JPS6292329A - Forming method for insulating film - Google Patents

Forming method for insulating film

Info

Publication number
JPS6292329A
JPS6292329A JP23304785A JP23304785A JPS6292329A JP S6292329 A JPS6292329 A JP S6292329A JP 23304785 A JP23304785 A JP 23304785A JP 23304785 A JP23304785 A JP 23304785A JP S6292329 A JPS6292329 A JP S6292329A
Authority
JP
Japan
Prior art keywords
insulating film
plasma
film
semiconductor substrate
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23304785A
Other languages
Japanese (ja)
Inventor
Yasushi Kubota
靖 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP23304785A priority Critical patent/JPS6292329A/en
Publication of JPS6292329A publication Critical patent/JPS6292329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To form an insulating film having high withstanding voltage and excellent interfacial characteristics by oxidizing a semiconductor substrate at 300-400 deg.C in an oxidizing plasma atmosphere, shaping an oxide thin-film on the surface of the semiconductor substrate and laminating an insulating film on the oxide film. CONSTITUTION:An silicon substrate 1 is oxidized in an oxygen plasma atmosphere. An insulating film 2 is formed through plasma oxidation for 1hr. An insulating film 3 is laminated up to film thickness of 1,000Angstrom at a substrate 1 temperature of 400 deg.C through a normal pressure CVD method. Annealing at 550 deg.C in a nitrogen atmosphere and hydrogen plasma treatment at 350 deg.C are each conducted for 1hr in order to improve the characteristic of the insulating film 3. Accordingly, the insulating film 3 having high withstanding voltage and excellent interfacial characteristics is acquired.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は良好な特性を有するゲート絶縁膜を得   □
ることができる積層絶縁膜の形成方法に関する。
[Detailed description of the invention] Industrial application field The present invention provides a gate insulating film with good characteristics.
The present invention relates to a method for forming a laminated insulating film.

従来技術とその問題点 従来、ゲート絶縁膜に用いる酸化膜は、界面準位密度が
低く、良質な絶縁膜が得られる熱酸化法によって得られ
るのが一般的であるが、約1000°Cの高温処理を必
要とするため、ガラス基板上で素子を形成する場合にガ
ラス基板が溶融してしまい、形成が困難となる。従って
、このような場合、低温での良質な絶縁膜の形成が要求
される。低温での絶縁膜形成方法としては、常圧CVD
法、プラズマCVD法、光CVD法、プラズマ陽極酸化
法等が通常用いられている。CVD法によって酸化膜を
形成する場合、酸化膜の水素処理、アニール等の後処理
によって耐圧の向上等の特性の改善が計られているもの
の、半導体との界面に欠陥が生じ易く、界面準位密度が
熱酸化膜に較べて、1〜2桁大きくなるという欠点があ
る。また、プラズマ陽極酸化法においては、基板に高電
圧を印加するために、電子やイオンが高エネルギーで基
板を照射して表面の損傷を招き、半導体基板と形成した
酸化膜との間の界面準位密度はやはり、高41hの熱酸
化による絶縁膜に較べて1〜2桁大きくなるという問題
がある。このため、これらの方法により得られた酸化膜
は、半導体装置の層間絶縁膜や保護膜としては利用され
ているものの、LSI等のゲート絶縁膜には用いられて
いない。
Conventional technology and its problems Conventionally, oxide films used for gate insulating films have been generally obtained by thermal oxidation, which has a low interface state density and provides a high-quality insulating film. Since high-temperature processing is required, when an element is formed on a glass substrate, the glass substrate melts, making formation difficult. Therefore, in such cases, it is required to form a high quality insulating film at low temperatures. Atmospheric pressure CVD is a method for forming an insulating film at low temperatures.
A method such as a method, a plasma CVD method, a photo CVD method, a plasma anodic oxidation method, etc. are commonly used. When forming an oxide film by the CVD method, although it is possible to improve the characteristics such as increasing the withstand voltage by post-processing the oxide film such as hydrogen treatment and annealing, defects are likely to occur at the interface with the semiconductor, and the interface state The disadvantage is that the density is one to two orders of magnitude higher than that of a thermal oxide film. In addition, in the plasma anodization method, since high voltage is applied to the substrate, electrons and ions irradiate the substrate with high energy, causing damage to the surface and creating an interface between the semiconductor substrate and the formed oxide film. There is still a problem in that the potential density is one to two orders of magnitude higher than that of an insulating film formed by thermal oxidation at a high temperature of 41 hours. Therefore, although oxide films obtained by these methods are used as interlayer insulating films and protective films of semiconductor devices, they are not used as gate insulating films of LSIs and the like.

従って、低温で処理でき、しかも、ゲート絶縁膜にも用
いることが可能な良好な性能を有する絶 −縁膜を形成
する方法が望まれている。
Therefore, there is a need for a method for forming an insulating film that can be processed at low temperatures and has good performance that can also be used as a gate insulating film.

発明の目的 本発明は1、低温でのプロセスにおいて、耐圧が高く、
かつ界面特性の良好な絶縁膜を形成する方法を提供する
ことを目的とする。
Purpose of the Invention The present invention has 1. high pressure resistance in low temperature processes;
Another object of the present invention is to provide a method for forming an insulating film with good interfacial properties.

発明の構成 本発明は、半導体基板を酸化性プラズマ雰囲気中300
〜400℃で酸化して半導体基板表面に酸化薄膜を形成
し、次いで、該酸化薄膜上に絶縁膜を積層することを特
徴とする半導体基板上に絶縁膜を形成する方法に関する
Structure of the Invention The present invention provides a method of subjecting a semiconductor substrate to an oxidizing plasma atmosphere for 300 minutes.
The present invention relates to a method for forming an insulating film on a semiconductor substrate, the method comprising forming an oxide thin film on the surface of the semiconductor substrate by oxidizing at ~400°C, and then laminating an insulating film on the oxide thin film.

プラズマ雰囲気はECRプラズマグロー放電などを用い
る。
ECR plasma glow discharge or the like is used as the plasma atmosphere.

プラズマ酸化する温度は300〜400°Cの範囲で行
ったが、プロセスの許容範囲内でできるだけ高い方が望
ましい。
Although the temperature for plasma oxidation was in the range of 300 to 400°C, it is desirable that it be as high as possible within the allowable range of the process.

プラズマ雰囲気は酸素または酸素と窒素との混合気体が
例示され、特に酸素のみを用いた場合が好ましい。
The plasma atmosphere is exemplified by oxygen or a mixed gas of oxygen and nitrogen, and it is particularly preferable to use only oxygen.

プラズマ酸化する時の減圧度は05〜1.5T orr
の範囲が望ましい。圧力が高すぎるとプラズマの発生が
抑えられ、低すぎるとスパッタリングが起こるためであ
る。
The degree of reduced pressure during plasma oxidation is 05 to 1.5 T orr.
range is desirable. This is because if the pressure is too high, plasma generation is suppressed, and if the pressure is too low, sputtering occurs.

プラズマ酸化による酸化薄膜の厚さとしては10〜80
人の範囲が好ましい。薄すぎると均一な膜が得られず、
また厚くするとスループットが大幅に低下する。特に好
ましくは30〜60人の厚さの酸化薄膜である。
The thickness of the oxide thin film by plasma oxidation is 10 to 80
A range of people is preferred. If it is too thin, a uniform film cannot be obtained;
Furthermore, if the thickness is increased, the throughput will be significantly reduced. Particularly preferred is a thin oxide film with a thickness of 30 to 60 people.

上記工程で得られた酸化薄膜上に絶縁膜を積層する方法
は、低温での酸化膜形成方法である常圧CVD法、プラ
ズマCVD法、光CVD法等を使用でき、低温プロセス
においても界面特性の良好な絶縁膜を得ることができる
As a method for laminating an insulating film on the oxide thin film obtained in the above process, atmospheric pressure CVD, plasma CVD, photo-CVD, etc., which are low-temperature oxide film formation methods, can be used. A good insulating film can be obtained.

本発明により、半導体基板上に絶縁膜を形成する場合、
予め、半導体基板を酸化性プラズマ雰囲気中で酸化する
ことにより、高温での熱酸化膜に近い化学的組成の遷移
領域を持つ酸化薄膜を形成し、さらにその上層に絶縁膜
を積層することにより、界面構造が熱酸化膜に近いもの
となり、低温プロセスにおいて、界面準位密度の低い、
良好な界面構造の絶縁膜が得られるのである。
According to the present invention, when forming an insulating film on a semiconductor substrate,
By oxidizing the semiconductor substrate in advance in an oxidizing plasma atmosphere, an oxide thin film having a transition region with a chemical composition close to that of a thermal oxide film at high temperatures is formed, and an insulating film is further laminated on top of the oxide thin film. The interface structure is similar to that of a thermal oxide film, and in low-temperature processes, the interface state density is low.
An insulating film with a good interface structure can be obtained.

以下、本発明の効果を明確にするため、具体的に実施例
を、第1図から第5図を参照して説明する。
Hereinafter, in order to clarify the effects of the present invention, examples will be specifically described with reference to FIGS. 1 to 5.

第1図から第3図は、本発明による酸化膜を用いたMO
Sキャパシタの形成プロセスを示したものである。まず
、シリコン基板(1)を酸素プラズマ雰囲気中で酸化し
た(第1図)。ITorr雰囲気中400℃において、
1時間プラズマ酸化することにより数十〜哲人の酸化膜
(2)を形成する。長4一 時間および高出力のプラズマ処理を行なうと、表面損傷
が激しくなり、却って界面特性の低下を招く恐れがある
ため注意を要する。次に、常圧CVD法により、基板温
度400℃で目的の膜厚1000人まで酸化膜(3)を
積層した(第2図)。酸化膜の膜質は、成膜温度が高い
程緻密であり、特性が良好であるから、本発明の2つの
酸化膜形成工程は、製造プロセスの範囲内で、出来るだ
け高温で行なうことが望ましい。
FIGS. 1 to 3 show MO using an oxide film according to the present invention.
This figure shows the process of forming an S capacitor. First, a silicon substrate (1) was oxidized in an oxygen plasma atmosphere (FIG. 1). At 400°C in an ITorr atmosphere,
Plasma oxidation is performed for one hour to form an oxide film (2) of several dozen or more sizes. If plasma treatment is performed for a long period of time and at high power, care must be taken because surface damage may become severe and the interfacial properties may deteriorate. Next, an oxide film (3) was laminated by normal pressure CVD at a substrate temperature of 400° C. to a desired thickness of 1000 μm (FIG. 2). The quality of the oxide film is denser and has better characteristics as the film formation temperature is higher, so it is desirable that the two oxide film formation steps of the present invention be performed at as high a temperature as possible within the range of the manufacturing process.

次に、酸化膜、特に上層の酸化膜(3)の特性を向上さ
せるために、窒素雰囲気中550℃でのアニールおよび
350℃水素プラズマ処理を各々1時間行なった。最後
に酸化膜(3)上にAI電極(4)を形成し、また、シ
リコン基板(1)の裏面にオーミックコンタクトがとれ
るようにAJJ電極(5)を蒸着させることにより、M
OSキャパシタを作製した(第3図)。
Next, in order to improve the properties of the oxide film, especially the upper oxide film (3), annealing at 550° C. in a nitrogen atmosphere and hydrogen plasma treatment at 350° C. were performed for 1 hour each. Finally, an AI electrode (4) is formed on the oxide film (3), and an AJJ electrode (5) is deposited on the back surface of the silicon substrate (1) so that ohmic contact can be made.
An OS capacitor was fabricated (Fig. 3).

以上のように作製したMOSキャパシタのC−■特性を
調べ、界面準位密度を評価した。第4図に示すように、
プラズマ酸化を施していないもの(第5図)に比べて、
約1桁の界面準位密度の低減が認められた。
The C-■ characteristics of the MOS capacitor manufactured as described above were examined, and the interface state density was evaluated. As shown in Figure 4,
Compared to the one not subjected to plasma oxidation (Fig. 5),
A reduction in interface state density of about one order of magnitude was observed.

発明の効果 本発明によれば、低温プロセスで、界面特性の良好な絶
縁膜を形成することができるため、例えば、ガラス基板
(歪点; 550〜600℃)」二での薄膜トランジス
タの製造が可能となる。この技術は安価なガラス基板を
用いたアクティブ・7トリツクス・パネル等に利用でき
、大面積薄型ディスプレイ等へ応用が期待されるもので
ある。
Effects of the Invention According to the present invention, it is possible to form an insulating film with good interfacial properties in a low-temperature process, making it possible to manufacture thin film transistors on, for example, a glass substrate (strain point: 550 to 600°C). becomes. This technology can be used in active 7-trix panels using inexpensive glass substrates, and is expected to be applied to large-area thin displays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図は積層酸化膜を用いたMO
Sキャパシタ作製の各プロセス段階における断面図であ
り、第4図は本発明の方法により形成した積層酸化膜の
界面準位密度を示した図であり、第5図はプラズマ酸化
膜(2)がない場合の界面準位密度を示した図である。 図中の記号は以下の通りである。 l・・・シリコン基板 2・・・プラズマ酸化膜 3・・・常圧CVD酸化膜 4.5・・・へ克電極 また、第4図および第5図のM、Gは禁止帯の中央を示
し、C,Bは伝導帯の下端、V、Bは価電子帯の」一端
を示す。 第1図 第2図 第3図 を 第4図 第5図 y、B、         M、G、        
 C,B。 手続補正書(自発) 22発明の名称 絶縁膜形成方法 3、補正をする者 事件との関係 特許出願人 住所 大阪府大阪市阿倍野区長池町22番22号名称 
(504)   シャープ株式会社代表者    佐 
伯  旭 4代理人 ME 5図
Figures 1, 2, and 3 show MO using stacked oxide films.
FIG. 4 is a diagram showing the interface state density of the laminated oxide film formed by the method of the present invention, and FIG. 5 is a diagram showing the plasma oxide film (2). FIG. 3 is a diagram showing the interface state density when there is no interface state. The symbols in the figure are as follows. l...Silicon substrate 2...Plasma oxide film 3...Normal pressure CVD oxide film 4.5...Moreover, M and G in FIGS. 4 and 5 indicate the center of the forbidden band. where C and B indicate the lower end of the conduction band, and V and B indicate one end of the valence band. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 y, B, M, G,
C,B. Procedural amendment (voluntary) 22 Name of the invention Insulating film forming method 3 Relationship with the person making the amendment Patent applicant address 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Name
(504) Sharp Corporation Representative Sa
Haku Asahi 4 agent ME 5 diagram

Claims (1)

【特許請求の範囲】 1、半導体基板を酸化性プラズマ雰囲気中300〜40
0℃で酸化して半導体基板表面に酸化薄膜を形成し、次
いで、該酸化薄膜上に絶縁膜を積層することを特徴とす
る半導体基板上に絶縁膜を形成する方法。 2、半導体基板がシリコン基板である第1項記載の方法
。 3、プラズマ雰囲気がグロー放電により形成される酸素
プラズマであることを特徴とする第1項記載の方法。 4、プラズマにより形成される酸化薄膜が10〜80Å
の厚さを有する第1項記載の方法。 5、絶縁膜が常圧CVD法、プラズマCVD法、または
光CVD法により形成される第1項記載の方法。
[Claims] 1. The semiconductor substrate is heated in an oxidizing plasma atmosphere to
A method for forming an insulating film on a semiconductor substrate, the method comprising forming an oxide thin film on the surface of the semiconductor substrate by oxidizing at 0° C., and then laminating an insulating film on the oxide thin film. 2. The method according to item 1, wherein the semiconductor substrate is a silicon substrate. 3. The method according to item 1, wherein the plasma atmosphere is oxygen plasma formed by glow discharge. 4. The oxide thin film formed by plasma is 10 to 80 Å.
2. The method of claim 1, wherein the method has a thickness of . 5. The method according to item 1, wherein the insulating film is formed by atmospheric pressure CVD, plasma CVD, or photo-CVD.
JP23304785A 1985-10-17 1985-10-17 Forming method for insulating film Pending JPS6292329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23304785A JPS6292329A (en) 1985-10-17 1985-10-17 Forming method for insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23304785A JPS6292329A (en) 1985-10-17 1985-10-17 Forming method for insulating film

Publications (1)

Publication Number Publication Date
JPS6292329A true JPS6292329A (en) 1987-04-27

Family

ID=16948964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23304785A Pending JPS6292329A (en) 1985-10-17 1985-10-17 Forming method for insulating film

Country Status (1)

Country Link
JP (1) JPS6292329A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443642A (en) * 1990-06-11 1992-02-13 G T C:Kk Formation of gate insulating film
US5504019A (en) * 1990-11-16 1996-04-02 Seiko Epson Corporation Method for fabricating a thin film semiconductor
WO1999034431A1 (en) * 1997-12-26 1999-07-08 Seiko Epson Corporation Method of producing silicon oxide film, method of manufacturing semiconductor device, semiconductor device, display, and infrared irradiating device
JP2005268798A (en) * 2004-03-15 2005-09-29 Sharp Corp Method of forming oxide thin film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443642A (en) * 1990-06-11 1992-02-13 G T C:Kk Formation of gate insulating film
US5504019A (en) * 1990-11-16 1996-04-02 Seiko Epson Corporation Method for fabricating a thin film semiconductor
US5637512A (en) * 1990-11-16 1997-06-10 Seiko Epson Corporation Method for fabricating a thin film semiconductor device
WO1999034431A1 (en) * 1997-12-26 1999-07-08 Seiko Epson Corporation Method of producing silicon oxide film, method of manufacturing semiconductor device, semiconductor device, display, and infrared irradiating device
US6407012B1 (en) 1997-12-26 2002-06-18 Seiko Epson Corporation Method of producing silicon oxide film, method of manufacturing semiconductor device, semiconductor device, display and infrared irradiating device
US6632749B2 (en) 1997-12-26 2003-10-14 Seiko Epson Corporation Method for manufacturing silicon oxide film, method for manufacturing semiconductor device, semiconductor device, display device and infrared light irradiating device
JP2005268798A (en) * 2004-03-15 2005-09-29 Sharp Corp Method of forming oxide thin film

Similar Documents

Publication Publication Date Title
KR970030474A (en) Thin junction formation method of semiconductor device
JPH02230739A (en) Method of applying fire-resistant metal
JPS6292329A (en) Forming method for insulating film
JPS63304670A (en) Manufacture of thin film semiconductor device
JPS6292328A (en) Forming method for insulating film
JPH0575184B2 (en)
JPS5910271A (en) Semiconductor device
JP2854038B2 (en) Semiconductor element
JPS63119268A (en) Manufacture of semiconductor device
JP3051807B2 (en) Insulated gate field effect semiconductor device and method of manufacturing the same
JPH01160009A (en) Manufacture of semiconductor device
CN115588612B (en) Preparation method of silicon carbide gate oxide layer and corresponding device
JPH0231507B2 (en) HANDOTAISOCHI
JP3535465B2 (en) Method for manufacturing semiconductor device
JP3169309B2 (en) Method for manufacturing thin film semiconductor device
JP2857170B2 (en) Method for manufacturing semiconductor device
JPS59188957A (en) Manufacture of capacitor for semiconductor device
JPH043978A (en) Manufacture of semiconductor device
JPH0458526A (en) Formation method of polycide element
JPH113887A (en) Manufacture of thin film transistor
JPH0214568A (en) Manufacture of semiconductor device
JPH01238144A (en) Manufacture of semiconductor device
TW410380B (en) Method of forming the gate oxide
JPH0377661B2 (en)
JPH04206741A (en) Formation of schottky junction