JP3051807B2 - Insulated gate field effect semiconductor device and method of manufacturing the same - Google Patents

Insulated gate field effect semiconductor device and method of manufacturing the same

Info

Publication number
JP3051807B2
JP3051807B2 JP5311519A JP31151993A JP3051807B2 JP 3051807 B2 JP3051807 B2 JP 3051807B2 JP 5311519 A JP5311519 A JP 5311519A JP 31151993 A JP31151993 A JP 31151993A JP 3051807 B2 JP3051807 B2 JP 3051807B2
Authority
JP
Japan
Prior art keywords
layer
sio
film
poly
sion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5311519A
Other languages
Japanese (ja)
Other versions
JPH07161996A (en
Inventor
成浩 諸沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP5311519A priority Critical patent/JP3051807B2/en
Publication of JPH07161996A publication Critical patent/JPH07161996A/en
Application granted granted Critical
Publication of JP3051807B2 publication Critical patent/JP3051807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は絶縁ゲート型電界効果半
導体装置及びその製造方法に関し、より詳細には低温プ
ロセスで製造することのできる絶縁ゲート型電界効果半
導体装置及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated gate field effect semiconductor device and a method of manufacturing the same, and more particularly to an insulated gate field effect semiconductor device which can be manufactured by a low-temperature process and a method of manufacturing the same. .

【0002】[0002]

【従来の技術】近年、ガラス基板を用いることにより、
600℃程度の低温プロセスで、ディスプレイやイメー
ジセンサ等の大面積な部分に薄膜トランジスタ(以下T
FTと略す)が作製されるようになっている。
2. Description of the Related Art In recent years, by using a glass substrate,
In a low-temperature process of about 600 ° C., thin-film transistors (hereinafter referred to as T
FT).

【0003】TFTのチャネル半導体層にポリSiある
いはアモルファスSiを、ゲート絶縁膜にSiO2膜を
用いた場合、そのTFTの製造時の熱処理温度は約60
0℃以下である。このため、ゲート絶縁膜のSiO2
を作製するためには、低温成膜が可能であるプラズマC
VD法(例えば、Jounal of Applied Physics Vol.60(9)
p3136 (1986))、リモートプラズマCVD法(例えば、J
ounal of Vacuum Science Technology A5(4) p2231 (19
87))、APCVD法、LPCVD法、スパッタリング法
(例えば、IEEE Trans.Electron Devices 135(12) p3104
(1989))等の堆積法によるゲート絶縁膜の形成が行われ
ている。ところが、これらの方法で得られたSiO2
は緻密なものではないためTFTの信頼性の低下の原因
となる。
When poly-Si or amorphous Si is used for a channel semiconductor layer of a TFT and an SiO 2 film is used for a gate insulating film, a heat treatment temperature at the time of manufacturing the TFT is about 60 ° C.
0 ° C. or less. For this reason, in order to form the SiO 2 film as the gate insulating film, the plasma C that can be formed at a low temperature can be used.
VD method (for example, Journal of Applied Physics Vol.60 (9)
p3136 (1986)), remote plasma CVD (for example, J
ounal of Vacuum Science Technology A5 (4) p2231 (19
87)), APCVD method, LPCVD method, sputtering method
(For example, IEEE Trans.Electron Devices 135 (12) p3104
(1989)) and the like. However, since the SiO 2 film obtained by these methods is not dense, it causes a reduction in the reliability of the TFT.

【0004】また、これらのSiO2膜の緻密化の方法
としてはN2雰囲気中において900℃程度の高温アニ
ールやランプアニール等があるが、いずれも600℃以
上の高温熱処理で行わないと、高品質なゲート絶縁膜が
得られない。
As a method for densifying these SiO 2 films, there are high-temperature annealing at about 900 ° C. and lamp annealing in an N 2 atmosphere. A high quality gate insulating film cannot be obtained.

