JPS6289342A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS6289342A
JPS6289342A JP23162485A JP23162485A JPS6289342A JP S6289342 A JPS6289342 A JP S6289342A JP 23162485 A JP23162485 A JP 23162485A JP 23162485 A JP23162485 A JP 23162485A JP S6289342 A JPS6289342 A JP S6289342A
Authority
JP
Japan
Prior art keywords
wirings
contacts
source
integrated circuit
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23162485A
Other languages
Japanese (ja)
Inventor
Yukio Ozawa
幸雄 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23162485A priority Critical patent/JPS6289342A/en
Publication of JPS6289342A publication Critical patent/JPS6289342A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology

Abstract

PURPOSE:To improve the operating speed of a whole master slice type semiconductor integrated circuit without augmenting the area of the chip by a method wherein the MOS Trs of parts in the circuit are each provided with contacts for reducing a parasitic resistance plural pieces. CONSTITUTION:A source region 12 and a drain region 13 are each provided with contacts 221 and 222 and contacts 231 and 232 two pieces by two pieces and the respective fellow contacts are connected with first layer wirings 15, tunnel wirings 16 which are layers different from the wirings 15 and through holes 321 and 322, or 331 and 332. At this time, the resistance components of the wirings 15 and 16 are sufficiently smaller compared to those of the wirings 15 and 16 are sufficiently smaller compared to those of the source and drain regions and can be ignored. By this way, in case the overall resistivity between lead-out wirings S-D from each one contact of the source and drain regions is calculated, the resistance component between the S-D becomes smaller. A parasitic resistance component can be reduced in order further increasing the number of contact and by connecting those fellow contacts with wirings.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、MO8型電界効果トランジスタ(以下MO8
Tr )を有する半導体集積回路に関し、特にMOS 
T r のソース領域、ドレイン領域の寄生抵抗を低減
した半導体集積回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an MO8 field effect transistor (hereinafter referred to as MO8 field effect transistor).
Regarding semiconductor integrated circuits having Tr ), especially MOS
The present invention relates to a semiconductor integrated circuit in which the parasitic resistance of the source region and drain region of T r is reduced.

〔従来の技術〕[Conventional technology]

マスタースライス型の集積回路で特にゲートアレイと呼
ばれる種類の集積回路は、半導体基板に同一形状の素子
が多数アレイ状に配置された下地構造をもち、その上層
の配線パタンを変えることにより、所望の論理機能を有
する集積回路を数多く派生させることができる。
A master slice type integrated circuit, particularly a type of integrated circuit called a gate array, has an underlying structure in which many elements of the same shape are arranged in an array on a semiconductor substrate, and by changing the wiring pattern on the upper layer, a desired pattern can be achieved. Many integrated circuits with logic functions can be derived.

基板にあらかじめ配置された素子は、所望の論理機能を
達成するための任意の回路構成に対応させる為、その形
状、電気特性等は大幅な規格化がなされている。また自
動設計に対応させる為に専用の配線領域も設けられてい
る。
The shapes, electrical characteristics, etc. of the elements pre-arranged on the substrate have been significantly standardized in order to correspond to any circuit configuration for achieving a desired logical function. A dedicated wiring area is also provided to support automatic design.

第2図に従来のMO8型ゲートアレイに配置されている
Mos’rrの平面構造例を示す。抽伝目不一  MO
8Trの周囲は他の素子 との絶縁領域10に囲まれ、中央にゲート電極11が通
り、ゲート電位に応じてその直下にチャネルが形成され
、ソース領域12、ドレイン領域13の間で電流が流れ
る。ソース、ドレイン各領域は素子形成の上で同一条件
であり、回路接続上完全に互換性をもつ。これらゲート
電極、ソース領域及びドレイン領域は必要に応じてコン
タクト14、第一層配線15等により他の素子又は電源
配線と接続される。さらにこのM OS T r領域の
上層は他の配線151,152等が通れる様に自由配線
領域にも充てられており、第1層配線用の配線的の自由
トラ、り群300と、さらにその上層の第2層配線用の
配線領域の自由トラック群400が縦横に設けられてい
る一般にゲートアレイにおいては、集積規模(−搭載ゲ
ート数)により、必要な素子数及び配線領域に必要な配
線トラック数はほぼ決定されてしまう。したがってチッ
プ面積を縮小し、さらに回路の高速動作の支障となる寄
生容量の削減の為に、各素子占有面積、配線幅(ピッチ
)の縮小が重要な課題となっている。
FIG. 2 shows an example of the planar structure of Mos'rr arranged in a conventional MO8 type gate array. Abstract Mefuichi MO
The 8Tr is surrounded by an insulating region 10 from other elements, a gate electrode 11 passes through the center, a channel is formed directly below it depending on the gate potential, and current flows between the source region 12 and drain region 13. . The source and drain regions have the same conditions for device formation and are completely compatible in terms of circuit connection. These gate electrodes, source regions, and drain regions are connected to other elements or power supply wiring by contacts 14, first layer wiring 15, etc. as necessary. Furthermore, the upper layer of this MOS TR region is also used as a free wiring area so that other wirings 151, 152, etc. can pass through, and there is a wiring free track group 300 for the first layer wiring, and furthermore, In general, in gate arrays in which free track groups 400 in the wiring area for the upper second layer wiring are provided vertically and horizontally, the required number of elements and the wiring tracks required for the wiring area depend on the integration scale (-number of mounted gates). The number is almost decided. Therefore, in order to reduce the chip area and further reduce the parasitic capacitance that hinders high-speed operation of the circuit, it is important to reduce the area occupied by each element and the wiring width (pitch).

個々のM OS ’1’ rに必要とされる電流利得1
mはゲート長り、ゲート幅Wの比W/Lに比例する。
Current gain 1 required for each MOS '1' r
m is proportional to the ratio W/L of gate length and gate width W.

回路上必要な2mを維持しつつMO8Tr面積削減をは
かる場合、ゲート電極のパターニング技術等の問題によ
り、ゲート長りの縮小には限界があり、ある程度のゲー
ト幅Wがどうしても必要となる。
When attempting to reduce the MO8Tr area while maintaining the required 2 m on the circuit, there is a limit to the reduction in gate length due to problems such as gate electrode patterning technology, and a certain gate width W is inevitably required.

実際に使用されているMO8T rとしては、L:1μ
前後、W:数10μのものがあり、M OS T r全
体の形状はゲート電極のW方向にそって細長くなる傾向
にある。また、このときのソース領域、ドレイン領域の
コンタクト形状は、一定の配線領域内に、より多くの配
線を通す為に、製造プロセス上形成可能な最小限にまで
縮めである。
The MO8Tr actually used is L: 1μ.
Front and back, W: There are some tens of microns, and the overall shape of the MOS transistor tends to be elongated along the W direction of the gate electrode. Further, the contact shapes of the source region and drain region at this time are reduced to the minimum size that can be formed in the manufacturing process in order to pass more wires within a certain wiring region.

第3図は、このようなゲート電極の幅方向にそって細長
い形状のM OS T rのソース領域、ドレイン領域
の寄生抵抗分を模式的に示したもので、ゲート電極コン
タクト21もソース、ドレイン領域のコンタクト22.
23と同じ大きさに縮小されている。ソース、ドレイン
領域のコンタクトはそれぞれの領域のほぼ中央部に設け
られており、各コンタクトからの引き出し配線(第1層
配線)はゲートを01ソースを81 ドレインをDで示
している。またソース、ドレイン領域の寄生抵抗をそれ
ぞれR81〜R84および几D1〜R,D4で示してい
る。
FIG. 3 schematically shows the parasitic resistance of the source and drain regions of the MOS transistor, which has an elongated shape along the width direction of the gate electrode. Area contacts 22.
It has been reduced to the same size as 23. Contacts for the source and drain regions are provided approximately at the center of each region, and the lead wiring (first layer wiring) from each contact is indicated by 01 for the gate, 81 for the source, and D for the drain. Further, the parasitic resistances of the source and drain regions are indicated by R81 to R84 and D1 to R, D4, respectively.

第4図は第3図のM OS T rを小区画501〜5
05の5個に分割し、Tll01〜’I’*osの小区
画MO8Trの集合として寄生抵抗も含めて等価回路に
示したものである。第4図から明らかなように、ソース
、ドレイン領域のコンタクト22.23から離れだ位置
にある小区画M OS T rはど、コンタクトからの
直列抵抗分は大きな値となシ、この直列抵抗が数百オー
ムにおよぶ場合がある。
Figure 4 shows MOSTr in Figure 3 divided into small sections 501 to 5.
05, and the equivalent circuit is shown as a set of small sections MO8Tr of Tll01 to 'I'*os, including parasitic resistance. As is clear from FIG. 4, the series resistance from the contacts in the small sections MOSTr located far from the contacts 22 and 23 in the source and drain regions is large; It may extend to several hundred ohms.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した様に、従来の半導体集積回路では、MO8Tr
はゲート電極の幅方向にそって細長い形状となっており
、ソース領域及びドレイン領域のコンタクト位置が、そ
れぞれ各領域の中央部に位置しているため、コンタクト
位置から離れた部分ではソース領域及びドレイン領域に
寄生する抵抗分が大きくなり、実効的にMO8Trの?
扉を大きく低下させ、このMO8Trを使用した回路の
負荷駆動能力・動作速度を低下さすという欠点がある。
As mentioned above, in conventional semiconductor integrated circuits, MO8Tr
has an elongated shape along the width direction of the gate electrode, and the contact positions of the source region and drain region are located at the center of each region, so the source and drain regions away from the contact position are The parasitic resistance in the region increases, effectively reducing the MO8Tr's resistance.
There is a drawback that the door is greatly reduced, and the load driving ability and operating speed of the circuit using this MO8Tr are reduced.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体集積回路は、M OS T rを含むマ
スタースライス型の半導体集積回路において、少なくと
も1個のM 08 T rが、ソース領域、又はドレイ
ン領域が複数のコンタクトを有し、その複数のコンタク
トがメタライズパタンで直接接続されている構造を有し
ており、このMO8Trはチップの内部領域中に設けら
れている。
The semiconductor integrated circuit of the present invention is a master slice type semiconductor integrated circuit including M 08 T r, in which at least one M 08 T r has a source region or a drain region having a plurality of contacts, and the plurality of contacts It has a structure in which contacts are directly connected by a metallized pattern, and this MO8Tr is provided in the internal region of the chip.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図は本発明の一実施例の平面図である。第3図と同
等部分は同一記号をもって示す。
FIG. 1 is a plan view of one embodiment of the present invention. Parts equivalent to those in Figure 3 are indicated with the same symbols.

図ニおいて、ソース領域12およびドレイン領域13に
は各々2個づつのコンタク)221,222及び231
,232が設けられておシ、それぞれのコンタクトの間
は第一層配線15と、これとは異なる層のトンネル配線
16及びスルーホール321゜322または331,3
32とで接続されている。こ6一 のとき、配線15.16  の抵抗分はソース、ドレイ
ン領域の抵抗分に較べて充分小さく無視することができ
る。第5図は第3図に対する第4図と同様に第1図の等
価回路を示したものである。ここで第4図と第5図を比
較してみると、いまソース領域及びドレイン領域の寄生
抵抗R8I〜R84,。
In FIG.
, 232 are provided, and between each contact there is a first layer wiring 15, a tunnel wiring 16 in a different layer, and through holes 321, 322 or 331, 3.
It is connected with 32. In this case, the resistance of the wirings 15 and 16 is sufficiently small compared to the resistance of the source and drain regions and can be ignored. FIG. 5 shows an equivalent circuit of FIG. 1, similar to FIG. 4 for FIG. 3. Comparing FIG. 4 and FIG. 5, we see that the parasitic resistances R8I to R84 in the source and drain regions.

RDt〜RD4の抵抗値を同じ値Rと仮定し、各小区画
MOS Tr T、。、 〜’1465がON (導通
)したときのM O8Tr (チャネル領域)自身の寄
生抵抗をrtとしてソース、ドレイン領域の各コンタク
トからの引出し配線S −D間の総合抵抗値を計算する
と、第4図は、r(4R2+6R−rt+r”)/(4
R”+101(−rt +5 r% )第5図はr (
2B”+3R−rt+rt)/ (4R” + 101
%−rt+ 5 r2t)となり、第5図の方がS−D
間の抵抗分が小さいことがわかる。さらにコンタクト数
を増し、その間を配線で接続することにより、寄生抵抗
分を順次減少させることが可能である。ただし、チップ
全体のMO8Trを第1図の実施例の様な構造にした場
合、ソース、ドレイン各領域にコンタクトを増やすごと
に各層の配線領域の自由トラックを余分に費いやすため
、配線領域を広げる必要がありチップ面積を太きくしな
ければならない。しかしながら実際には集積回路全体の
動作速度を決定づける部分を構成するMos’rrにの
み本発明を実施することにより、チップ内配線領域をほ
とんど費すことなく、つまシチップ面積を大きくするこ
となく集積回路全体の動作速度を向上させることができ
る。
Assuming that the resistance values of RDt to RD4 are the same value R, each subdivision MOS Tr T,. , ~'1465 is ON (conducting), the parasitic resistance of the MO8Tr (channel region) itself is calculated as rt, and the total resistance value between the lead wires S and D from each contact in the source and drain regions is calculated as follows. The figure shows r(4R2+6R-rt+r”)/(4
R''+101 (-rt +5 r%) Figure 5 shows r (
2B"+3R-rt+rt)/(4R"+101
%-rt+5 r2t), and the one in Figure 5 is S-D.
It can be seen that the resistance between them is small. Furthermore, by increasing the number of contacts and connecting them with wiring, it is possible to gradually reduce the parasitic resistance. However, if the MO8Tr of the entire chip is structured as in the embodiment shown in Figure 1, each time the number of contacts in the source and drain regions is increased, free tracks in the wiring area of each layer will be used up, so the wiring area will be expanded. Therefore, the chip area must be increased. However, in practice, by implementing the present invention only in the Mos'rr that constitutes the part that determines the operating speed of the entire integrated circuit, the integrated circuit can be integrated without using much of the wiring area within the chip or increasing the chip area. The overall operating speed can be improved.

特にゲートアレイではコンピュータによる自動設計を進
める過程で集積回路中の動作速度の上でポイントとなる
部分が容易に割シ出せる為、不発面を効果的に実施する
ことが可能であり、少ない工数で回路性能上顕著な改善
が期待できる。
Particularly in the case of gate arrays, during the automatic design process using a computer, it is easy to identify key points in terms of operating speed within the integrated circuit, making it possible to effectively implement unexploited areas with less man-hours. A significant improvement in circuit performance can be expected.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、マスタースライス型の半
導体集積回路中の一部のMO8T rに寄生抵抗低減用
のコンタクトを複数個設けることにより、チップ面積を
増大させることなく、集積回路全体の動作速度改善が容
易に実現できる効果がある。
As explained above, the present invention provides a plurality of contacts for reducing parasitic resistance in some MO8Trs in a master slice type semiconductor integrated circuit, thereby improving the overall operation of the integrated circuit without increasing the chip area. This has the effect of easily realizing speed improvement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、本発明の一実施例に用いるMO8Trの平面図
、第2図、従来のマスタースライス型の半導体集積回路
中にある一般的なMO8Trの平面図、第3図、MO8
’l”rに付随する寄生抵抗を示したMO8Tr平内図
、第4図、第3図の等価回路、第5図、第1図の等価回
路。 11・・・・・・ゲート電極、12・・・・・・ソース
領域、13・・・・・・ドレイン領域、15・・・・・
・第1層配線、16・・・・・・トンネル配線、RDI
〜RD4・・・・・・ドレイン領域寄生抵抗、R8I〜
884・・・・・・ソース領域寄生抵抗。 4〃
FIG. 1 is a plan view of a MO8Tr used in an embodiment of the present invention; FIG. 2 is a plan view of a general MO8Tr in a conventional master slice type semiconductor integrated circuit; FIG. 3 is a plan view of an MO8Tr used in an embodiment of the present invention;
MO8Tr Hiranai diagram showing the parasitic resistance associated with 'l''r, the equivalent circuit of FIGS. 4 and 3, the equivalent circuit of FIG. 5, and the equivalent circuit of FIG. 1. 11...Gate electrode, 12. ...Source region, 13...Drain region, 15...
・First layer wiring, 16...Tunnel wiring, RDI
~RD4...Drain region parasitic resistance, R8I~
884...Source region parasitic resistance. 4〃

Claims (3)

【特許請求の範囲】[Claims] (1)電界効果トランジスタを含むマスタースライス型
の半導体集積回路において、少なくとも1個の電界効果
トランジスタのソース領域又はドレイン領域が複数のコ
ンタクトを有することを特徴とする半導体集積回路。
(1) A master slice type semiconductor integrated circuit including a field effect transistor, wherein a source region or a drain region of at least one field effect transistor has a plurality of contacts.
(2)前記ソース領域又はドレイン領域の複数のコンタ
クトが直接接続されていることを特徴とする特許請求の
範囲第(1)項記載の半導体集積回路。
(2) The semiconductor integrated circuit according to claim (1), wherein a plurality of contacts of the source region or the drain region are directly connected.
(3)前記電界効果トランジスタがチップの内部領域中
に設けられていることを特徴とする特許請求の範囲第(
1)項記載の半導体集積回路。
(3) Claim No. 3, characterized in that the field effect transistor is provided in an internal region of a chip.
1) The semiconductor integrated circuit described in item 1).
JP23162485A 1985-10-16 1985-10-16 Semiconductor integrated circuit Pending JPS6289342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23162485A JPS6289342A (en) 1985-10-16 1985-10-16 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23162485A JPS6289342A (en) 1985-10-16 1985-10-16 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS6289342A true JPS6289342A (en) 1987-04-23

Family

ID=16926421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23162485A Pending JPS6289342A (en) 1985-10-16 1985-10-16 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS6289342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906587A (en) * 1988-07-29 1990-03-06 Texas Instruments Incorporated Making a silicon-on-insulator transistor with selectable body node to source node connection
US6218694B1 (en) 1998-06-25 2001-04-17 Nec Corporation Semiconductor memory device and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906587A (en) * 1988-07-29 1990-03-06 Texas Instruments Incorporated Making a silicon-on-insulator transistor with selectable body node to source node connection
US6218694B1 (en) 1998-06-25 2001-04-17 Nec Corporation Semiconductor memory device and method for manufacturing same

Similar Documents

Publication Publication Date Title
US6271548B1 (en) Master slice LSI and layout method for the same
JPH0440866B2 (en)
JPH08181216A (en) Library group and semiconductor integrated circuit using library group
US4701777A (en) Gate array type semiconductor integrated circuit device
US5665991A (en) Device having current ballasting and busing over active area using a multi-level conductor process
US5378941A (en) Bipolar transistor MOS transistor hybrid semiconductor integrated circuit device
JPH0480538B2 (en)
JP2822781B2 (en) Master slice type semiconductor integrated circuit device
JP3556416B2 (en) Semiconductor integrated circuit device
EP0021661B1 (en) Semiconductor master-slice device
JPS6289342A (en) Semiconductor integrated circuit
JP3644138B2 (en) Semiconductor integrated circuit and placement and routing method thereof
JP2000068383A (en) Design method for semiconductor integrated circuit device and the semiconductor integrated circuit device
US4034243A (en) Logic array structure for depletion mode-FET load circuit technologies
KR920011006B1 (en) Semiconductor integrated circuit device
JPH0831581B2 (en) Semiconductor device
US4857987A (en) Semiconductor device
JPH0434307B2 (en)
JPS60110137A (en) Semiconductor device
JPH04355952A (en) Semiconductor integrated circuit device
JP3353397B2 (en) Semiconductor integrated circuit
JP2652948B2 (en) Semiconductor integrated circuit
JPS59135744A (en) Semiconductor integrated circuit device
JPH01152642A (en) Semiconductor integrated circuit
JPS59132144A (en) Manufacture of semiconductor integrated circuit device