscosity of component (B) is lower than [melt viscosity of component (A) - 2500 (poise)]. When using the resulting conductive fiber,
(B) Cracks occur in the component part, resulting in a significant decrease in conductive performance. Specific examples of the polymer in component (B) include polyester, polyamide, polyether, polyolefin, etc., or polymers containing these as main components, and the degree of polymerization and/or the third component The type and amount may be appropriately selected to achieve a predetermined melt viscosity. Among these polymers, preferred are polymers of the same type as the polymer of component (A), or polymers containing the same type of polymer as a main component.

上記(B)成分中の重合体と沃化第1銅とを混合す
るには、良好に分散できる方法であれば任意に採
用される。沃化第1銅の混合量は、要求される導
電性能によつて異なるが、制電用途の導電性繊維
としては、1KVの直流電圧に対して1012Ω/cm以
下の電気抵抗が要求されるので、(B)成分の体積電
気抵抗は、紡糸後の延伸における導電性低下を考
慮すると、103Ω・cm以下が必要になるため、(B)
成分中の重合体の1.4倍重量以上にする必要があ
る。一方、沃化第1銅の混合量をあまりに多くす
ると、(B)成分の調整及び紡糸が困難になるので、
(B)成分中の重合体の3.4倍重量以下にするのが適
当である。また、(B)成分中にも、必要に応じて任
意の添加剤、例えば艶消剤、着色剤、酸化安定剤
等を含有させることができる。
Any method can be used to mix the polymer in component (B) and cuprous iodide as long as it can be dispersed well. The amount of cuprous iodide mixed depends on the required conductive performance, but conductive fibers for antistatic applications are required to have an electrical resistance of 10 12 Ω/cm or less against a DC voltage of 1 KV. Therefore, the volume electrical resistivity of component (B) needs to be 10 3 Ω・cm or less, taking into account the decrease in conductivity during stretching after spinning.
It needs to be at least 1.4 times the weight of the polymer in the ingredients. On the other hand, if the amount of cuprous iodide mixed is too large, it will be difficult to adjust the component (B) and spin.
It is appropriate that the weight be 3.4 times or less the weight of the polymer in component (B). Furthermore, optional additives such as matting agents, coloring agents, oxidation stabilizers, etc. can be included in component (B) as required.

上記(A)成分と(B)成分とによつて構成される複合
繊維の形状は、サイド・バイ・サイド型、芯−鞘
型のいずれでもよいが、その表面の少なくとも一
部は(B)成分で形成されるようにすべきである。例
えば芯部に(B)成分を使用し、鞘部に(A)成分を用い
て芯−鞘型複合繊維にするときは、鞘部の一部に
欠損部を設け、この欠損部に(B)成分を充填させる
必要がある。(B)成分が完全な芯部となり、全表面
を(A)成分で構成させるときは、制電性能を充分に
発揮することができない。
The shape of the composite fiber composed of the above components (A) and (B) may be either side-by-side type or core-sheath type, but at least a part of its surface is formed by (B). It should be made up of ingredients. For example, when making a core-sheath type composite fiber by using component (B) in the core and component (A) in the sheath, a defective part is provided in a part of the sheath, and the defective part is filled with (B). ) It is necessary to fill the ingredients. When component (B) forms a complete core and the entire surface is composed of component (A), antistatic performance cannot be fully exhibited.

また、繊維横断面における(A)成分と(B)成分の割
合は、極めて広い範囲にすることができるが、(B)
成分の割合があまりに大になると得られる導電性
繊維の強度が低下するようになるので、繊維横断
面における(B)成分の占める面積は50%以下が好ま
しい。また、この(B)成分の下限は、(B)成分が繊維
軸方向に沿つて連続して存在しさえすれば、特に
設ける必要ないが、通常繊維横断面において、面
積で1%以上、特に3%以上にするのが好まし
い。
Furthermore, although the ratio of component (A) and component (B) in the cross section of the fiber can be set within an extremely wide range, (B)
If the proportion of the component becomes too large, the strength of the resulting conductive fiber will decrease, so the area occupied by component (B) in the cross section of the fiber is preferably 50% or less. In addition, there is no need to set a lower limit for component (B) as long as component (B) exists continuously along the fiber axis direction, but it is usually 1% or more in terms of area in the cross section of the fiber, especially It is preferable to make it 3% or more.

かかる複合繊維を製造するには格別の方法、条
件を採用する必要はなく、2成分よりなる複合繊
維を製造する溶融紡糸方法及び条件を、(A)成分に
応じて任意に採用することができる。また、紡糸
して得られた繊維は、必要に応じて延伸すること
ができ、延伸方法及び条件についても任意の方法
が適宜採用される。
It is not necessary to adopt special methods and conditions to produce such composite fibers, and the melt spinning method and conditions for producing composite fibers consisting of two components can be arbitrarily adopted depending on the component (A). . Further, the fibers obtained by spinning can be drawn as necessary, and any drawing method and conditions may be used as appropriate.

本発明の導電性繊維は、導電性物質として白色
の沃化第1銅を使用し、且つ通常の合成繊維を形
成する(A)成分部分を保有しているため、極めて良
好な色調及び充分な強度を有し、常法によつて任
意の色に染色可能であり、その導電性能も加工時
や使用時に低下することがない等、従来の導電性
繊維の有する欠点を全て解消し得たものであつ
て、導電性能が要求される何れの分野においても
適用可能である。
The conductive fiber of the present invention uses white cuprous iodide as a conductive substance and contains the component (A) that forms ordinary synthetic fibers, so it has an extremely good color tone and a sufficient amount of It has strength, can be dyed in any color by conventional methods, and its conductive performance does not deteriorate during processing or use, eliminating all the drawbacks of conventional conductive fibers. Therefore, it can be applied to any field where conductive performance is required.

以下に実施例をあげて本発明の導電性繊維を更
に詳述する。実施例における導電性組成物の体積
抵抗値測定条件は20℃、30%RH、3V直流電圧で
あり、導電性繊維単糸の電気抵抗値測定条件は20
℃、30%RH、1KV直流電圧である。また溶融粘
度の測定はノズル径0.5φ×4mm、荷重20Kgで島
津製作所高架式フローテスター(PATNo.
166642)を用いて行なつた。
The conductive fibers of the present invention will be explained in further detail with reference to Examples below. The conditions for measuring the volume resistivity of the conductive composition in the examples were 20°C, 30% RH, and 3V DC voltage, and the conditions for measuring the electrical resistance of the conductive fiber single yarn were 20°C, 30% RH, and 3V DC voltage.
℃, 30%RH, 1KV DC voltage. Melt viscosity was measured using a Shimadzu elevated flow tester (PAT No.) with a nozzle diameter of 0.5φ x 4 mm and a load of 20 kg.
166642).

実施例 1 沃化第1銅(稀産金属株式会社製)100重量部
と固有粘度0.365のポリエチレンテレフタレート
(280℃での溶融粘度は190ポイズ)40重量部とを
常圧窒素気流下280℃で30分間溶融混合して体積
抵抗値1.1×102Ωcm、280℃における溶融粘度
2700ポイズの導電性組成物を得た。
Example 1 100 parts by weight of cuprous iodide (manufactured by Kisan Kinzoku Co., Ltd.) and 40 parts by weight of polyethylene terephthalate with an intrinsic viscosity of 0.365 (melt viscosity at 280°C is 190 poise) were mixed at 280°C under a nitrogen stream at normal pressure. Volume resistance value 1.1×10 2 Ωcm after melt mixing for 30 minutes, melt viscosity at 280℃
A conductive composition of 2700 poise was obtained.

上記導電性組成物を(B)成分とし、固有粘度0.65
のポリエチレンテレフタレート(280℃における
溶融粘度は2500ポイズ)を(A)成分として、芯部の
一部が鞘部と重複している偏心した芯−鞘紡糸孔
(0.3mmφ)を6孔有する紡糸口金を使用し、芯部
に(B)成分を、鞘部に(A)成分を適用し、紡糸温度
280℃、紡糸速度400m/分で360デニール、繊維
横断面における(A)成分と(B)成分の面積比が4:1
の未延伸複合繊維を得、次いで延伸温度160℃で
3.0倍に延伸した。得られた複合繊維は、その表
面の略20%が(B)成分で構成されており、電気抵抗
6.8×107Ω/cm、強力300g、伸度50%、白色で
あつた。
The above conductive composition is used as component (B), and the intrinsic viscosity is 0.65.
A spinneret with 6 eccentric core-sheath spinning holes (0.3 mmφ) in which a portion of the core overlaps with the sheath, using polyethylene terephthalate (melt viscosity at 280°C: 2500 poise) as component (A). Apply component (B) to the core and component (A) to the sheath, and adjust the spinning temperature.
360 denier at 280℃ and spinning speed of 400 m/min, area ratio of component (A) and component (B) in fiber cross section is 4:1
Obtain an undrawn composite fiber of
Stretched 3.0 times. Approximately 20% of the surface of the obtained composite fiber is composed of component (B), and the electrical resistance is
It had a resistance of 6.8×10 7 Ω/cm, a strength of 300 g, an elongation of 50%, and a white color.

比較例 1 実施例1において使用した紡糸口金に代えて同
心の芯−鞘紡糸孔(0.3mmφ)を6孔有する紡糸
口金を使用する以外は、実施例1と同様に行なつ
て、繊維表面は全て(A)成分で構成された複合繊維
を得た。得られた延伸糸は電気抵抗5.3×1012
Ω/cm、強力350g、伸度50%であつた。
Comparative Example 1 The same procedure as in Example 1 was carried out except that a spinneret having 6 concentric core-sheath spinning holes (0.3 mmφ) was used in place of the spinneret used in Example 1. A composite fiber composed entirely of component (A) was obtained. The resulting drawn yarn has an electrical resistance of 5.3×10 12
Ω/cm, strength 350g, and elongation 50%.

実施例 2 実施例1において(B)成分の重合体として使用し
た固有粘度0.365のポリエチレンテレフタレート
に代えて、ポリエチレン(宇部興産〓製J3519、
280℃での溶融粘度319ポイズ)を使用する以外は
実施例1と同様に沃化第1銅と溶融混合して体積
抵抗値7.5×102Ωcm、280℃における溶融粘度
2480ポイズの導電性組成物を得た。
Example 2 Polyethylene (J3519 manufactured by Ube Industries, Ltd.,
The melt viscosity at 280°C was molten and mixed with cuprous iodide in the same manner as in Example 1, except that the melt viscosity at 280°C was 7.5×10 2 Ωcm, and the melt viscosity at 280°C was
A conductive composition of 2480 poise was obtained.

この導電性組成物を(B)成分として使用する以外
は実施例1と同様に紡糸延伸して電気抵抗が2.1
×108Ω/cmの白色導電性繊維を得た。
The conductive composition was spun and drawn in the same manner as in Example 1 except that this conductive composition was used as component (B), and the electrical resistance was 2.1.
A white conductive fiber of ×10 8 Ω/cm was obtained.

実施例 3 固有粘度0.86の6−ナイロン(260℃での溶融
粘度270ポイズ)40重量部と沃化第1銅100重量部
とを常圧窒素気流下260℃で30分間溶融混合して
体積抵抗1.5×102Ω・cm、260℃での溶融粘度
1600ポイズの導電性組成物を得た。
Example 3 40 parts by weight of 6-nylon (melt viscosity 270 poise at 260°C) with an intrinsic viscosity of 0.86 and 100 parts by weight of cuprous iodide were melt-mixed at 260°C for 30 minutes under a nitrogen stream at normal pressure to determine the volume resistance. 1.5×10 2 Ω・cm, melt viscosity at 260℃
A conductive composition of 1600 poise was obtained.

この導電性組成物を(B)成分とし、固有粘度1.12
の6−ナイロン(260℃での溶融粘度は1500ポイ
ズ)を(A)成分として、実施例1と同様の紡糸口金
を使用し、芯部に(B)成分を、鞘部に(A)成分を適用
し、紡糸温度260℃、紡糸速度300m/分で360デ
ニール、繊維横断面における(A)成分と(B)成分の面
積比が4:1の未延伸複合繊維を得、次いで延伸
温度185℃で3.0倍に延伸して電気抵抗8.1×107
Ω/cm、強力500g、伸度40%、白色の導電性繊
維を得た。
This conductive composition is used as component (B), and has an intrinsic viscosity of 1.12.
Using the same spinneret as in Example 1, using 6-nylon (melt viscosity at 260°C: 1500 poise) as component (A), component (B) was added to the core and component (A) was added to the sheath. was applied to obtain an undrawn composite fiber of 360 denier at a spinning temperature of 260°C and a spinning speed of 300 m/min, with an area ratio of components (A) and (B) in the fiber cross section of 4:1, and then at a drawing temperature of 185°C. Electrical resistance after stretching 3.0 times at °C: 8.1×10 7
A white conductive fiber with Ω/cm, tenacity of 500 g, and elongation of 40% was obtained.

Claims (1)

【特許請求の範囲】 1 繊維形成性重合体よりなる(A)成分及び紡糸温
度において(A)成分の繊維形成性重合体の溶融粘度
より1000〜2500ポイズ低い溶融粘度を有する熱可
塑性重合体と該熱可塑性重合体に対して1.4〜3.4
倍重量の沃化第1銅との混合物よりなる(B)成分か
ら形成された複合繊維よりなり且つその表面の少
なくとも一部は(B)成分によつて形成されてなる導
電性繊維。 2 繊維横断面における(B)成分の面積割合が50%
以下である特許請求の範囲第1項記載の導電性繊
維。
[Scope of Claims] 1 Component (A) consisting of a fiber-forming polymer and a thermoplastic polymer having a melt viscosity 1000 to 2500 poise lower than the melt viscosity of the fiber-forming polymer of component (A) at the spinning temperature. 1.4 to 3.4 for the thermoplastic polymer
A conductive fiber comprising a conjugate fiber formed from component (B) consisting of a mixture with twice the weight of cuprous iodide, and at least a portion of its surface is formed by component (B). 2 The area ratio of component (B) in the fiber cross section is 50%
The conductive fiber according to claim 1, which is as follows.
JP8849280A 1980-07-01 1980-07-01 Electrically conductive fiber Granted JPS5716920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8849280A JPS5716920A (en) 1980-07-01 1980-07-01 Electrically conductive fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8849280A JPS5716920A (en) 1980-07-01 1980-07-01 Electrically conductive fiber

Publications (2)

Publication Number Publication Date
JPS5716920A JPS5716920A (en) 1982-01-28
JPS6250569B2 true JPS6250569B2 (en) 1987-10-26

Family

ID=13944302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8849280A Granted JPS5716920A (en) 1980-07-01 1980-07-01 Electrically conductive fiber

Country Status (1)

Country Link
JP (1) JPS5716920A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149329A (en) * 1982-03-02 1983-09-05 Teijin Ltd Production of electroconductive conjugated fiber
CN106757432A (en) * 2017-01-02 2017-05-31 李金平 A kind of preparation technology of conductive fiber

Also Published As

Publication number Publication date
JPS5716920A (en) 1982-01-28

Similar Documents

Publication Publication Date Title
US3968307A (en) Mixed filaments
US4216264A (en) Conductive composite filaments
US4617235A (en) Antistatic synthetic fibers
US4085182A (en) Process for producing electrically conductive synthetic fibers
JP3216131B2 (en) Two-component filament and its melt spinning method
US5202185A (en) Sheath-core spinning of multilobal conductive core filaments
JPS6346170B2 (en)
TW517105B (en) Core-sheath compound conductive fiber
JPS61132624A (en) Conjugated fiber of high conductivity
US3684647A (en) Novel polyamide multisegmented unitary fiber
JPS5841910A (en) Electrically conductive mixed filament yarn
JPS6250569B2 (en)
JPS58149329A (en) Production of electroconductive conjugated fiber
KR840002345B1 (en) Antistatic conjugated filament
JPS5860015A (en) Preparation of electrically conductive composite fiber
JPS61266615A (en) Bristle for electrically conductive brush
JP3003787B2 (en) Spinning method of composite fiber
JPS6261685B2 (en)
JPS61201008A (en) Production of electrically conductive monofilament
JP3113054B2 (en) Conductive composite fiber
JPS639043B2 (en)
JPS61132623A (en) Conjugated fiber of high conductivity
JP2866190B2 (en) Method for producing mixed fiber having different elongation
JPS63288215A (en) Electrically conductive conjugate fiber
JP2633067B2 (en) Conductive composite fiber