【0005】さらに、SiO2膜の窒化により、ホット
キャリア注入に強い信頼性の高いトランジスタを得る技
術が従来報告されている(例えば、IEEE Trans.Electron
Devices ED-29 p498 (1982))が、ここでも窒化を行う
ためには900℃以上の高温が必要である。
Further, a technique for obtaining a highly reliable transistor which is resistant to hot carrier injection by nitriding an SiO 2 film has been reported (for example, IEEE Trans. Electron).
Devices ED-29 p498 (1982)), however, requires a high temperature of 900 ° C. or more to perform nitriding.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記方
法で作製されたゲート絶縁膜は比較的高温での作製とな
るか、あるいは600℃以下の低温作製をすると緻密で
高品質なものが得られず、SiO2膜中に多量のトラッ
プを含んでいるためTFT特性に悪影響を及ぼす。ま
た、これらのトラップがホットエレクトロン注入の原因
となるため、素子の信頼性に対しても問題となる。ま
た、低温形成のために界面準位密度も高く、良好な界面
が形成されにくい。一方、熱歪み等から低温でのTFT
作製の要望も強い。
However, the gate insulating film manufactured by the above method is manufactured at a relatively high temperature, or when formed at a low temperature of 600 ° C. or less, a dense and high quality film cannot be obtained. Since a large amount of traps are contained in the SiO 2 film, TFT characteristics are adversely affected. In addition, since these traps cause hot electron injection, there is a problem with respect to the reliability of the device. Further, the interface state density is high due to the low temperature formation, and it is difficult to form a good interface. On the other hand, TFTs at low temperature due to thermal distortion etc.
There is also a strong demand for fabrication.

【0007】本発明は、このような問題に鑑みなされた
ものであり、界面近傍のSiO2膜の緻密化と界面原子
のネットワークを再構成させることで、界面準位密度を
減少させ、界面付近にSiON層を導入することでホッ
トエレクトロン注入に対して強いゲート絶縁膜を形成し
て、比較的低温で高品質なゲート絶縁膜を得ることを目
的としている。
The present invention has been made in view of such a problem, and reduces the interface state density by reducing the density of the interface state by densifying the SiO 2 film near the interface and reconstructing the network of interface atoms. An object of the present invention is to form a gate insulating film resistant to hot electron injection by introducing a SiON layer into the gate insulating film and obtain a high-quality gate insulating film at a relatively low temperature.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の本発明
の絶縁ゲート型電界効果半導体装置は、絶縁基板上に形
成されたポリSi層と、該ポリSi層上に形成されたS
iON層と該SiON層上に形成されたSiO2層とか
らなる絶縁ゲート層と、該絶縁ゲート層上に形成された
ゲート電極とを備えた絶縁ゲート型電界効果半導体装置
であって、該ポリSi層上に形成されたSiON層はS
iO 2 膜をプラズマ窒化処理した薄膜であるとともに、
該SiON層の膜厚は1nm以上10nm以下である
とを特徴とする。
According to a first aspect of the present invention, there is provided an insulated gate type field effect semiconductor device according to the present invention, wherein a poly-Si layer formed on an insulating substrate and a poly-Si layer formed on the poly-Si layer are formed.
An insulated gate field effect semiconductor device including an insulated gate layer including an iON layer and an SiO 2 layer formed on the SiON layer, and a gate electrode formed on the insulated gate layer
And the SiON layer formed on the poly-Si layer is S
A thin film obtained by plasma nitriding the iO 2 film,
The thickness of the SiON layer is 1 nm or more and 10 nm or less .

【0009】請求項2に記載の本発明の絶縁ゲート型電
界効果半導体装置は、絶縁基板上に形成されたポリSi
層と、該ポリSi層上に形成されたSiON層と該Si
ON層上に形成されたSiO2層とからなる絶縁ゲート
層と、該絶縁ゲート層上に形成されたゲート電極と、上
記ポリSi層表面にソース領域とドレイン領域とを備
え、TFTをなしている絶縁ゲート型電界効果半導体装
置であって、該ポリSi層上に形成されたSiON層は
SiO 2 膜をプラズマ窒化処理した薄膜であるととも
に、該SiON層の膜厚は1nm以上10nm以下であ
ることを特徴とする
According to a second aspect of the present invention, there is provided an insulated gate field effect semiconductor device comprising a poly-Si formed on an insulating substrate.
Layer, a SiON layer formed on the poly-Si layer, and the Si layer.
An insulated gate layer comprising an SiO 2 layer formed on the ON layer, a gate electrode formed on the insulated gate layer, and a source region and a drain region on the surface of the poly-Si layer, forming a TFT. Insulated gate field effect semiconductor device
Wherein the SiON layer formed on the poly-Si layer is
It is a thin film obtained by plasma nitriding SiO 2 film
The thickness of the SiON layer is 1 nm or more and 10 nm or less.
It is characterized by that .

【0010】[0010]

【0011】請求項3に記載の本発明の絶縁ゲート型電
界効果半導体装置の製造方法は、絶縁基板上にポリSi
層を形成する工程と、該ポリSi層上に第1のSiO2
層を形成する工程と、第1のSiO2層をプラズマ窒化
してSiON層とする工程と、該SiON層上に第2の
SiO2層を形成する工程と、第2のSiO2層上に導電
膜を形成してゲート電極を形成する工程とを含むことを
特徴とする。
[0011] manufacturing method of an insulated gate field effect semiconductor device of the present invention according to claim 3, poly-Si on insulation substrate
Forming a layer, and forming a first SiO 2 layer on the poly-Si layer.
Forming a layer, plasma nitriding the first SiO 2 layer to form a SiON layer, forming a second SiO 2 layer on the SiON layer, and forming a second SiO 2 layer on the second SiO 2 layer. Forming a gate electrode by forming a conductive film.

【0012】[0012]

【作用】本発明によれば、極薄(1〜10nm程度)の
絶縁膜を作製した後、引き続きN(窒素)を含むガスの
プラズマでプラズマ窒化処理することで、界面近傍の絶
縁膜の緻密化と界面原子の再構成を行い、3配位のNが
界面準位密度を減少させ良好な界面を得ることで、高移
動度、Vth、S係数の低いTFT特性を得ることが可
能となる。また、界面近傍のSiON層がホットエレク
トロン注入に対して強くなるため、信頼性に優れたTF
Tを得ることができる。
According to the present invention, after an extremely thin (about 1 to 10 nm) insulating film is formed, plasma nitriding is performed with a plasma of a gas containing N (nitrogen) so that the insulating film in the vicinity of the interface becomes dense. And the rearrangement of interface atoms, and the three-coordinate N reduces the interface state density and obtains a good interface, so that it is possible to obtain TFT characteristics with high mobility, low Vth, and low S coefficient. . Further, since the SiON layer near the interface is resistant to hot electron injection, TF having excellent reliability is provided.
T can be obtained.

【0013】なお、本発明では製造工程におけるゲート
絶縁膜のSiO2膜を作製する工程を3つに分け、まず
最初に極薄い(1〜10nm程度が最も望ましい)Si
2膜をチャネル半導体上に作製し、次にN2等のN原子
を含むガス(例えばNH3,N2O等)のプラズマでSi
2上からプラズマ処理を行う。最後に必要なSiO2
を成膜してゲート絶縁膜を構成する。この時、初期Si
2の膜厚が厚すぎる(通常10nm以上)と界面付近
のSiO2膜に対するプラズマ処理の効果小さく、薄す
ぎる(通常1nm以下)とプラズマによるチャネル半導
体へのダメージが問題となるため、プラズマ処理の条件
に応じた最適膜厚範囲が存在する。
In the present invention, the step of manufacturing the SiO 2 film as the gate insulating film in the manufacturing process is divided into three steps, and first, an extremely thin (about 1 to 10 nm most preferable) Si
An O 2 film is formed on the channel semiconductor, and then the Si film is formed by plasma of a gas containing N atoms such as N 2 (for example, NH 3 , N 2 O, etc.).
Plasma treatment is performed from above O 2 . Finally, a necessary SiO 2 film is formed to form a gate insulating film. At this time, the initial Si
If the O 2 film thickness is too thick (normally 10 nm or more), the effect of the plasma treatment on the SiO 2 film near the interface is small, and if the O 2 film thickness is too thin (normally 1 nm or less), damage to the channel semiconductor by the plasma becomes a problem. There is an optimum film thickness range according to the above condition.

【0014】[0014]

【実施例】以下に、本発明の実施例に係るTFTの製造
方法を図面に基づいて説明する。なお、ここではチャネ
ル半導体としてポリSi膜を用いているが、他のSi系
半導体として、アモルファスSi,単結晶Si,SiG
e等を用いることも可能である。また、以下の実施例で
はTFTについて説明するが、後述するソース、ドレイ
ンの形成を行わないことにより、ただ単にキャパシタの
ゲート絶縁膜として用い得ることは明白である。さら
に、ゲート絶縁膜直下にVth等を調整するため適宜不
純物を上記ポリSi膜に導入することも可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a TFT according to an embodiment of the present invention will be described with reference to the drawings. Although a poly-Si film is used as a channel semiconductor here, amorphous Si, single-crystal Si, SiG
It is also possible to use e and the like. In the following embodiments, a TFT will be described. However, it is apparent that the TFT can be simply used as a gate insulating film of a capacitor by not forming a source and a drain described later. Further, an impurity can be appropriately introduced into the poly-Si film just below the gate insulating film in order to adjust Vth or the like.

【0015】まず、図1(a)に示すように、約600
℃の熱処理に耐える歪み点温度の高いガラス基板1上に
Si26ガスでLPCVD法により約450℃の基板温
度でアモルファスSi膜を成膜する。このアモルファス
Si膜をN2雰囲気中において600℃で約20時間ア
ニールして、固相成長によりポリSi膜を得、エッチン
グにより所望の形にアイランド化し、半導体層2を形成
する。
First, as shown in FIG.
An amorphous Si film is formed on a glass substrate 1 having a high strain point temperature capable of withstanding a heat treatment at a temperature of about 450 ° C. by a LPCVD method using a Si 2 H 6 gas. This amorphous Si film is annealed at 600 ° C. for about 20 hours in an N 2 atmosphere to obtain a poly-Si film by solid phase growth, and to form an island in a desired shape by etching, thereby forming the semiconductor layer 2.

【0016】次に、図1(b)に示すように、この半導
体層2上にゲート絶縁膜となるSiO2膜3をリモート
プラズマCVD法により、膜厚1〜10nm程度、本実
施例では5nm成膜する。リモートプラズマCVD法に
よる成膜条件は基板温度300℃、反応圧力0.2To
rr,SiH4流量1sccm,O2流量50sccm,
RFパワー200Wで行った。この際のSiO2膜3の
成膜方法はリモートプラズマCVD法に限らず、低温成
膜が可能であればプラズマCVD法、ECRCVD法、
LPCVD法、APCVD法等でもよい。また、SiO
2膜3の膜厚は10nm以上では、後述するプラズマ処
理の効果が少ないため、10nm以下が望ましい。ま
た、膜厚の範囲はプラズマ処理装置や処理条件に依存し
て異なるが、1nm以下と薄すぎると半導体層2に対す
るダメージがあり、10nm以上と厚すぎるとN(窒
素)の界面(半導体層2とプラズマ処理したSiO2
3との界面)への拡散が行われないため、それぞれプラ
ズマ処理の効果が減少する。従って、SiO2膜3の膜
厚は1nm以上10nm以下が望ましい。
Next, as shown in FIG. 1B, an SiO 2 film 3 serving as a gate insulating film is formed on the semiconductor layer 2 by a remote plasma CVD method to a thickness of about 1 to 10 nm, and in this embodiment, 5 nm. Form a film. The film forming conditions by the remote plasma CVD method are a substrate temperature of 300 ° C. and a reaction pressure of 0.2 To.
rr, SiH 4 flow rate 1 sccm, O 2 flow rate 50 sccm,
RF power was set to 200 W. At this time, the method of forming the SiO 2 film 3 is not limited to the remote plasma CVD method, but may be a plasma CVD method, an ECRCVD method, if a low-temperature film formation is possible.
LPCVD, APCVD or the like may be used. In addition, SiO
When the thickness of the second film 3 is 10 nm or more, the effect of the plasma treatment described later is small, and therefore, it is preferably 10 nm or less. Further, the range of the film thickness varies depending on the plasma processing apparatus and processing conditions, but if it is too thin as 1 nm or less, damage to the semiconductor layer 2 is caused. If it is too thick as 10 nm or more, the interface of N (nitrogen) (the semiconductor layer 2 Is not diffused to the interface between the SiO 2 film 3 and the plasma-treated SiO 2 film 3, thereby reducing the effect of the plasma treatment. Therefore, the thickness of the SiO 2 film 3 is preferably 1 nm or more and 10 nm or less.

【0017】次に、図1(c)に示すように、引き続い
て10分間、N2プラズマでプラズマ処理(ここではN2
ガスを用いているが、例えばN2OやNH3等のNを含む
ガスであれば特にガスは限定されない)して、SiO2
膜3をSiON膜にする。ここで、SiO2膜3すべて
をSiON膜に変化させなくてもよい。また、この時の
プラズマ処理の条件は基板温度300℃,反応圧力0.
5Torr,N2流量100sccm,パワー密度0.
1W/cm2で行った。なお、プラズマ処理温度は、6
00℃以下であればよい。また、プラズマ処理をここで
は平行平板プラズマCVD装置で行っているが、リモー
トプラズマCVD装置やECRCVD装置で行うことも
可能である。
[0017] Next, as shown in FIG. 1 (c), followed by 10 minutes, the plasma treatment (where N 2 plasma N 2
Although using a gas, such as in particular a gas as long as the gas containing N such as N 2 O and NH 3 is not limited) to, SiO 2
The film 3 is an SiON film. Here, the entire SiO 2 film 3 does not need to be changed to the SiON film. At this time, the conditions of the plasma processing are a substrate temperature of 300 ° C. and a reaction pressure of 0.
5 Torr, N 2 flow rate 100 sccm, the power density 0.
The test was performed at 1 W / cm 2 . The plasma processing temperature is 6
The temperature may be at most 00 ° C. Although the plasma processing is performed by a parallel plate plasma CVD apparatus here, the plasma processing can be performed by a remote plasma CVD apparatus or an ECRCVD apparatus.

【0018】次に、図1(d)に示すように、SiO2
膜3’を膜厚90〜100nm程度、本実施例では95
nmの厚さでリモートプラズマCVD装置により成膜し
てプラズマ処理したSiO2膜3とSiO2膜3’とから
なるゲート絶縁膜を形成する。
Next, as shown in FIG. 1 (d), SiO 2
The film 3 ′ is formed to have a thickness of about 90 to 100 nm,
A gate insulating film composed of a SiO 2 film 3 and a SiO 2 film 3 ′ having a thickness of nm and formed by a remote plasma CVD apparatus and subjected to plasma processing is formed.

【0019】次に、図1(e)に示すように、ガラス基
板1上に膜厚250nm程度のポリシリコンSi膜を成
膜し、所望の形状にパターニングしてゲート電極4を形
成する。これを自己整合的に不純物元素(Nchの場合
はリン、Pchの場合はボロン)を1×1015ion/
cm2,40keV程度でイオン注入し、活性化を行う
ことにより図示しないTFTのソース及びドレインを形
成する。そして、この工程と同時に不純物イオン注入に
より、ゲート電極4の低抵抗化を行った後、膜厚500
nm程度のSiO2膜からなる層間絶縁膜5を成膜す
る。
Next, as shown in FIG. 1E, a polysilicon Si film having a thickness of about 250 nm is formed on the glass substrate 1 and is patterned into a desired shape to form the gate electrode 4. This is self-aligned with an impurity element (phosphorus in the case of Nch, boron in the case of Pch) of 1 × 10 15 ion /
The source and drain of a TFT (not shown) are formed by ion-implanting and activating at about cm 2 and about 40 keV. Then, simultaneously with this step, the resistance of the gate electrode 4 is reduced by impurity ion implantation.
An interlayer insulating film 5 made of a SiO 2 film having a thickness of about nm is formed.

【0020】最後に、図1(f)に示すように、ソー
ス、ドレイン上の層間絶縁膜5にコンタクトホールを形
成した後、例えばアルミニウムの引き出し電極6を形成
し、TFTは完成する。
Finally, as shown in FIG. 1F, after a contact hole is formed in the interlayer insulating film 5 on the source and the drain, a lead electrode 6 made of, for example, aluminum is formed to complete the TFT.

【0021】このようにしてゲート絶縁膜を3工程に分
けて作製したTFT特性は下表に示す値を示した。
The characteristics of the TFT thus manufactured by dividing the gate insulating film into three steps are shown in the following table.

【0022】[0022]

【表1】 [Table 1]

【0023】ここでは、比較例として、プラズマ処理な
しでリモートプラズマCVD法によりSiO2膜を形成
して作製したTFT特性を同時に示す。ここで、比較例
として用いたTFTのゲート絶縁膜とプラズマ処理を加
えて作製したTFTのゲート絶縁膜の換算膜厚は等し
い。表から明らかなように、移動度、Vth,S係数は
プラズマ処理を加えないSiO2膜でゲート絶縁膜を構
成したTFT特性に比べて、高移動度、および低いVt
h、低いS係数を示しており、界面構造の改善を示して
いる。
Here, as a comparative example, the characteristics of a TFT manufactured by forming an SiO 2 film by a remote plasma CVD method without plasma processing are also shown. Here, the equivalent film thickness of the gate insulating film of the TFT used as the comparative example and the gate insulating film of the TFT manufactured by performing the plasma treatment are equal. As is clear from the table, the mobility, Vth, and S coefficient are higher and lower than those of the TFT characteristics in which the gate insulating film is formed of the SiO 2 film to which no plasma treatment is applied.
h, shows a low S coefficient, indicating an improvement in the interface structure.

【0024】図2に、ゲート印加電界強度8MV/c
m、大気中温度150℃でのTDDB特性を示す。この
図から明らかな通りプラズマ処理を加えたゲート絶縁膜
のTDDB特性は、プラズマ処理を加えていない特性に
比べて優れた値を示しており、電子の注入の起こりにく
い信頼性の高い絶縁膜になっている。したがって、プラ
ズマ処理を加えたTFTは特性とともに信頼性において
も優れていることがわかる。
FIG. 2 shows the gate applied electric field strength of 8 MV / c.
m, TDDB characteristics at an atmospheric temperature of 150 ° C. As is clear from this figure, the TDDB characteristic of the gate insulating film subjected to the plasma treatment shows an excellent value as compared with the characteristic not subjected to the plasma treatment. Has become. Therefore, it can be seen that the TFT subjected to the plasma treatment is excellent not only in characteristics but also in reliability.

【0025】[0025]

【発明の効果】本発明によれば、極薄SiO2上からN
を含むガスのプラズマで処理することで、界面近傍のS
iO2層の緻密化と界面原子の再構成を行い、界面に3
配位のNを導入することで界面準位密度を減少させるこ
とで、移動度、Vth、S係数等のTFT特性を向上さ
せることが出来る。
According to the present invention, N over the ultrathin SiO 2
Is treated with a plasma of a gas containing
The densification of the iO 2 layer and the reconstitution of interface atoms were performed, and 3
By reducing the interface state density by introducing coordination N, TFT characteristics such as mobility, Vth, and S coefficient can be improved.

【0026】また、界面層にSiON層が形成されるこ
とでホットエレクトロン注入に対して強くなり、信頼性
の高いTFTを得ることが出来る。
Further, the formation of the SiON layer in the interface layer makes it resistant to hot electron injection, so that a highly reliable TFT can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係るゲート絶縁膜およびTF
Tの製造方法を示す工程断面図である。
FIG. 1 shows a gate insulating film and a TF according to an embodiment of the present invention.
FIG. 5 is a process cross-sectional view illustrating a method of manufacturing T.

【図2】本発明の実施例及び比較例により作製したゲー
ト絶縁膜のTDDB特性を示すグラフである。
FIG. 2 is a graph showing TDDB characteristics of gate insulating films manufactured according to examples of the present invention and comparative examples.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 半導体層 3 プラズマ処理をしたSiO2膜 3’ SiO2膜 4 ゲート電極 5 層間絶縁膜 6 引き出し電極1 SiO 2 film 3 and the glass substrate 2 the semiconductor layer 3 plasma process' SiO 2 film 4 gate electrode 5 interlayer insulating film 6 lead electrode

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁基板上に形成されたポリSi層と、
該ポリSi層上に形成されたSiON層と該SiON層
上に形成されたSiO2層とからなる絶縁ゲート層と、
該絶縁ゲート層上に形成されたゲート電極とを備えた
縁ゲート型電界効果半導体装置であって、該ポリSi層
上に形成されたSiON層はSiO 2 膜をプラズマ窒化
処理した薄膜であるとともに、該SiON層の膜厚は1
nm以上10nm以下であることを特徴とする絶縁ゲー
ト型電界効果半導体装置。
A poly-Si layer formed on an insulating substrate;
An insulated gate layer including a SiON layer formed on the poly-Si layer and a SiO 2 layer formed on the SiON layer;
Absolute with a gate electrode formed on the insulating gate layer
An edge gate type field effect semiconductor device, comprising:
The upper SiON layer is formed by plasma nitriding SiO 2 film.
The SiON layer has a thickness of 1
An insulated gate field effect semiconductor device having a thickness of not less than 10 nm and not more than 10 nm .
【請求項2】 絶縁基板上に形成されたポリSi層と、
該ポリSi層上に形成されたSiON層と該SiON層
上に形成されたSiO2層とからなる絶縁ゲート層と、
該絶縁ゲート層上に形成されたゲート電極と、上記ポリ
Si層表面にソース領域とドレイン領域とを備え、TF
Tをなしている絶縁ゲート型電界効果半導体装置であっ
て、該ポリSi層上に形成されたSiON層はSiO 2
膜をプラズマ窒化処理した薄膜であるとともに、該Si
ON層の膜厚は1nm以上10nm以下であることを特
徴とする絶縁ゲート型電界効果半導体装置。
2. A poly-Si layer formed on an insulating substrate,
An insulated gate layer including a SiON layer formed on the poly-Si layer and a SiO 2 layer formed on the SiON layer;
A gate electrode formed on the insulated gate layer; a source region and a drain region on the surface of the poly-Si layer;
Insulated gate type field effect semiconductor device forming T
The SiON layer formed on the poly-Si layer is SiO 2
The film is a plasma-nitrided thin film,
The thickness of the ON layer is not less than 1 nm and not more than 10 nm.
Insulated gate field effect semiconductor device.
【請求項3】 絶縁基板上にポリSi層を形成する工程
と、該ポリSi層上に第1のSiO 2 層を形成する工程
と、第1のSiO 2 層をプラズマ窒化してSiON層と
する工程と、該SiON層上に第2のSiO 2 層を形成
する工程と、第2のSiO 2 層上に導電膜を形成してゲ
ート電極を形成する工程とを含むことを特徴とする絶縁
ゲート型電界効果半導体装置の製造方法。
3. A process for forming a poly-Si layer on an insulating substrate.
Forming a first SiO 2 layer on the poly-Si layer
And plasma nitriding the first SiO 2 layer to form an SiON layer
And forming a second SiO 2 layer on the SiON layer
And forming a conductive film on the second SiO 2 layer,
Forming a gate electrode.
A method for manufacturing a gate type field effect semiconductor device.
JP5311519A 1993-12-13 1993-12-13 Insulated gate field effect semiconductor device and method of manufacturing the same Expired - Fee Related JP3051807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5311519A JP3051807B2 (en) 1993-12-13 1993-12-13 Insulated gate field effect semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5311519A JP3051807B2 (en) 1993-12-13 1993-12-13 Insulated gate field effect semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07161996A JPH07161996A (en) 1995-06-23
JP3051807B2 true JP3051807B2 (en) 2000-06-12

Family

ID=18018221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5311519A Expired - Fee Related JP3051807B2 (en) 1993-12-13 1993-12-13 Insulated gate field effect semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3051807B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10541128B2 (en) 2016-08-19 2020-01-21 International Business Machines Corporation Method for making VFET devices with ILD protection

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867432B1 (en) 1994-06-09 2005-03-15 Semiconductor Energy Lab Semiconductor device having SiOxNy gate insulating film
US6601308B2 (en) * 2002-01-02 2003-08-05 Bahram Khoshnood Ambient light collecting bow sight
US8318554B2 (en) * 2005-04-28 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Method of forming gate insulating film for thin film transistors using plasma oxidation
JP2007081414A (en) * 2006-10-10 2007-03-29 Seiko Epson Corp Method of manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10541128B2 (en) 2016-08-19 2020-01-21 International Business Machines Corporation Method for making VFET devices with ILD protection
US11164959B2 (en) 2016-08-19 2021-11-02 International Business Machines Corporation VFET devices with ILD protection

Also Published As

Publication number Publication date
JPH07161996A (en) 1995-06-23

Similar Documents

Publication Publication Date Title
US5302552A (en) Method of manufacturing a semiconductor device whereby a self-aligned cobalt or nickel silicide is formed
JP2848299B2 (en) Semiconductor device and manufacturing method thereof
EP0344863B1 (en) A method of producing a thin film transistor
US4833099A (en) Tungsten-silicide reoxidation process including annealing in pure nitrogen and subsequent oxidation in oxygen
EP0588487A2 (en) Method of making thin film transistors
US4774201A (en) Tungsten-silicide reoxidation technique using a CVD oxide cap
JP3051807B2 (en) Insulated gate field effect semiconductor device and method of manufacturing the same
KR100269021B1 (en) Insulated-gate type field-effect semiconductor device and manufacture thereof
JP3494304B2 (en) Method for manufacturing thin film semiconductor device
US7202142B2 (en) Method for producing low defect density strained -Si channel MOSFETS
JPH03227516A (en) Manufacture of semiconductor device
JP3443909B2 (en) Semiconductor film forming method, semiconductor device manufacturing method, and semiconductor device
US7329589B2 (en) Method for manufacturing silicon-on-insulator wafer
JP3278237B2 (en) Method for manufacturing thin film transistor
JPS63119268A (en) Manufacture of semiconductor device
JP3169309B2 (en) Method for manufacturing thin film semiconductor device
JP3173757B2 (en) Method for manufacturing semiconductor device
JPS6146069A (en) Manufacture of semiconductor device
JP3042803B2 (en) TFT polysilicon thin film making method
JPH09246557A (en) Semiconductor device and its manufacture
JP3173758B2 (en) Semiconductor device and manufacturing method thereof
JP3153202B2 (en) Method for manufacturing semiconductor device
JPH06196704A (en) Thin film semiconductor device
JPS63278377A (en) Manufacture of polycrystalline si thin film semiconductor device
JPH03185874A (en) Manufacture of thin film semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080331

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees