JPH031338B2 - - Google Patents

Info

Publication number
JPH031338B2
JPH031338B2 JP59199357A JP19935784A JPH031338B2 JP H031338 B2 JPH031338 B2 JP H031338B2 JP 59199357 A JP59199357 A JP 59199357A JP 19935784 A JP19935784 A JP 19935784A JP H031338 B2 JPH031338 B2 JP H031338B2
Authority
JP
Japan
Prior art keywords
conductive
conductive metal
lipophilic
metal oxide
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59199357A
Other languages
Japanese (ja)
Other versions
JPS6178872A (en
Inventor
Tadashi Konishi
Yasunobu Kume
Setsuo Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP19935784A priority Critical patent/JPS6178872A/en
Publication of JPS6178872A publication Critical patent/JPS6178872A/en
Publication of JPH031338B2 publication Critical patent/JPH031338B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(a) 技術分野 本発明は、導電性樹脂組成物、特に耐屈曲性の
優れた導電樹脂組成物に関するものである。 (b) 従来技術 熱可塑性樹脂例えばポリエチレン、ポリプロピ
レン、ポリアミド、ポリエステル等は繊維、フイ
ルム、成形品として多くの用途に用いられてい
る。しかしながら、かかる熱可塑性樹脂は一般に
制電性にとぼしいため帯電し易く、例えばポリエ
ステルであるポリエチレンテレフタレート繊維よ
りなる衣服は、その帯電性のために、着用時身体
にまつわりついたり、更には帯電のために空気中
に浮遊する塵埃を吸着して汚れ易い等多くの問題
を惹起する。 かかる問題を解決する方法として、予め樹脂に
制電性化合物を混合したり、導電性物質例えば導
電性カーボンを配合する方法等が提案されてい
る。 しかしながら、例えば導電性カーボンを配合し
た樹脂から得られる導電性繊維、導電性フイル
ム、導電性シート等は導電性カーボンが黒色であ
るため、着色が著しく、審美性を要求される分野
に用いることが出来ず、その用途が極めて限定さ
れるという欠点を有する。 かかる着色による欠点を解決する方法として、
近時無色又は淡色の導電性金属化合物、特に導電
性金属酸化物を配合した無色又は淡色の導電性樹
脂組成物を用いて導電性繊維、導電性フイルム等
を得る方法が提案されている。 (c) 解決すべき問題点 しかしながら、これ等の提案に基いて製造され
た導電性繊維、導電性フイルム等は、数十回の屈
曲により導電性が失われ、着用時短時間でその期
待される効果である制電性を失う結果、前述のよ
うな衣服のまつわりつきや、埃の付着を引く起
す。 (d) 問題解決の手段 本発明者等は、かかる欠点のない導電性成形物
を提案する方法について鋭意研究した結果、導電
性金属酸化物粉体の表面が親水性で、熱可塑性樹
脂との親和性が小さいためであるとの知見を得、
導電性金属酸化物の表面を予め親油性に変えた
後、これを配合したオレフイン重合体を用いて成
形物とすれば、屈曲耐久性のある導電性成形物が
得られることを見い出し、本発明に到達したもの
である。 (e) 発明の構成 即ち、本発明は導電性金属酸化物と特定の親油
化剤とをオレフイン重合体に配合してなる導電性
樹脂組成物に係るものである。 本願で用いられるオレフイン重合体としては、
例えば、ポリエチレン、ポリプロピレン等をあげ
ることができ、これ等は一部共重合成分を含有し
ていてもよく、また必要に応じてこれ等を2種以
上混合したものであつても良い。 本発明で用いられる導電性金属酸化物として
は、酸化第二錫及び酸化亜鉛を主たる対象とする
が、ここでいう酸化第二錫には、少量のアンチモ
ン化合物を含む酸化第二錫、酸化チタン粒子の表
面に少量のアンチモン化合物を含む酸化第二錫を
コーテイングして得られる導電性金属複合体も含
まれる。また酸化亜鉛には少量の酸化アルミニウ
ムや酸化リチウムを溶解した導電性酸化亜鉛も含
まれる。これ等は通常微粉末として取扱われる。 かかる導電性金属酸化物の親油化剤としては、
カルボキシル基又はスルホン酸基に結合する有機
残基が炭素数5以上の、アルキル基、アルキレン
基、アリール基、アルキルアリール基又はアラル
キル基である。有機カルボン酸又は有機スルホン
酸が用いられる。 親油化剤として用いられる有機カルボン酸の具
体例としてはn−カプロン酸、n−ヘプタン酸、
安息香酸、n−カプリル酸、フエニル酢酸、トル
イル酸、n−ノナン酸、n−カプリル酸、ステア
リン酸等が挙げられる。また、有機スルホン酸の
具体例としてはn−ペンタンスルホン酸、ベンゼ
ンスルホン酸、ドデシルベンゼンスルホン酸等が
挙げられる。これ等親油化剤として用いられる有
機カルボン酸、有機スルホン酸は単独で用いても
良く、また適宜組合せて使用してもよい。 親油化剤として用いられる有機カルボン酸又は
有機スルホン酸の、カルボキシル基又はスルホン
酸基に結合した有機基の炭素数が4以下の場合、
後述する親油性判定によつても親油化処理後の導
電性金属酸化物は水層に移り、親油化されてない
ことが明らかであり、処理した導電性金属酸化物
を配合したオレフイン重合体から成形した導電性
成形物の屈曲耐久性も向上しない。 導電性金属酸化物の親油化方法としては、使用
するオレフイン重合体の種類、親油化剤の種類に
よつても異なるが、親油化剤としての有機カルボ
ン酸や有機スルホン酸の熱的特性を考慮して (1) オレフイン重合体と導電性金属酸化物と親油
化剤とを直接溶融混合する方法 (2) 導電性金属酸化物を予め親油化剤で処理した
後、オレフイン重合体と溶融混合する方法 のいずれかを適宜選択するのが良い。 例えば、n−ヘプタン酸の如き沸点の低い有機
カルボン酸を親油化剤として高融点オレフイン重
合体へ導電性金属化合物とともに直接溶融混合し
て導電性樹脂組成物を得ようとすることは好まし
くない。かかる場合は、予め導電性金属酸化物を
n−ヘプタン酸で処理した後オレフイン重合体と
溶融混合する方法が好ましい。 これに対し、同じn−ヘプタン酸を親油化剤と
する場合でも、用いるオレフイン重合体がポリエ
チレンの如く比較的低融点の場合には、導電性金
属酸化物とn−ヘプタン酸とを直接ポリエチレン
に溶融混合しても何んら差しつかえない。 予め導電性金属酸化物を親油化処理する方法と
しては、親油化剤を有機溶媒に溶解させて得られ
る溶液に、所望の導電性金属酸化物粉体を投入分
散させ、数時間撹拌した後有機溶媒と粉体とを濾
別するという極めて簡単な方法が用いられる。 親油化剤の使用量は必要かつ十分な最少量にと
どめることが好ましく、通常導電性金属酸化物粉
体100重量部に対して、0.1〜3重量部の範囲が好
ましい。親油化剤の量が0.1重量部以下の場合に
は、処理によつて導電性金属酸化物の表面が充分
に親油化され難いことがある。また、3重量部を
超えた場合には、処理後有機溶媒の分散液から濾
別するのが因難となつたり、濾別後過剰の親油化
剤を洗浄除去する必要が生じて好ましくない。ま
た親油化剤と導電性金属酸酸化物とを直接熱可塑
性樹脂と溶融混合する場合、親油化剤を過剰に加
えることは、オレフイン重合体の物性を損うため
好ましくない。 導電性金属酸化物を親油化剤で予め処理する方
法では、前述の如く親油化剤の有機溶媒溶液に導
電性金属酸化物を投入分散させ、常温で数時間撹
拌するだけでも親油化させ得るが、より短時間で
処理するためには加熱することが効果的である。
ここで用いる有機溶媒は、親油化剤である有機カ
ルボン酸及び/又は有機スルホン酸化合物を溶解
するものであれば特に限定されないが、加熱処理
する必要がある場合は沸点の低いものは好ましく
ない。 導電性金属酸化物が親油性でなく、そのために
オレフイン重合体との親和性が充分でない場合、
得られる樹脂組成物を成形してなる繊維、フイル
ム等が屈曲により導電性が失われるという重大な
欠陥を与えるため、導電性金属酸化物が充分に親
油化されたか否かを判定することは、本発明にお
いて極めて重要なことであり、更にこの判定は、
親油化に用いる親油化剤の使用量を決定するため
の基準となるため極めて重要である。特に、導電
性金属酸化物を親油化剤とともに、直接オレフイ
ン重合体に溶融混合する場合、予め親油化剤の必
要にしてかつ十分な量を予め決定しておくことが
重要であり、この意味からも適切な判定方法とし
選定することが必要である。 この判定法としては、予め親油化剤を有機溶媒
に溶解した溶液中で加熱撹拌して親油化処理した
導電性金属酸化物粉体を水と、水と相溶性のない
有機溶剤の二層からなる液中に投入し、撹拌後静
置した時、導電性金属化合物粉体が有機層に移る
ことをもつて親油化されているとするのが、極め
て効果的である。 親油化された導電性金属酸化物をオレフイン重
合体と溶融混合する際、又は導電性金属酸化物を
親油化するに必要な量の親油化剤と導電性金属酸
化物とをオレフイン重合体に直接溶融混合する
際、混合を効果的に行うため、更には得られる導
電性樹脂組成物の成形性を向上させる目的のため
に、適当な粘度調節剤を用いてもよく、また必要
に応じて酸化防止剤を併用しても何んら差しつか
えない。 (f) 発明の効果 本発明により親油化された導電性金属酸化物と
オレフイン重合体を混合した樹脂組成物より成形
した繊維、フイルム、シート等は屈曲により導電
性が失われることなく極めて高い性能を保持しう
る。 (g) 実施例 以下実施例により本発明を具体的に説明する。 実施例 1 酸化チタン微粒子の表面に導電性酸化第二錫を
コーテイングした平均粒径0.2μ、比抵抗10Ω・cm
の導電性粉体1Kgとn−ヘプタン酸20gにトルエ
ン3を加えて激しく撹拌しながら5時間加熱還
流させた。この混合液を1夜静置した後デカンテ
ーシヨンにより大部分のトルエンを除き、粉体を
濾別し、トルエンで充分洗浄し、乾燥した。この
乾燥粉体の少量を、水100mlとベンゼン100mlの二
層からなる親油化判定のための液中に投入して振
とうしたところ、粉体はベンゼン層に移り、親油
化されていると判定された。処理していない上記
導電性粉体は水層にあり、またn−ヘプタン酸を
加えない以外は上記と同様の処理を行つた導電性
粉体も水層に移つた。 親油化された粉体250重量部、流動パラフイン
20重量部及びメルトインデツクス75(JIS K6760
−1971)のポリエチレン80重量部をニーダーに仕
込み、175℃に加熱して5時間混合した。得られ
た導電性樹脂の比抵抗は4×102Ω・cmであつた。
溶融紡糸により、この導電性樹脂を芯とし、ポリ
エチレンテレフタレートを鞘とする芯鞘型複合繊
維(芯鞘比=1/6)を作り、4倍延伸して100
デニール、単糸数12の導電性マルチフイラメント
を得た。この導電性複合繊維を1cmの長さに切り
取り、両端に導電性塗料を塗布して両端間の電気
抵抗を測定したところ2×107Ωであつた。更に、
この導電性複合繊維を20cmの長さに切断し、片端
に100g(デニール当り1g)の重りをつり、直
径1mmの自由回転する支持棒にかけて他端を上下
させる方法で屈曲を繰り返した後、糸の中央部1
cmを切り取り、両端に導電性塗料を塗布して両端
間の電気抵抗を測定する方法により、屈曲回数と
電気抵抗の関係を調べた結果、第1表左欄に示す
値を得た。 比較のためn−ヘプタン酸による親油化処理を
行わない導電性粉体を用いる以外は同様にして得
た導電性複合繊維について、同様に屈曲試験を行
つた結果を第1表右欄に示した。
(a) Technical Field The present invention relates to a conductive resin composition, particularly a conductive resin composition having excellent bending resistance. (b) Prior Art Thermoplastic resins such as polyethylene, polypropylene, polyamide, polyester, etc. are used in many applications as fibers, films, and molded products. However, such thermoplastic resins generally have poor antistatic properties and are therefore easily charged.For example, clothing made of polyester (polyethylene terephthalate fiber) may cling to the body when worn, or even be charged. Therefore, it attracts dust floating in the air, causing many problems such as easy staining. As a method to solve this problem, methods have been proposed such as mixing an antistatic compound into the resin in advance or adding a conductive substance such as conductive carbon. However, for example, conductive fibers, conductive films, conductive sheets, etc. obtained from resins containing conductive carbon are significantly colored because the conductive carbon is black, and cannot be used in fields where aesthetics are required. It has the disadvantage that its uses are extremely limited. As a method to solve the disadvantages caused by such coloring,
Recently, methods have been proposed for obtaining conductive fibers, conductive films, etc. using colorless or light-colored conductive resin compositions containing colorless or light-colored conductive metal compounds, particularly conductive metal oxides. (c) Problems to be solved However, conductive fibers, conductive films, etc. manufactured based on these proposals lose their conductivity after being bent several dozen times, and it is difficult to expect that conductivity will be lost after a short period of time when worn. As a result of losing its antistatic effect, it causes clinging to clothes and adhesion of dust as described above. (d) Means for solving the problem As a result of intensive research on a method for proposing a conductive molded product free from such drawbacks, the present inventors found that the surface of the conductive metal oxide powder is hydrophilic and that it is compatible with the thermoplastic resin. We learned that this was due to low affinity.
It has been discovered that if the surface of a conductive metal oxide is made lipophilic in advance and then made into a molded product using an olefin polymer blended with this, a conductive molded product with bending durability can be obtained, and the present invention has been made. has been reached. (e) Structure of the Invention That is, the present invention relates to a conductive resin composition formed by blending a conductive metal oxide and a specific lipophilic agent into an olefin polymer. The olefin polymer used in this application includes:
Examples include polyethylene, polypropylene, etc., which may partially contain a copolymer component, or may be a mixture of two or more of these, if necessary. The conductive metal oxides used in the present invention are mainly stannic oxide and zinc oxide. Also included are conductive metal composites obtained by coating the surface of particles with stannic oxide containing a small amount of an antimony compound. Zinc oxide also includes conductive zinc oxide in which a small amount of aluminum oxide or lithium oxide is dissolved. These are usually treated as fine powders. As a lipophilic agent for such a conductive metal oxide,
The organic residue bonded to the carboxyl group or sulfonic acid group is an alkyl group, alkylene group, aryl group, alkylaryl group, or aralkyl group having 5 or more carbon atoms. Organic carboxylic acids or organic sulfonic acids are used. Specific examples of organic carboxylic acids used as lipophilic agents include n-caproic acid, n-heptanoic acid,
Examples include benzoic acid, n-caprylic acid, phenylacetic acid, toluic acid, n-nonanoic acid, n-caprylic acid, stearic acid, and the like. Further, specific examples of organic sulfonic acids include n-pentanesulfonic acid, benzenesulfonic acid, dodecylbenzenesulfonic acid, and the like. These organic carboxylic acids and organic sulfonic acids used as lipophilic agents may be used alone or in appropriate combinations. When the number of carbon atoms of the organic group bonded to the carboxyl group or sulfonic acid group of the organic carboxylic acid or organic sulfonic acid used as a lipophilic agent is 4 or less,
It is clear from the lipophilicity determination described below that the conductive metal oxide after the lipophilic treatment moves to the water layer and is not lipophilic. The bending durability of the conductive molded product formed from the combination also does not improve. Methods for making conductive metal oxides lipophilic vary depending on the type of olefin polymer used and the type of lipophilizing agent, but methods include thermal treatment of organic carboxylic acids or organic sulfonic acids as lipophilic agents. Considering the characteristics, (1) a method of directly melt-mixing the olefin polymer, a conductive metal oxide, and a lipophilic agent, (2) a method of directly melt-mixing the conductive metal oxide with a lipophilic agent, and then adding the olefin polymer. It is preferable to appropriately select either the coalescence method or the melt-mixing method. For example, it is not preferable to try to obtain a conductive resin composition by directly melt-mixing an organic carboxylic acid with a low boiling point such as n-heptanoic acid as a lipophilic agent into a high melting point olefin polymer together with a conductive metal compound. . In such a case, it is preferable to treat the conductive metal oxide with n-heptanoic acid in advance and then melt-mix it with the olefin polymer. On the other hand, even if the same n-heptanoic acid is used as the lipophilic agent, if the olefin polymer used has a relatively low melting point such as polyethylene, the conductive metal oxide and n-heptanoic acid can be directly mixed into polyethylene. There is no problem in melting and mixing. As a method for preliminarily treating a conductive metal oxide to make it lipophilic, a desired conductive metal oxide powder was added and dispersed in a solution obtained by dissolving a lipophilic agent in an organic solvent, and the mixture was stirred for several hours. A very simple method is used in which the organic solvent and powder are then filtered off. The amount of the lipophilic agent used is preferably kept to a necessary and sufficient minimum amount, and is usually in the range of 0.1 to 3 parts by weight per 100 parts by weight of the conductive metal oxide powder. If the amount of the lipophilic agent is less than 0.1 part by weight, it may be difficult to make the surface of the conductive metal oxide sufficiently lipophilic by the treatment. In addition, if the amount exceeds 3 parts by weight, it becomes difficult to filter it from the dispersion of the organic solvent after treatment, and it becomes necessary to wash away the excess lipophilic agent after filtration, which is undesirable. . Further, when the lipophilic agent and the conductive metal acid oxide are directly melt-mixed with the thermoplastic resin, it is not preferable to add an excessive amount of the lipophilic agent because it impairs the physical properties of the olefin polymer. In the method of pre-treating a conductive metal oxide with a lipophilic agent, the conductive metal oxide can be made lipophilic by simply dispersing the conductive metal oxide in an organic solvent solution of the lipophilic agent and stirring at room temperature for several hours, as described above. However, heating is effective for processing in a shorter time.
The organic solvent used here is not particularly limited as long as it dissolves the organic carboxylic acid and/or organic sulfonic acid compound that is the lipophilic agent, but if heat treatment is required, a solvent with a low boiling point is not preferred. . If the conductive metal oxide is not lipophilic and therefore does not have sufficient affinity with the olefin polymer,
It is difficult to determine whether the conductive metal oxide has been sufficiently made lipophilic because fibers, films, etc. formed by molding the resulting resin composition suffer from loss of conductivity due to bending. , is extremely important in the present invention, and furthermore, this determination is
This is extremely important because it serves as a standard for determining the amount of lipophilizing agent used for lipophilization. In particular, when melt-mixing a conductive metal oxide directly into an olefin polymer together with a lipophilic agent, it is important to determine in advance the necessary and sufficient amount of the lipophilic agent. It is necessary to select an appropriate judgment method from the meaning point of view as well. In this determination method, a conductive metal oxide powder that has been heated and stirred in a solution in which a lipophilic agent is dissolved in an organic solvent to make it lipophilic is mixed with water and an organic solvent that is incompatible with water. It is extremely effective to make the conductive metal compound powder into a lipophilic layer by transferring the conductive metal compound powder to the organic layer when it is placed in a liquid consisting of layers, stirred, and then allowed to stand still. When melt-mixing a lipophilized conductive metal oxide with an olefin polymer, or adding the necessary amount of lipophilic agent and conductive metal oxide to the olefin polymer to make the conductive metal oxide lipophilic. When directly melt-mixing the composite, an appropriate viscosity modifier may be used, and if necessary, in order to perform the mixing effectively and to improve the moldability of the resulting conductive resin composition. There is no harm in using an antioxidant as needed. (f) Effects of the invention Fibers, films, sheets, etc. molded from a resin composition made of a mixture of a conductive metal oxide and an olefin polymer that have been made lipophilic according to the present invention have extremely high conductivity without losing their conductivity when bent. Performance can be maintained. (g) Examples The present invention will be specifically explained below using examples. Example 1 Titanium oxide fine particles whose surface was coated with conductive tin oxide, average particle size 0.2μ, specific resistance 10Ω・cm
3 toluene was added to 1 kg of the conductive powder and 20 g of n-heptanoic acid, and the mixture was heated under reflux for 5 hours with vigorous stirring. After the mixture was allowed to stand overnight, most of the toluene was removed by decantation, and the powder was filtered, thoroughly washed with toluene, and dried. When a small amount of this dry powder was poured into a liquid for determining lipophilicity consisting of two layers of 100 ml of water and 100 ml of benzene and shaken, the powder moved to the benzene layer and became lipophilic. It was determined that The untreated conductive powder was in the aqueous layer, and the conductive powder treated in the same manner as above except that n-heptanoic acid was not added was also transferred to the aqueous layer. 250 parts by weight of lipophilized powder, liquid paraffin
20 parts by weight and melt index 75 (JIS K6760
-1971) was placed in a kneader, heated to 175°C, and mixed for 5 hours. The specific resistance of the obtained conductive resin was 4×10 2 Ω·cm.
By melt spinning, a core-sheath type composite fiber (core-sheath ratio = 1/6) with this conductive resin as a core and polyethylene terephthalate as a sheath was made, and it was stretched 4 times to 100
A conductive multifilament with a denier and a single thread count of 12 was obtained. This conductive composite fiber was cut into a length of 1 cm, a conductive paint was applied to both ends, and the electrical resistance between the ends was measured and found to be 2×10 7 Ω. Furthermore,
This conductive composite fiber was cut into a length of 20 cm, a weight of 100 g (1 g per denier) was hung on one end, and the other end was repeatedly bent by lifting and lowering the other end by hanging it on a freely rotating support rod of 1 mm in diameter. central part 1
The relationship between the number of bends and the electrical resistance was investigated by cutting out a cm piece, applying conductive paint to both ends, and measuring the electrical resistance between the two ends. As a result, the values shown in the left column of Table 1 were obtained. For comparison, the right column of Table 1 shows the results of conducting a bending test in the same manner on conductive composite fibers obtained in the same manner except for using conductive powder that was not subjected to lipophilization treatment with n-heptanoic acid. Ta.

【表】 実施例 2 実施例1に記載した末処理の導電性粉末250重
量部、メルトインデツクス75のポリエチレン80重
量部をニーダーに仕込み、175℃で30分間混練し
た後流動パラフイン20重量部、親油化剤としてス
テアリン酸3重量部を加えて更に4時間混練し
た。得られた導電性樹脂の比抵抗は2.8×102Ω・
cmであつた。 この導電性樹脂を芯として、実施例1と同様に
ポリエチレンテレフタレートを鞘とする導電性複
合繊維を得た。この繊維について、実施例1と同
じ方法により、屈曲試験を行い屈曲回数と電気抵
抗値の関係を調べた結果、第2表左欄の結果を得
た。 比較のためステアリン酸を混合しない以外は全
く同じ仕込量で調製した樹脂を芯とした繊維につ
いて同様の試験を行つた結果を同表右欄に示し
た。
[Table] Example 2 250 parts by weight of the final-treated conductive powder described in Example 1 and 80 parts by weight of polyethylene with a melt index of 75 were charged in a kneader and kneaded at 175°C for 30 minutes, followed by 20 parts by weight of liquid paraffin. 3 parts by weight of stearic acid was added as a lipophilic agent and kneaded for further 4 hours. The specific resistance of the obtained conductive resin was 2.8×10 2 Ω・
It was cm. A conductive composite fiber having this conductive resin as a core and polyethylene terephthalate as a sheath was obtained in the same manner as in Example 1. This fiber was subjected to a bending test in the same manner as in Example 1 to examine the relationship between the number of bends and the electrical resistance value, and the results shown in the left column of Table 2 were obtained. For comparison, similar tests were conducted on fibers with resin cores prepared with exactly the same loading amount except that stearic acid was not mixed, and the results are shown in the right column of the same table.

【表】 実施例 3〜6 実施例1で使用した親油化剤n−ヘプタン酸の
代りに第3表に示した各種の酸を使用して、実施
例1と同様に導電性樹脂を調製し、実施例1と同
様にこの樹脂を芯部とし、ポリエチレンテレフタ
レートを鞘とする複合繊維を作り、屈曲による電
気抵抗の変化を調べた。その結果第3表に示すご
とくいづれも良好な結果を得た。
[Table] Examples 3 to 6 Conductive resins were prepared in the same manner as in Example 1, using various acids shown in Table 3 instead of the lipophilic agent n-heptanoic acid used in Example 1. However, in the same manner as in Example 1, a composite fiber having this resin as a core and polyethylene terephthalate as a sheath was prepared, and the change in electrical resistance due to bending was examined. As shown in Table 3, good results were obtained in all cases.

【表】 比較例 1〜4 実施例1で使用したn−ヘプタン酸の代りに第
4表に示した各種の酸を使用して、実施例1に示
した導電性粉体の処理を行つた。処理後の粉末を
水−流動パラフインの2層よりなる試験液中に投
入して振とうしたが、導電性粉体はいずれも水層
にあつた。この粉体を用いて実施例1と同様にポ
リエチレンテレフタレートを鞘とする複合繊維を
作り、屈曲による電気抵抗の変化を調べた。 その結果を第4表にかかげた。
[Table] Comparative Examples 1 to 4 The conductive powder shown in Example 1 was treated using various acids shown in Table 4 instead of n-heptanoic acid used in Example 1. . The treated powder was placed in a test liquid consisting of two layers of water and liquid paraffin and shaken, but all of the conductive powder was in the water layer. Using this powder, a composite fiber having a polyethylene terephthalate sheath was made in the same manner as in Example 1, and the change in electrical resistance due to bending was examined. The results are shown in Table 4.

【表】 実施例 7 少量の三酸化アンチモンを含む酸化第二錫から
なる導電性金属粉体250重量部とメルトフローイ
ンデツクス1.0(ASTM D1238−65T)のポリプ
ロピレン50重量部をニーダーに仕込み200℃で30
分間溶融混合した後、ステアリン酸3重量部、流
動パラフイン50重量部、イルガノツクス10100.5
重量部を加え更に4時間混練した。 こうして得た導電性樹脂の比抵抗は5.5×102
Ω・cmであつた。溶融紡糸により、この導電性樹
脂を芯としナイロン−6を鞘とする芯鞘型複合繊
維(芯鞘比=1/5)を作り、4倍に延伸して
100デニール単糸数12の導電性マルチフイラメン
トを得た。 この導電性複合繊維を1cmの長さに切り取り、
実施例1と同様にして電気抵抗を測定したところ
3×107Ωであつた。 更に、この繊維について実施例1と同様に屈曲
回数による電気抵抗の変化を調べた結果を第5表
左欄に示した。 比較のため、ステアリン酸を用いない他は、同
様にして得た複合繊維について同様に屈曲回数に
よる電気抵抗の変化を調べ、その結果を第5表右
欄に示した。ステアリン酸を加えない場合は屈曲
回数100回で導電性は失われた。
[Table] Example 7 250 parts by weight of conductive metal powder made of stannic oxide containing a small amount of antimony trioxide and 50 parts by weight of polypropylene with a melt flow index of 1.0 (ASTM D1238-65T) were charged in a kneader and heated to 200°C. at 30
After melt-mixing for minutes, 3 parts by weight of stearic acid, 50 parts by weight of liquid paraffin, 10100.5 parts of Irganox
Parts by weight were added and kneaded for an additional 4 hours. The specific resistance of the conductive resin thus obtained is 5.5×10 2
It was Ω・cm. A core-sheath type composite fiber (core-sheath ratio = 1/5) with this conductive resin as a core and nylon-6 as a sheath was made by melt spinning, and then stretched 4 times.
A conductive multifilament of 100 denier and 12 yarns was obtained. Cut this conductive composite fiber into a length of 1 cm,
The electrical resistance was measured in the same manner as in Example 1 and found to be 3×10 7 Ω. Furthermore, the changes in electrical resistance of this fiber depending on the number of bends were investigated in the same manner as in Example 1, and the results are shown in the left column of Table 5. For comparison, conjugate fibers obtained in the same manner except that stearic acid was not used were examined for changes in electrical resistance depending on the number of bends, and the results are shown in the right column of Table 5. When stearic acid was not added, conductivity was lost after 100 bends.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリオレフイン重合体に、導電性金属酸化物
と、下記親油化剤の少なくとも1種とを配合して
なる導電性樹脂組成物。 親油化剤 カルボキシル基又はスルホン酸基に結合する有
機残基が炭素数5以上の、アルキル基、アルキレ
ン基、アリール基、アルキルアリール基、又はア
ラルキル基である、有機カルボン酸又は有機スル
ホン酸 2 導電性金属酸化物が酸化第二錫及び/又は酸
化亜鉛である特許請求の範囲第1項記載の導電性
樹脂組成物。
[Scope of Claims] 1. A conductive resin composition comprising a polyolefin polymer, a conductive metal oxide, and at least one of the following lipophilic agents. Lipophilic agent Organic carboxylic acid or organic sulfonic acid 2 in which the organic residue bonded to the carboxyl group or sulfonic acid group is an alkyl group, alkylene group, aryl group, alkylaryl group, or aralkyl group having 5 or more carbon atoms. The conductive resin composition according to claim 1, wherein the conductive metal oxide is stannic oxide and/or zinc oxide.
JP19935784A 1984-09-26 1984-09-26 Conductive resin composition Granted JPS6178872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19935784A JPS6178872A (en) 1984-09-26 1984-09-26 Conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19935784A JPS6178872A (en) 1984-09-26 1984-09-26 Conductive resin composition

Publications (2)

Publication Number Publication Date
JPS6178872A JPS6178872A (en) 1986-04-22
JPH031338B2 true JPH031338B2 (en) 1991-01-10

Family

ID=16406413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19935784A Granted JPS6178872A (en) 1984-09-26 1984-09-26 Conductive resin composition

Country Status (1)

Country Link
JP (1) JPS6178872A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160941A (en) * 2004-12-09 2006-06-22 Denki Kagaku Kogyo Kk Conductive resin composition and sheet made out of the same
JP5016955B2 (en) * 2007-03-12 2012-09-05 積水化成品工業株式会社 Single-hole hollow particles and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723664A (en) * 1980-07-21 1982-02-06 Toyamaken Electrically conductive coating of "urushi" lacquer resin
JPS57101302A (en) * 1980-12-15 1982-06-23 Mitsubishi Metal Corp Chargeproof heat resistant plastic composition
JPS5819360A (en) * 1981-07-27 1983-02-04 Unitika Ltd Electrically conductive polymer composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723664A (en) * 1980-07-21 1982-02-06 Toyamaken Electrically conductive coating of "urushi" lacquer resin
JPS57101302A (en) * 1980-12-15 1982-06-23 Mitsubishi Metal Corp Chargeproof heat resistant plastic composition
JPS5819360A (en) * 1981-07-27 1983-02-04 Unitika Ltd Electrically conductive polymer composition

Also Published As

Publication number Publication date
JPS6178872A (en) 1986-04-22

Similar Documents

Publication Publication Date Title
DE60033608T2 (en) Inorganically reinforced polyamide resin compositions
JPS5839175B2 (en) Antistatic synthetic polymer composition
WO1990009736A1 (en) Antibacterial or conductive composition and applications thereof
DK147425B (en) FLAMMABLE PLASTIC MATERIALS CONTAINING A FLAMMABLE AGENT BASED ON RED PHOSPHOR
CN109294190A (en) A kind of Degradable high polymer film and preparation method thereof
SE443585B (en) HYDROPHILIC POLYESTER FIBERS AND SET TO MAKE THESE
DE1445375A1 (en) Mixed polyester
CN1245539C (en) Composite electric conductive fibers coloreld at original liquid
DK147598B (en) FLAMMABLE PLASTIC MATERIALS BASED ON RED PHOSPHOR AND FLAMMABLE PLASTIC MATERIALS CONTAINING SUCH ANIMALS
JPH031338B2 (en)
JPS6312197B2 (en)
TWI606157B (en) Fiber, fiber masterbatch and method of fabricating the same, and textile product and method of fabricating the same
JPH0357967B2 (en)
JP5420196B2 (en) Acrylic synthetic fiber and method for producing the same
JPH03161511A (en) Temperature-sensitive color changing conjugate fiber
JPS58223208A (en) Conductive polymer composition
JPS58201828A (en) Electrically condutive polymer composition
DE1570357A1 (en) Process for the production of polyamides reinforced with inorganic fibers
JPS61287963A (en) Elongated molding fine particle and injection molding using the same
JP3113054B2 (en) Conductive composite fiber
JPS6253416A (en) Electrically conductive fiber and production thereof
JP2854221B2 (en) Conductive composite fiber
US3047426A (en) Process for treating a "nitrile alloy" article with a polyphenolic antistatic agent and product obtained thereby
JPH02259109A (en) Electroconductive conjugate fiber
JPS63270811A (en) Electrically conductive composite fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees