JPS6178872A - Conductive resin composition - Google Patents

Conductive resin composition

Info

Publication number
JPS6178872A
JPS6178872A JP19935784A JP19935784A JPS6178872A JP S6178872 A JPS6178872 A JP S6178872A JP 19935784 A JP19935784 A JP 19935784A JP 19935784 A JP19935784 A JP 19935784A JP S6178872 A JPS6178872 A JP S6178872A
Authority
JP
Japan
Prior art keywords
conductive
conductive metal
lipophilic
acid
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19935784A
Other languages
Japanese (ja)
Other versions
JPH031338B2 (en
Inventor
Tadashi Konishi
小西 忠
Yasunobu Kume
久米 安信
Setsuo Yamada
山田 浙雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP19935784A priority Critical patent/JPS6178872A/en
Publication of JPS6178872A publication Critical patent/JPS6178872A/en
Publication of JPH031338B2 publication Critical patent/JPH031338B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:A conductive resin composition having excellent flexing durability, made by incorporating a conductive metal compound and agents for rendering lipophilic into a thermoplastic resin. CONSTITUTION:A thermoplastic resin (A) (e.g., a polyethylene, a polystyrene or a polyethylene terephthalate), a conductive metal compound (B) (e.g., stannic oxide or zinc oxide), and agents for rendering lipophilic (C), preferably an organic carboxylic acid of at least 6C (e.g., n-caproic acid) and/or an organic sulfonic acid of at least 5C (e.g. n-pentasulfonic acid), preferably in an amount of about 0.3-3pts.wt. based on 100pts.wt. conductive metal oxide, are mixed to give a conductive resin composition.

Description

【発明の詳細な説明】 (a)技術分野 本発明1ユ、導電性樹脂組成物、特に耐屈曲性の優れた
導電樹脂組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a conductive resin composition, particularly a conductive resin composition having excellent bending resistance.

(1))従来技術 熱可塑性樹脂例えばポリエチレン、ボリブOごレン、ポ
リアミド、ポリエステル等は繊維、フィルム、成形品と
して多くの用途に用いられている。
(1)) Prior Art Thermoplastic resins such as polyethylene, polyamide, polyester, etc. are used in many applications as fibers, films, and molded products.

しかしながら、かかる熱可塑性樹脂は一般に制電性にと
ばしいために帯電し易く、例えばポリエステルであるポ
リエチレンテレフタレートllAl#よりなる衣服は、
その帯電性のために、着用時身体にまつわりついたり、
更には帯電のために空気中に浮遊する塵埃を吸着して汚
れ易い等多くの問題を惹起する。
However, such thermoplastic resins generally have poor antistatic properties and are easily charged. For example, clothing made of polyester polyethylene terephthalate llAl#
Due to its electrostatic properties, it may cling to the body when worn,
Furthermore, due to the electrification, it attracts dust floating in the air, which causes many problems such as easy staining.

かかる問題を解決する方法として、予め樹脂に訓電性化
合物を況合したり、導電性物質例えば導電性カーボンを
配合する方法等が提案されている。
As a method for solving this problem, methods have been proposed such as adding an electrically conductive compound to the resin in advance or adding a conductive substance such as conductive carbon to the resin.

しかしながら、例えば導電性カーボンを配合した樹脂か
ら得られる導電性111g、導電性フィルム。
However, for example, conductive 111 g, conductive film obtained from resin blended with conductive carbon.

導電性シーl−等は導電性カーボンが黒色であるため、
着色が著しく、審美性を要求される分野に用いることが
出来ず、その用途が極めて限定されるという欠点を有す
る。
Since the conductive carbon of conductive seals such as L- is black,
It has the disadvantage that it is extremely colored and cannot be used in fields where aesthetics are required, and its uses are extremely limited.

かかる着色による欠点を解決する方、法として、近11
.1照色又は淡色の導電性金属化合物、特に導電性金属
酸化物を配合した無色又は淡色の導電性樹脂組成物を用
いて導電性繊維、導電性フィルム等を得る方法が提案さ
れている。
As a method to solve the drawbacks caused by such coloring, the recent 11
.. A method of obtaining conductive fibers, conductive films, etc. using a colorless or light-colored conductive resin composition blended with a bright-colored or light-colored conductive metal compound, particularly a conductive metal oxide, has been proposed.

(C)解決すべき問題点 しかしながら、これ等の提案に基いて製造された導電性
繊維、導電性フィルム等は、数十回の屈曲により導電性
が失われ、着用時短時間でその期待される効果である制
電性を失う結果、前述のような衣服のまつわりつきゃ、
埃の付着を引き起す。
(C) Problems to be solved However, conductive fibers, conductive films, etc. manufactured based on these proposals lose their conductivity after being bent several dozen times, and it is expected that they will lose their conductivity in a short time when worn. As a result of losing the antistatic effect, if the clothes cling as mentioned above,
Causes dust to accumulate.

(d)山  決の 本発明者等は、かかる欠点のない導電性成形物を提供す
る方法について鋭意研究した結果、導電性金属酸化物粉
体の表面が親水性で、熱可塑性樹脂との親和性が小さい
ためであるとの知見を得、導電性金属酸化物の表面を予
め親油性に変えた後、これを配合した熱可塑性樹脂を用
いて成形物とすれば、屈曲耐久性のある導電性成形物が
得られることを見い出し、本発明に到達したものである
(d) As a result of intensive research into a method for providing a conductive molded product free from such drawbacks, the inventors at Yamakatsu discovered that the surface of the conductive metal oxide powder is hydrophilic and has an affinity with thermoplastic resins. We found that this was due to the small flexural properties of the conductive metal oxide, and after making the surface of the conductive metal oxide lipophilic, if we made a molded product using a thermoplastic resin blended with this, we could create a conductive product with bending durability. The present invention was achieved based on the discovery that a molded product with a soft texture can be obtained.

組り尺里旦1j 即ち、本発明は導電性金属化合物と親油化剤とを熱可塑
1!I樹脂に配合してなる導電性樹脂組成物本発明でい
う熱可塑性樹脂とはポリエチレン。
That is, the present invention combines a conductive metal compound and a lipophilic agent into a thermoplastic 1! Conductive resin composition blended with I resin The thermoplastic resin in the present invention is polyethylene.

に係るbのである。This is related to b.

ポリプロピレン、ポリスチレン、ポリブタジェン。Polypropylene, polystyrene, polybutadiene.

ポリイソプレン、ナイロン−6、ナイロン−6,6゜ポ
リエヂレンテレフタレート、ポリブチレンチレフタレ−
1〜等を主たる対象とするが、これ等の一部を共重合成
分で置きかえたものでもよく、また熱可塑性樹脂であれ
ば目的に応じ上記以外の樹脂を使用して−6よく、更に
必要に応じてそれ等の2種以上を6合したものであって
も良い。
Polyisoprene, nylon-6, nylon-6,6° polyethylene terephthalate, polybutylene terephthalate
The main targets are 1 to 1, but some of these may be replaced with copolymer components, and if it is a thermoplastic resin, resins other than the above may be used depending on the purpose. Depending on the situation, a combination of two or more of these may be used.

本発明でいう導電性金属化合物とは導電性金属酸化物を
主たる対象とし、特に酸化第二錫及び酸化亜鉛が好まし
い。ここでいう酸化第二錫には、少量のアンチモン化合
物を含む酸化第二錫、l化チタン粒子の表面に少量のア
ンチモン化合物を含む酸化第二錫をコーティングして得
られる導電性金属複合体も含まれる。また酸化亜鉛には
少量の酸化アルミニウムや酸化リチウムを溶解した導電
性酸化亜鉛も含まれる。これ等は通常微粉末として取扱
われる。
The electrically conductive metal compound referred to in the present invention mainly refers to electrically conductive metal oxides, and particularly preferred are stannic oxide and zinc oxide. The stannic oxide mentioned here also includes stannic oxide containing a small amount of antimony compound, and a conductive metal composite obtained by coating the surface of titanium chloride particles with stannic oxide containing a small amount of antimony compound. included. Zinc oxide also includes conductive zinc oxide in which a small amount of aluminum oxide or lithium oxide is dissolved. These are usually treated as fine powders.

かかる導電性金属酸化物の親油化剤としては、炭素数6
以上の有機カルボン酸及び炭素数5以上の有機スルホン
酸が好ましく、カルボキシル基。
As a lipophilic agent for such conductive metal oxide, carbon number 6
The above organic carboxylic acids and organic sulfonic acids having 5 or more carbon atoms are preferred, and the carboxyl group.

スルホン酸基に結合する有機残基としてはアルキル基、
アルキレン基、アリール基、アルキルアリール基、アラ
ルキル基を有するものが好ましく、またこれ等の基がカ
ルボキシル 以外の基であれば、任意の置換基を有していても差しつ
かえない。
Organic residues that bind to sulfonic acid groups include alkyl groups,
Those having an alkylene group, an aryl group, an alkylaryl group, or an aralkyl group are preferred, and as long as these groups are groups other than carboxyl, they may have any substituent.

親油化剤として用いられる有機カルボン酸の具体例とし
てはn−カプロンftl,  n−へブタン酸。
Specific examples of organic carboxylic acids used as lipophilic agents include n-caprone ftl and n-hebutanoic acid.

安息香酸,n−カプリル酸,フェニル酢酸,トルイルf
lJ,  n−ノナン酸,n−カプリル酸.ステアリン
酸等が挙げられる。また、有機スルホン酸の具体例とし
てはローペンタンスルホン酸,ベンゼンスルホン酸,ド
デシルベンゼンスルホン酸等が挙げられる。これ等親油
化剤として用いられる有機カルボン酸,有機スルホン酸
は単独で用いても良く、また適宜組合せて使用してもよ
い。
Benzoic acid, n-caprylic acid, phenylacetic acid, toluyl f
lJ, n-nonanoic acid, n-caprylic acid. Examples include stearic acid. Further, specific examples of organic sulfonic acids include low pentanesulfonic acid, benzenesulfonic acid, dodecylbenzenesulfonic acid, and the like. These organic carboxylic acids and organic sulfonic acids used as lipophilic agents may be used alone or in appropriate combinations.

親油化剤として用いられる有機カルボン酸の炭素数が5
以下の場合及び有機スルホン酸の炭素数が4以下の場合
、後述する親油性判定によっても親油化処理後の導電性
金属酸化物は水層に移り、親油化されてないことが明ら
かであり、処理した導電性金属酸化物を配合した熱可塑
性樹脂から成形した導電性成形物の屈曲耐久性も向上し
ない。
The number of carbon atoms in the organic carboxylic acid used as a lipophilic agent is 5.
In the following cases and when the number of carbon atoms in the organic sulfonic acid is 4 or less, it is clear from the lipophilicity determination described below that the conductive metal oxide after lipophilic treatment moves to the water layer and is not lipophilic. However, the bending durability of a conductive molded article made from a thermoplastic resin blended with a treated conductive metal oxide does not improve.

導電性金属酸化物の親油化方法としては、使用する熱可
塑性樹脂の種類、親油化剤の種類によっても異なるが、
親油化剤として有機カルボン酸や有機スルホン酸の熱的
特性を考慮して (1)熱可塑性樹脂と導電性金属酸化物と親油化剤とを
直接溶融混合する方法 (2)導電性金属酸化物を予め親油化剤で処理した1支
、熱可塑性樹脂と溶融混合する方法のいずれかを適宜選
択するのが良い。
The method for making conductive metal oxides lipophilic varies depending on the type of thermoplastic resin used and the type of lipophilic agent.
Considering the thermal properties of organic carboxylic acids and organic sulfonic acids as lipophilic agents, (1) A method of directly melt-mixing a thermoplastic resin, a conductive metal oxide, and a lipophilic agent (2) Conductive metal It is preferable to appropriately select either a method in which the oxide is treated with a lipophilic agent in advance or a method in which the oxide is melt-mixed with a thermoplastic resin.

例えば、n−へブタン酸の如き沸点の低い有機カルボン
酸を親油化剤としてポリエチレンテレフタレ−1・の如
き高融点の熱可塑性樹脂へ導電性金属化合物ととしに直
接溶融混合して導電性樹脂組成力を得よつとすることは
好ましくない。かかる場合は、予め導電性金属酸化物を
n−へブタン酸で処理した後熱可塑性樹脂と溶融混合す
る方法が好ましい。
For example, an organic carboxylic acid with a low boiling point such as n-hebutanoic acid is used as a lipophilic agent and is directly melt-mixed with a conductive metal compound into a thermoplastic resin with a high melting point such as polyethylene terephthalate-1. It is not preferable to try to obtain resin composition power. In such a case, it is preferable to treat the conductive metal oxide with n-hebutanoic acid in advance and then melt-mix it with the thermoplastic resin.

これに対し、同じn−へブタン酸を親油化剤とする場合
でも、用いる熱可塑性樹脂がポリエチレンの如く比較的
低融点の場合には、導電性金属酸化物とn−へブタン酸
とを直接ポリエチレンに溶融混合しても同んら差しつか
えない。
On the other hand, even if the same n-hebutanoic acid is used as the lipophilic agent, if the thermoplastic resin used has a relatively low melting point such as polyethylene, the conductive metal oxide and n-hebutanoic acid may be mixed together. There is no problem even if it is directly melt-mixed with polyethylene.

予め導電性金属酸化物を親油化処理する方法としては、
親油化剤を有機溶媒に溶解させて得られる溶液に、所望
の導電性金属酸化物粉体を吸入分散させ、数時間撹拌し
た後有凍溶奴と粉体とを濾別するという極めて簡単な方
法が用いられる。
As a method for making the conductive metal oxide lipophilic in advance,
It is extremely simple: the desired conductive metal oxide powder is inhaled and dispersed in the solution obtained by dissolving the lipophilic agent in an organic solvent, and after stirring for several hours, the frozen melt and the powder are separated by filtration. methods are used.

親油化剤の使用量は必要かつ十分な最少世にとどめるこ
とが好ましく、通常導電性金属酸化物粉体100重量部
に対して、01〜3重量部の範囲が好ましい。親油化剤
の爵が0,1重は部以ドの場合には、処理によって導電
性金属酸化物の表面が充分に親油化され難いことがある
。また、3重量部を越えた場合には、処理後右i溶媒の
分散液から濾別するのが困難となったり、濾別後過剰の
親油化剤を8%;浄除去する必要が生じて好ましくない
The amount of the lipophilizing agent used is preferably kept to a necessary and sufficient minimum amount, and is preferably in the range of 0.1 to 3 parts by weight per 100 parts by weight of the conductive metal oxide powder. If the amount of the lipophilic agent is less than 0.1 parts, it may be difficult to make the surface of the conductive metal oxide sufficiently lipophilic by the treatment. In addition, if the amount exceeds 3 parts by weight, it may become difficult to filter it from the solvent dispersion after treatment, or it may be necessary to remove the excess lipophilic agent by 8% after filtration. I don't like it.

また親油化剤と導電性金fili!化物とを直接熱pJ
塑性樹脂と溶融混合する場合、親油化剤を過剰に加える
ことは、熱可塑性樹脂の物性を損うため好ましくない。
In addition, lipophilic agent and conductive gold fili! Direct heat pJ with compound
When melt-mixing with a plastic resin, it is not preferable to add an excessive amount of the lipophilic agent because it impairs the physical properties of the thermoplastic resin.

導電性金属化合物を親油化剤で予め処理する方法では、
前述の如く親油化剤の有機溶媒溶液に導電性金属化合物
を投入分散させ、常温で数時間撹拌するだ()でも親油
化させ得るが、より短時間で処理するためには加熱する
ことが効果的である。
In the method of pre-treating the conductive metal compound with a lipophilic agent,
As mentioned above, it is possible to make the material lipophilic by adding and dispersing the conductive metal compound into the organic solvent solution of the lipophilic agent and stirring it at room temperature for several hours (), but in order to process it in a shorter time, it is necessary to heat it. is effective.

ここで用いる有n溶媒は、親油化剤である有機カルボン
酸及び/又は有纒スルホン酸化合物を溶解するものであ
れば特に限定されないが、加熱処理する必要がある場合
は沸点の低いものは好ましくない。
The solvent used here is not particularly limited as long as it dissolves the organic carboxylic acid and/or sulfonic acid compound that is the lipophilic agent, but if heat treatment is required, a solvent with a low boiling point should be used. Undesirable.

導電性金属酸化物が親油性でなく、そのために  1熱
可塑性樹脂との親和性が充分でない場合、得られる樹脂
組成物を成形してなる[i、フィルム等が屈曲により導
電性が失われるという重大な欠陥を与えるため、導電性
金属酸化物が充分に親油化されたか否かを判定すること
は、本発明において極めて重要なことであり、更にこの
判定は、親油化に用いる親油化剤の使用量を決定するた
めの基準となるため極めて重要である。特に、導電性金
属酸化物を親油化剤とともに、直接熱可塑性樹脂に溶m
a合する場合、予め親油化剤の必要にしてかつ十分な量
を予め決定しておくことが重要であり、この意味からも
適すな判定方法と選定することが必要ひある。
If the conductive metal oxide is not lipophilic and therefore does not have sufficient affinity with the thermoplastic resin, the resulting resin composition may be molded [i. It is extremely important in the present invention to determine whether or not the conductive metal oxide has been sufficiently made lipophilic in order to cause serious defects. This is extremely important as it serves as the standard for determining the amount of oxidizing agent to be used. In particular, conductive metal oxides are directly dissolved in thermoplastic resins together with lipophilic agents.
In the case of a, it is important to determine in advance the necessary and sufficient amount of the lipophilic agent, and from this point of view, it is necessary to select an appropriate determination method.

この判定法としては、予め親油化剤を有機溶媒に溶解し
た溶液中で加熱撹拌しで親油化処理しlζ導電性金属化
合物粉体を水と、水と相溶性のない有機溶剤の二層から
なる液中に投入し、撹1′f:後静置した時、導電性金
属化合物粉体が有機層に移ることをもって親油化されて
いるとするのが、極めて効里的である。
This determination method involves heating and stirring in a solution in which a lipophilic agent is dissolved in an organic solvent to make it lipophilic, and then applying a conductive metal compound powder to water and an organic solvent that is incompatible with water. It is extremely effective to assume that when the conductive metal compound powder transfers to the organic layer and becomes lipophilic when it is poured into a liquid consisting of a layer and left to stand after stirring 1'f. .

親油化された導電性金属化合物を熱可塑性樹脂と溶融a
合する際、又は導電性金属化合物を親油化するに必要な
聞の親油化剤と導電性金属化合物とを熱可塑性樹脂に直
接溶融混合する際、混合を効果的に行うため、更には得
られる導電性樹脂組成物の成形性を向上させる目的のた
めに、適当な粘度調節剤を用いてもよく、また必要に応
じて酸化防止剤を併用しても何んら差しつかえない。
A lipophilized conductive metal compound is melted with a thermoplastic resin.
When mixing, or when directly melt-mixing a conductive metal compound and a lipophilic agent necessary for making the conductive metal compound lipophilic, in order to mix effectively, For the purpose of improving the moldability of the resulting conductive resin composition, an appropriate viscosity modifier may be used, and if necessary, an antioxidant may also be used in combination.

」L及玉立叉浬 本発明により親油化された導電性金属化合物と熱可塑性
樹脂をU合した樹脂組成物より成形した繊維、フィルム
、シート等は屈曲により導電性が失われることなく極め
て高い性能を保持しつる。
Fibers, films, sheets, etc. formed from a resin composition made by combining a conductive metal compound made lipophilic with a thermoplastic resin according to the present invention do not lose their conductivity when bent, and are extremely durable. Maintains high performance and vines.

口上m 以下実施例により本発明を具体的に説明する。Oral m The present invention will be specifically explained below using Examples.

実施例1 酸化チタン微粒子の表面に導電性酸化第二錫をコーティ
ングした平均粒径0.2μ、比抵抗10Ω・αのSI性
粉体1 K9とローへブタン酸20Jにトルエン3文を
加えて激しく撹拌しながら5時間加熱還流さUだ。この
混合液を1夜静置した後デカンテーシヨンにより大部分
のトルエンを除き、粉体を濾別し、トルエンで充分洗浄
し、乾燥した。この乾燥粉体の少量を、水100dとベ
ンゼン100dの二層からなる親油化判定のための液中
に投入して振とうしたところ、粉体はベンゼン層に移り
、親油化されていると判定された。処理していない上記
導電性粉体は水層にあり、まtCn−へブタン酸を加え
ない以外は上記と同様の処理を行った導電性粉体も水層
に移った。
Example 1 SI powder 1 of titanium oxide fine particles coated with conductive tin oxide and having an average particle size of 0.2μ and a specific resistance of 10Ω・α.K9 and 20J of rhohebutanoic acid were added with 3 grams of toluene. Heat to reflux for 5 hours with vigorous stirring. After the mixture was allowed to stand overnight, most of the toluene was removed by decantation, and the powder was filtered, thoroughly washed with toluene, and dried. When a small amount of this dry powder was poured into a liquid for determining lipophilicity consisting of two layers of 100 d of water and 100 d of benzene and shaken, the powder moved to the benzene layer and was made lipophilic. It was determined that The untreated conductive powder was in the aqueous layer, and the conductive powder treated in the same manner as above except that tCn-hebutanoic acid was not added also moved to the aqueous layer.

親油化された粉体250重量部、流動パラフィン20重
争部及びメルトインデックス75(JIS  K676
0−1971 )のポリエチレン80重間部をニーダ−
に仕込み、175℃に加熱して5時間混合した。得られ
た導電性樹脂の比抵抗は4 X 102Ω・cmであっ
た。溶融紡糸により、この導電性樹脂を芯とし、ポリエ
チレンテレフタレートを鞘とする芯鞘型複合繊維(芯鞘
比−1/6)を作り、4倍延伸して100デニール、単
糸数12の導電性マルチフィラメントを得た。この導電
性複合m維を1CIRの長さに切り取り、両端に導電性
塗料を塗布して両端間の電気抵抗を測定したところ2 
X 10’Ωであった。
250 parts by weight of lipophilized powder, 20 parts by weight of liquid paraffin and melt index 75 (JIS K676
0-1971) in a kneader.
The mixture was heated to 175°C and mixed for 5 hours. The specific resistance of the obtained conductive resin was 4×10 2 Ω·cm. By melt-spinning, a core-sheath type composite fiber (core-sheath ratio -1/6) with this conductive resin as a core and polyethylene terephthalate as a sheath was made, and it was drawn 4 times to make a conductive multi fiber with a denier of 100 and a single yarn count of 12. I got the filament. This conductive composite m-fiber was cut to a length of 1CIR, conductive paint was applied to both ends, and the electrical resistance between both ends was measured.
X 10'Ω.

更に、この導電性−複合Jl維を20 (−Jlの長さ
に切断し、片端に IOog(デニール当り1g)の重
りをつり、直径1#1111の自由回転する支持棒にか
けて他端を上下さUる方法で屈曲を繰り返した後、糸の
中央部1cIR4i−切り取り、両端に導電性塗料を塗
布して両端間の電気抵抗を測定する方法により、屈曲回
数と電気抵抗の関係を調べた結果、第1表左欄に示す値
をせ1だ。
Furthermore, this conductive composite Jl fiber was cut to a length of 20 (-Jl), a weight of IOog (1 g per denier) was hung on one end, and the other end was hung up and down by a freely rotating support rod with a diameter of 1#1111. The relationship between the number of bends and the electrical resistance was investigated by the method of repeatedly bending the thread using the U method, cutting off the central part of the thread, applying conductive paint to both ends, and measuring the electrical resistance between both ends. The values shown in the left column of Table 1 are 1.

比較のためn−へブタン酸による親油化処理を行わない
導電性粉体を用いる以外は同様にして得た導電性複合繊
維について、同様に屈曲試験を行った結果を第1表右欄
に示した。
For comparison, conductive composite fibers obtained in the same manner except for using conductive powder that was not subjected to lipophilic treatment with n-hebutanoic acid were subjected to a bending test. The results are shown in the right column of Table 1. Indicated.

(以下余白) 第1表 実施例2 実施例1に記載した未処理の導電性粉末250重量部、
メルトインデックス15にポリエチレン80壬量部をニ
ーダ−に仕込み、175℃で30分間混練した後流?h
パラフィン20重量部、親油化剤としてステアリン酸3
重量部を加えて更に4時間混練した。
(Margin below) Table 1 Example 2 250 parts by weight of the untreated conductive powder described in Example 1,
80 parts of polyethylene with a melt index of 15 was charged into a kneader and kneaded at 175°C for 30 minutes. h
20 parts by weight of paraffin, 3 parts of stearic acid as a lipophilic agent
Parts by weight were added and kneaded for an additional 4 hours.

得られた導電性樹脂の比抵抗は2.8X 102Ω・α
であった。
The specific resistance of the obtained conductive resin is 2.8X 102Ω・α
Met.

この導電性樹脂を芯として、実施例1と同様にポリエチ
レンテレフタレーi−を鞘とする導電性複合U&雑を得
た。このI!雑について、実施例1と°同じ方法により
、屈曲試験を行い屈曲回数と電気抵抗値の関係を調べた
結果、第2表左欄の結果を得た。
A conductive composite U&miscellaneous was obtained having this conductive resin as a core and polyethylene terephthalate i- as a sheath in the same manner as in Example 1. This I! Regarding miscellaneous matters, a bending test was conducted using the same method as in Example 1 to examine the relationship between the number of bends and the electrical resistance value, and the results shown in the left column of Table 2 were obtained.

比較のためステアリン酸を混合しない以外は全く同じ仕
込量で調製した樹脂を芯としたIIIについて同様の試
験を行った結果を同表右側に示した。
For comparison, a similar test was carried out on III, which had a core of resin prepared with exactly the same amount of charge except that stearic acid was not mixed, and the results are shown on the right side of the same table.

第2表 実施例3〜6 実施例1で使用した親油化剤n−ヘプタン酸の代りに第
3表に示した各種の酸を使用して、実施例1と同様に導
電性樹脂を調製し、実施例1と同様にこの樹脂を芯部と
し、ポリエチレンテレフタレートを鞘とする複合繊維を
作り、屈曲による電気抵抗の変化を調べた。−での結果
第3表に示すことくいづれも良好な結果を胃だ。
Table 2 Examples 3 to 6 Conductive resins were prepared in the same manner as in Example 1, using various acids shown in Table 3 instead of the lipophilic agent n-heptanoic acid used in Example 1. However, in the same manner as in Example 1, a composite fiber having this resin as a core and polyethylene terephthalate as a sheath was prepared, and the change in electrical resistance due to bending was examined. - The results shown in Table 3 are all good results.

(以下余白) 第3表 比較例1〜4 実施例1で使用したn−へブタン酸の代りに第4表に示
した各種の酸を使用して、実施例1に示した導電性粉体
の処理を行った。処理後の粉末を水−流動パラフィンの
2層よりなる試験液中に投入して振とうしたが、1Wf
fi性粉体はいづれも水層にあった。この粉体を用いて
実7+1!i例”Iと同様にポリエチレンテレフタレー
トを鞘とする複合IIを作り、屈曲による電気抵抗の変
化を調べた。
(Leaving space below) Table 3 Comparative Examples 1 to 4 The conductive powder shown in Example 1 was prepared by using various acids shown in Table 4 instead of n-hebutanoic acid used in Example 1. was processed. The treated powder was put into a test solution consisting of two layers of water and liquid paraffin and shaken, but 1 Wf
The fi-like powders were all in the water layer. Real 7+1 using this powder! Composite II having a polyethylene terephthalate sheath was prepared in the same manner as Example I, and the change in electrical resistance due to bending was investigated.

その結果を第4表にかかげた。The results are shown in Table 4.

(以下余白) 第4表 実施l+!I7 少量の三酸化アンチモンを含む酸化第二錫からなる導電
性金属粉体250重吊重量メルトフローインデックス1
.0(ASTM  n1238−65T)のポリプロビ
レ250重fi部をニーグーに仕込み200℃で30分
間溶溶融金した後、ステアリンM3重量部。
(Left below) Table 4 implementation l+! I7 Conductive metal powder made of stannic oxide containing a small amount of antimony trioxide 250 heavy lifting weight Melt flow index 1
.. 0 (ASTM n1238-65T) polypropylene was charged into a Nigu and melted at 200°C for 30 minutes, followed by 3 parts by weight of stearin M.

流動パラフィン50重量部、イルガノックス10100
.5重量部を加え更に4時間混練した。
50 parts by weight of liquid paraffin, Irganox 10100
.. 5 parts by weight were added and kneaded for a further 4 hours.

こうして得た導電性樹脂の比抵抗は5.5X102Ω・
口であった。溶融紡糸により、この導電性樹脂を芯とし
ナイロン−6を鞘とする芯鞘型複合繊維(芯鞘比=  
115 )を作り、4倍に延伸して100デニール単系
数12の導電性マルチフィラメントを得た。
The specific resistance of the conductive resin thus obtained was 5.5×102Ω・
It was the mouth. By melt spinning, a core-sheath type composite fiber (core-sheath ratio =
115) and stretched four times to obtain a 100 denier conductive multifilament with a monofilament number of 12.

この導電性複合繊維を1 ctaの長さに切り取り、実
施例1と同様にして電気抵抗を測定したところ3 x 
10’Ωであった。
This conductive composite fiber was cut into a length of 1 cta, and the electrical resistance was measured in the same manner as in Example 1.
It was 10'Ω.

史に、この繊維について実施例1と同様に屈曲回数によ
る電気抵抗の変化を調べた結果を第5表左欄に示した。
As a matter of fact, the changes in electrical resistance of this fiber depending on the number of bends were investigated in the same manner as in Example 1, and the results are shown in the left column of Table 5.

比較のため、ステアリン酸を用いない他は、同様にしC
+r/1.:m合繊維について同様に屈曲回数による電
気酸1ルの変化を調べ、その結果をM5表右欄に示した
。ステアリン酸を加えない場合は屈曲回数100回で導
電性は失われた。
For comparison, C was prepared in the same manner except that stearic acid was not used.
+r/1. :M composite fibers were similarly examined for changes in electroacidity depending on the number of bends, and the results are shown in the right column of the M5 table. When stearic acid was not added, conductivity was lost after 100 bends.

(以下余白) 第5表 特 許 出 願 人   帝  人  株  式  会
  社手続ネtli JE書 昭和60年 7月/2日 ’l”’J’ it午庁長′自゛殿 1、“■件の表示 Vi願昭59−199357号 2、発明の名称 導電性樹脂組成物 3、補1[をする者 事件との関係  特許出願人 大阪市東区南本町1丁目11番地 (300)帝大株式会社 代表者岡本広四部 4、代即入 東京都千代田区内幸町2丁目1番1号 (1)明#I古第/I貞第1行〜第3行に、[を熱il
l塑竹樹脂に配合してなる導電性樹脂組成物 本発明でいう熱6[塑性樹脂とはポリエチレン、に係る
ものである。」 とあるを 「を熱可塑性樹脂に配合してなる導電性樹脂組成物に係
る乙のである。
(Leaving space below) Table 5 Patent Applicant Teijin Co., Ltd. Company Procedures JE Book July/2, 1985 'l''J' IT Office Director's Office 1, '■ Matter Indication of Vi Application No. 59-199357 No. 2, Title of Invention Conductive Resin Composition 3, Supplement 1 [Relationship with the Case Patent Applicant: Teidai Co., Ltd., 1-11 Minamihonmachi, Higashi-ku, Osaka (300) Representative Okamoto Hiroshibe 4, immediately entered 2-1-1 Uchisaiwai-cho, Chiyoda-ku, Tokyo (1) Ming #I Kodai/I Sada lines 1-3
1. Conductive resin composition blended with plastic bamboo resin Heat 6 [Plastic resin refers to polyethylene] in the present invention. '' This is related to a conductive resin composition formed by blending ``with a thermoplastic resin.''

本発明でいう熱可塑性樹脂とはポリエチレン、1 とiif i[rJ−る。The thermoplastic resin referred to in the present invention is polyethylene, 1 and iif i[rJ-ru.

(2) 1i11第7頁第12行に、[吸入」とあるを
U投入jど訂正りる。
(2) In 1i11, page 7, line 12, correct the word "inhalation" by adding U.

(3)同第14頁第3行に、1メルトインデツクス75
に1どあるを[メルトインデックス15の1と訂jrす
る。
(3) On page 14, line 3, 1 melt index 75
1 is corrected to 1 of Melt Index 15.

以上that's all

Claims (3)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂に導電性金属化合物と親油化剤とを
配合してなる導電性樹脂組成物。
(1) A conductive resin composition formed by blending a conductive metal compound and a lipophilic agent with a thermoplastic resin.
(2)親油化剤が炭素数6以上の有機カルボン酸化合物
及び/又は炭素数5以上の有機スルホン酸化合物である
特許請求の範囲第1項記載の導電性樹脂組成物。
(2) The conductive resin composition according to claim 1, wherein the lipophilic agent is an organic carboxylic acid compound having 6 or more carbon atoms and/or an organic sulfonic acid compound having 5 or more carbon atoms.
(3)導電性金属化合物が酸化第二錫及び/又は酸化亜
鉛である特許請求の範囲第1項又は第2項記載の導電性
樹脂組成物。
(3) The conductive resin composition according to claim 1 or 2, wherein the conductive metal compound is stannic oxide and/or zinc oxide.
JP19935784A 1984-09-26 1984-09-26 Conductive resin composition Granted JPS6178872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19935784A JPS6178872A (en) 1984-09-26 1984-09-26 Conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19935784A JPS6178872A (en) 1984-09-26 1984-09-26 Conductive resin composition

Publications (2)

Publication Number Publication Date
JPS6178872A true JPS6178872A (en) 1986-04-22
JPH031338B2 JPH031338B2 (en) 1991-01-10

Family

ID=16406413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19935784A Granted JPS6178872A (en) 1984-09-26 1984-09-26 Conductive resin composition

Country Status (1)

Country Link
JP (1) JPS6178872A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160941A (en) * 2004-12-09 2006-06-22 Denki Kagaku Kogyo Kk Conductive resin composition and sheet made out of the same
JP2008222810A (en) * 2007-03-12 2008-09-25 Sekisui Plastics Co Ltd Single-hole hollow particle and its production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723664A (en) * 1980-07-21 1982-02-06 Toyamaken Electrically conductive coating of "urushi" lacquer resin
JPS57101302A (en) * 1980-12-15 1982-06-23 Mitsubishi Metal Corp Chargeproof heat resistant plastic composition
JPS5819360A (en) * 1981-07-27 1983-02-04 Unitika Ltd Electrically conductive polymer composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723664A (en) * 1980-07-21 1982-02-06 Toyamaken Electrically conductive coating of "urushi" lacquer resin
JPS57101302A (en) * 1980-12-15 1982-06-23 Mitsubishi Metal Corp Chargeproof heat resistant plastic composition
JPS5819360A (en) * 1981-07-27 1983-02-04 Unitika Ltd Electrically conductive polymer composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160941A (en) * 2004-12-09 2006-06-22 Denki Kagaku Kogyo Kk Conductive resin composition and sheet made out of the same
JP2008222810A (en) * 2007-03-12 2008-09-25 Sekisui Plastics Co Ltd Single-hole hollow particle and its production method

Also Published As

Publication number Publication date
JPH031338B2 (en) 1991-01-10

Similar Documents

Publication Publication Date Title
DE60033608T2 (en) Inorganically reinforced polyamide resin compositions
DE69632047T2 (en) COPOLYESTER COMPOSITION CONTAINING AMORPHE RUSS
DE2338615A1 (en) POLYESTER MOLDING COMPOUNDS
DE2515473A1 (en) FLAME-RESISTANT, LINEAR POLYESTER
JPS5839175B2 (en) Antistatic synthetic polymer composition
CN109294190A (en) A kind of Degradable high polymer film and preparation method thereof
JPH0694527B2 (en) Antistatic thermoplastic composition
CN1584141A (en) Composite electric conductive fibers coloreld at original liquid
JPS6178872A (en) Conductive resin composition
CA1256629A (en) Electrically conductive plastics and production of same
JPS61145248A (en) Impact resistant thermoplastic polyester molding material
JPH0133600B2 (en)
TW200427756A (en) Improved polymer nucleating agents
JPS58201828A (en) Electrically condutive polymer composition
JP2854221B2 (en) Conductive composite fiber
JPS6297918A (en) Electrically conductive fiber
JPS6385113A (en) Electrically conductive conjugate fiber
DE1694459A1 (en) Synthetic linear polyamide mass
JPS61287963A (en) Elongated molding fine particle and injection molding using the same
JPH01111015A (en) Electrically conductive composite fiber
JPS58223208A (en) Conductive polymer composition
JPS59211621A (en) Antistatic conjugated yarn
JPS61246246A (en) Antistatic thermoplastic resin composition
JPS6253416A (en) Electrically conductive fiber and production thereof
JPS5842456Y2 (en) conductive fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees