JPH0434307B2 - - Google Patents

Info

Publication number
JPH0434307B2
JPH0434307B2 JP57027109A JP2710982A JPH0434307B2 JP H0434307 B2 JPH0434307 B2 JP H0434307B2 JP 57027109 A JP57027109 A JP 57027109A JP 2710982 A JP2710982 A JP 2710982A JP H0434307 B2 JPH0434307 B2 JP H0434307B2
Authority
JP
Japan
Prior art keywords
power supply
wiring
potential power
wiring patterns
pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57027109A
Other languages
Japanese (ja)
Other versions
JPS58143550A (en
Inventor
Katsu Sanada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2710982A priority Critical patent/JPS58143550A/en
Publication of JPS58143550A publication Critical patent/JPS58143550A/en
Publication of JPH0434307B2 publication Critical patent/JPH0434307B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits

Description

【発明の詳細な説明】 本発明は多層配線構造を有する大規模集積回路
に係り特にマスタースライス方式における電源配
線のパターンレイアウトに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a large-scale integrated circuit having a multilayer wiring structure, and particularly to a pattern layout of power wiring in a master slice method.

マスタースライス方式は第1図に示すチツプパ
ターン図のように、半導体基板1の対向辺の中心
付近に設けた最高電位(以後VCCと記す)電源パ
ツド2及び最低電位(以後Veeと記す)電源パツ
ド3より“セル”と称する、予め半導体基板1上
に形成されている半導体素子間を配線する事によ
り少くとも基本論理回路を構成できるブロツクが
マトリツクス状に配置された内部領域4へ、交互
に平行にVCC電源配線パターン5及びVee電源配
線パターン6を布線した構成になつており、該セ
ル間を“配線チヤンネル”と称する規格化された
配線領域を介して結線し、さらに入出力回路を介
して半導体基板1の周辺に配した入出力パツド7
に配線することにより所望の電気回路を得る方式
であるが、特に該セルにて構成される回路が
ECL(Emitter Coupled Logic)の時、電源パツ
ド2,3より布線された電源配線5,6の末端部
において該電源配線5,6の配線抵抗により回路
の出力電圧に大きな誤差が生じやすかつた。
As shown in the chip pattern diagram shown in FIG. 1, the master slicing method uses a power pad 2 with the highest potential (hereinafter referred to as V CC ) and the lowest potential (hereinafter referred to as V ee ) provided near the center of the opposing sides of the semiconductor substrate 1 . The power supply pad 3 is alternately connected to an internal region 4 called "cells" in which blocks, which can constitute at least a basic logic circuit by wiring between semiconductor elements formed in advance on the semiconductor substrate 1, are arranged in a matrix. It has a configuration in which a V CC power supply wiring pattern 5 and a V ee power supply wiring pattern 6 are wired in parallel to the cells, and the cells are connected via a standardized wiring area called a "wiring channel", and further input An input/output pad 7 arranged around the semiconductor substrate 1 via an output circuit
This is a method to obtain the desired electrical circuit by wiring the cell, but in particular the circuit configured by the cell is
When using ECL (Emitter Coupled Logic), large errors tend to occur in the output voltage of the circuit due to the wiring resistance of the power supply wirings 5 and 6 at the ends of the power supply wirings 5 and 6 routed from the power supply pads 2 and 3. .

すなわち、第2図に示す基本的ECL回路にお
いて、トランジスターT1,T2,T3は同一形
状であり、トランジスターT1,T2のコレクタ
ーより接続されるコレクター抵抗RC1,RC2は第
1図に示したVCC電源配線5による配線抵抗rc
介してVCC電源パツド2に接続されており、トラ
ンジスターT3のエミツターより接続されるエミ
ツター抵抗RE3は第1図に示したVee電源配線6
による配線抵抗reを介してVee電源パツド3に接
続されておりさらにトランジスターT1のベース
端子B1は信号入力端子であり、トランジスター
T2のベース端子B2はリフアレンス入力端子で
あり、トランジスターT3のベース端子B3は
ECL回路を駆動させる定電圧が入力する端子で
あり各々のベース端子電圧をVB1,VB2,VB3と表
わす。
That is, in the basic ECL circuit shown in FIG. 2, transistors T1, T2, and T3 have the same shape, and collector resistors R C1 and R C2 connected from the collectors of transistors T1 and T2 are V as shown in FIG. It is connected to the V CC power supply pad 2 via the wiring resistance r c of the CC power supply wiring 5, and the emitter resistor R E3 connected to the emitter of the transistor T3 is connected to the Vee power supply wiring 6 shown in FIG.
The base terminal B1 of the transistor T1 is a signal input terminal, the base terminal B2 of the transistor T2 is a reference input terminal, and the base terminal B3 of the transistor T3 is connected to the Vee power supply pad 3 via a wiring resistance r e. teeth
These are terminals into which a constant voltage that drives the ECL circuit is input, and the respective base terminal voltages are expressed as V B1 , V B2 , and V B3 .

今トランジスターT2のコレクター端子C2よ
り出力する出力電圧に注目した時、出力電圧VL
はT3のB−E間電圧をVF(T3)とおくとVB1<VB2
の時Veeを0vとすると、 VL=VCC−(rc+RC2) ×{VB3−VF(T3))}/(re+RE3) … と表わすことができる。
Now when we pay attention to the output voltage output from collector terminal C2 of transistor T2, the output voltage V L
If the voltage between B and E of T3 is set as V F(T3) , then V B1 < V B2
When Vee is set to 0v, it can be expressed as V L = V CC - (r c + R C2 ) x {V B3 - V F(T3) )}/( re + R E3 )...

具体例として、VCC=5v、VB3=1.3v、VF(T3)
1mAにおいて800mv、RC1=RC2=RE3=500Ω、又
rc=100Ωとした時式のより本来rc=re=0Ωにおい
てVL≒4.5vであるものが配線抵抗の影響でVL
4.575vとなり75mvの出力電圧が上昇が伴つた。
As a concrete example, V CC =5v, V B3 =1.3v, V F(T3) is
800mv at 1mA, R C1 = R C2 = R E3 = 500Ω, or
When r c = 100Ω, V L ≒ 4.5 V when r c = r e = 0 Ω, but due to the influence of wiring resistance, V L
The output voltage increased to 4.575v and 75mv.

従来実施していた方法は、電源配線の膜厚を厚
くするして該電源配線の配線抵抗値を減少させる
事により電源の電位変動を低くおさえていたが配
線膜厚を厚くする事はプロセスを複雑にし従つて
歩留りを低下させる欠点があり、又配線膜厚の増
加には限度があり、さらにかかる方法は根本的に
電位の変動を防ぐ対策にはなつていないため本規
模な集積化に進むにつれて電源の電位変動を防ぎ
きれなくなつてしまう欠点があつた。
The conventional method was to reduce the potential fluctuation of the power supply by increasing the thickness of the power supply wiring and reducing the wiring resistance of the power supply wiring, but increasing the thickness of the wiring requires a process change. This method has the disadvantage of complicating the method and lowering the yield, and there is a limit to the increase in wiring film thickness.Furthermore, this method does not fundamentally prevent potential fluctuations, so large-scale integration is progressing. As time went on, the drawback was that it became impossible to prevent fluctuations in the potential of the power supply.

さらに従来実施例しいてた方法は、電源の配線
抵抗による増加分をセル内部にて予め準備されて
いるコレクター抵抗RCやエミツター抵抗REの抵
抗値を可変に(例えば抵抗上に設ける抵抗コンタ
クトの位置を移動するように)することにより、
電源の配線抵抗に増加分を吸収する(すなわち式
のにおいて、Vee側抵抗はエミツター抵抗値RE3
をRE3−reの値に変えることによりRE3という値に
し、VCC側抵抗はコレクター抵抗値RC2をRC2−rc
の値に変えることによりRC2という値にする)こ
とにより出力電圧値VLを一定に保つていたがか
かる方法は少量多品種をDA処理にて短時間で設
計するというマスタースライス方式の利点を損う
事になり設計に時間がかかるという欠点があつ
た。さらに従来行われていた方法は式のにおいて
(rc+RC2)の項と(re+RE3)の項の比を一定に
すべくコレクター抵抗RCの抵抗値及びエミツタ
ー抵抗REの抵抗値を可変できるようにしていた
が、前記従来例同様設計に時間がかかるという欠
点があつた。
Furthermore, in the conventional method, the increase due to the wiring resistance of the power supply can be compensated for by changing the resistance value of the collector resistor R C and emitter resistor R E prepared in advance inside the cell (for example, by changing the resistance value of the collector resistor R C and the emitter resistor R E prepared in advance by contacting the resistor ) by moving the position of
Absorb the increase in the power supply wiring resistance (that is, in the equation, the Vee side resistance is the emitter resistance value R E3
By changing the value of R E3 to the value of R E3 −r e , the value of R E3 is set, and the V CC side resistance changes the collector resistance value R C2 to the value of R C2 − r c
The output voltage value V L was kept constant by changing the value to the value R C2 ), but this method has the advantage of the master slicing method of designing a large variety of products in small quantities in a short time using DA processing. The disadvantage was that it would result in damage and that it would take time to design. Furthermore, the conventional method is to change the resistance value of the collector resistor R C and the resistance value of the emitter resistor R E in order to keep the ratio of the terms (r c + R C2 ) and ( re + R E3 ) constant in the equation . However, like the conventional example described above, it had the disadvantage that it took a long time to design.

本発明の目的は従来のプロセス及びパターンレ
イアウトにて精度の良い論理回路の出力が期待で
き、さらにマスタースライスの利点を生かした
DA処理にて少量多品種を短時間で設計できる半
導体装置を提供することにある。
The purpose of the present invention is to make it possible to expect the output of highly accurate logic circuits using conventional processes and pattern layouts, and to take advantage of the advantages of master slicing.
The purpose of the present invention is to provide a semiconductor device that can be designed in a short time with a wide variety of products in small quantities using DA processing.

本発明は多層配線構造を有する半導体基板の最
上層配線パターンが、該半導体基板の周囲に配さ
れたボンデイング用パツドパターンと該パツドパ
ターンで囲まれた該半導体基板の内部領域に2分
割したパターンを含み、該2分割したパターンの
各々が任意の該ボンデイング用パツドパターンと
導通していることを特徴とする。
The present invention provides that the uppermost layer wiring pattern of a semiconductor substrate having a multilayer wiring structure includes a bonding pad pattern arranged around the semiconductor substrate and a pattern divided into two parts in an internal region of the semiconductor substrate surrounded by the pad pattern, Each of the two divided patterns is electrically connected to any of the bonding pad patterns.

以下本発明の実施例を図に示しながら詳細を説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図、第4図は本発明の実施例を説明するた
めの一連の図であり、第3図は半導体基板11の
対向辺の中心部付近に設けたVCC電源パツド12
及びVee電源パツド13と、セルがマトリツクス
状に配置された内部領域14上に交互に平行に配
置されたVCC電源配線パターン15及びVee電源
配線パターン16間とが独立したパターン構成に
なつており、該セル間及び該セルより入出力回路
を介して半導体基板11の周囲に配置した入出力
用パツド17に配線されたマスタースライス方式
のチツプパターン図であり、該チツプは表面を被
つた絶縁膜の、該電源パツド12,13上及び該
入出力パツド17上及び電源配線15,16の中
心部上に開孔部18を有している。
3 and 4 are a series of diagrams for explaining an embodiment of the present invention.
The Vee power supply pad 13 and the V CC power supply wiring patterns 15 and Vee power supply wiring patterns 16, which are alternately arranged in parallel on the internal region 14 in which cells are arranged in a matrix, have an independent pattern configuration. , is a master slice type chip pattern diagram in which wires are wired between the cells and from the cells via input/output circuits to input/output pads 17 arranged around the semiconductor substrate 11, and the chip has an insulating film covering the surface. It has openings 18 on the power supply pads 12 and 13, on the input/output pad 17, and on the center of the power supply wirings 15 and 16.

第4図は第3図に示した半導体基板11上に設
けた開孔部18を被う配線パターンであり半導体
基板11の周辺に配した電源パツド22,23及
び入出力パツド27は各々第3図に示した電源パ
ツド12,13及び入出力パツド17の位置に対
応しており、さらにパツド12,13及び17で
囲まれた内部領域に2分割して設けた配線パター
ン25,26は該配線パターン25は第3図に示
したVCC電源配線15上に設けた開孔部18を介
して該VCC電源配線パターン15とVCC電源パツ
ド22とを導通させており、該配線パターン26
は第3図に示したVee電源配線16上に設けた開
孔部18を介して該Vee電源配線パターン16と
Vee電源パツド23とを導通させているため、セ
ルにて構成されているECL回路は任意のセル位
置において、VCC及びVeeの該ECL回路への供給
位置が同じであるため、第3図に示した該Vcc配
線15及び該Vee配線16の巾が同じである時、
第2図に示した配線抵抗はre=rcとなり、従つて
式のにおいて出力電圧VLはVL=VCC−{VB3
VF(T3)}となり具体例で示した数値を入力すると
VL≒4.5vとなり該計算通りの値が出力される。
FIG. 4 shows a wiring pattern that covers the opening 18 provided on the semiconductor substrate 11 shown in FIG. The wiring patterns 25 and 26 correspond to the positions of the power supply pads 12 and 13 and the input/output pad 17 shown in the figure, and are divided into two parts in the internal area surrounded by the pads 12, 13 and 17. The pattern 25 connects the V CC power wiring pattern 15 and the V CC power pad 22 through the opening 18 provided on the V CC power wiring 15 shown in FIG.
is connected to the Vee power supply wiring pattern 16 through the opening 18 provided on the Vee power supply wiring 16 shown in FIG.
Since the Vee power supply pad 23 is electrically connected, the ECL circuit composed of cells has the same supply position of V CC and Vee to the ECL circuit at any cell position. When the widths of the Vcc wiring 15 and the Vee wiring 16 shown are the same,
The wiring resistance shown in Figure 2 is r e = r c , so in the equation, the output voltage V L is V L = V CC −{V B3
V F(T3) }, and when inputting the numerical values shown in the specific example,
V L ≒4.5v, and the calculated value is output.

一般に第2図に示したECL回路において、コ
レクター抵抗RC1,RC2とエミツター抵抗RE3の比
率が1:kにて設計された回路構成になつている
時はRE3=k・RC2が成立し出力電圧値VLは式の
より VL=VCC−(rc+RC2) ×{VB3−VF(T3)}/(re+k・RC2) … が成立するため、予め第3図におけるVCC電源配
線15の配線巾とVee電源配線16の配線巾の比
率を1:1/kとして布線しておけば電源配線の
配線抵抗rc,reはre=k・rcの関係が成立し従つ
て出力電圧値VLはVL=VCC−{VB3−VF(T3)}とな
り設計値通りの値が出力するため十分満足のいく
回路特性を得ることができ、さらにパターンレイ
アウトも無駄の無い配線巾を指定できるためチツ
プサイズを小さくできる。
Generally, in the ECL circuit shown in Figure 2, when the circuit configuration is designed with a ratio of collector resistors R C1 and R C2 and emitter resistor R E3 of 1:k, R E3 = k・R C2 . The output voltage value V L is calculated from the formula V L = V CC − (r c + R C2 ) × {V B3V F(T3) }/( re + k・R C2 ) because it holds true. If the ratio of the wiring width of the V CC power wiring 15 and the wiring width of the Vee power wiring 16 in FIG. 3 is set to 1:1/k, the wiring resistance r c and r e of the power wiring will be r e =k.・The relationship r c is established, so the output voltage value V L is V L = V CC − {V B3 − V F(T3) }, and the value as designed is output, so that sufficiently satisfactory circuit characteristics are obtained. Furthermore, since the pattern layout can specify the wiring width without waste, the chip size can be reduced.

第4図に示した配線パターンは従来例に区べて
1工程増加しているが、該配線パターンは第3図
に示した開孔部18を十分に被つたものであれ
ば、設計マージンもプロセスに合わせた任意のゆ
るいマージン系が取れるため1工程増加による歩
留りの減少はほとんど無視でき、さらに電源配線
の配線抵抗による該電源配線末端部の電位変動も
従来例の半分以下となり、又チツプ塔載ケースに
合わせた任意の位置に電源パツドを設けても上記
実施例の如く本発明を用いれば十分満足のいく特
性を得る半導体装置を短時間で設計することがで
きる。
The wiring pattern shown in FIG. 4 has one additional step compared to the conventional example, but if the wiring pattern sufficiently covers the opening 18 shown in FIG. 3, the design margin can be improved. Since a loose margin system suitable for the process can be created, the decrease in yield due to the addition of one process can be almost ignored.Furthermore, the potential fluctuation at the end of the power supply wiring due to the wiring resistance of the power supply wiring is less than half that of the conventional example, and the chip Even if the power supply pad is provided at an arbitrary position according to the mounting case, if the present invention is used as in the above embodiment, a semiconductor device with sufficiently satisfactory characteristics can be designed in a short time.

本発明によれば配線の層抵抗のバラツキや電源
配線の配線抵抗による電位変動に対しても十分満
足すべき回路機能を得ることができるため歩留り
の向上に期待でき、さらに半導体素子の微細化に
伴い集積化が進むにつれて、消費電力が増大し、
従つて特に電源における著しい電位変動を伴つて
くるが本発明によれば十分満足いく特性を得られ
さらに電源配線の配線巾をおさえる事ができるた
めチツプサイズを小さくすることができ歩留りの
向上に大いに期待できる。
According to the present invention, it is possible to obtain a circuit function that is sufficiently satisfactory even with respect to variations in the layer resistance of wiring and potential fluctuations due to wiring resistance of power supply wiring, so it is expected to improve yields, and furthermore, it is possible to improve the miniaturization of semiconductor elements. As integration progresses, power consumption increases,
Therefore, it is accompanied by significant potential fluctuations, especially in the power supply, but according to the present invention, sufficiently satisfactory characteristics can be obtained, and furthermore, the wiring width of the power supply wiring can be suppressed, so the chip size can be reduced, and it is highly anticipated that the yield will improve. can.

又マスタースライス方式による設計も電源の配
線巾をおさえる事が可能なため配線チヤンネルの
領域を増やすことができ従つて短時間で少量多品
種をDA処理する事が大いに期待でき今後大規模
に集積化され、歩留り良く生産されねばならない
半導体装置において大いな効果を期待できる事は
明らかである。
In addition, the design using the master slice method can also reduce the wiring width of the power supply, which increases the area of the wiring channel.Therefore, it is highly anticipated that DA processing of a wide variety of products in small quantities in a short period of time will lead to large-scale integration in the future. It is clear that a great effect can be expected in semiconductor devices that must be produced with high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマスターマライス方式で構成したチツ
プの従来例であり、第2図はセルにて構成された
基本回路の1つであるECLの回路構成であり第
3図、第4図は本発明の実施例を図解したチツプ
パターンである。 1,11…半導体基板、2,12,22…VCC
電源パツド、3,13,23…Vee電源パツド、
4,14…セルがマトリツクス状に配置された内
部領域、5,15,25…VCC電源配線パター
ン、6,16,26…Vee電源配線パターン、
7,17,27…入出力パツド、18…開孔部、
第2図における記号に関して、T1,T2,T3
…トランジスター、RC1,RC2…各々T1,T2
のコレクターに接続されたコレクター抵抗、RE3
…T3のエミツターに接続されたエミツター抵
抗、rc…VCC電源配線の配線抵抗、re…Vee電源配
線の配線抵抗、B1,B2,B3…各々トランジ
スターT1,T2,T3のベース端子、C2…ト
ランジスターT2のコレクター端子。
Figure 1 shows a conventional example of a chip configured using the Master Marais method, Figure 2 shows the circuit configuration of an ECL, which is one of the basic circuits configured with cells, and Figures 3 and 4 are used in this book. It is a chip pattern illustrating an embodiment of the invention. 1, 11...Semiconductor substrate, 2, 12, 22...V CC
Power pad, 3, 13, 23...Vee power pad,
4, 14...Inner region where cells are arranged in a matrix, 5,15,25...V CC power supply wiring pattern, 6,16,26...Vee power supply wiring pattern,
7, 17, 27...input/output pad, 18...opening part,
Regarding the symbols in Figure 2, T1, T2, T3
...Transistor, R C1 , R C2 ...T1, T2 respectively
A collector resistor connected to the collector of R E3
...Emitter resistance connected to the emitter of T3, r c ...Wiring resistance of V CC power supply wiring, r e ...Wiring resistance of Vee power supply wiring, B1, B2, B3...Base terminals of transistors T1, T2, T3, respectively, C2 ...Collector terminal of transistor T2.

Claims (1)

【特許請求の範囲】[Claims] 1 ECL回路を構成する複数のセルがマトリツ
クス状に配置された内部領域と、該内部領域の周
辺部に設けられた最高電位電源パツド及び最低電
位電源パツドと、前記内部領域上に交互に平行に
かつ互いに独立に配置されそれぞれ同一の巾を有
する複数条の最高電位電源配線パターン及び最低
電位電源配線パターンと、前記最高電位電源配線
パターン及び最低電位電源配線パターン上に設け
られた絶縁膜と、前記複数条の最高電位電源配線
パターンの中央部をそれぞれ露出して前記絶縁膜
に設けられた第1の開孔と、前記複数条の最低電
位電源配線パターンの中央部をそれぞれ露出して
前記絶縁膜に設けられた第2の開孔と、前記内部
領域上の前記絶縁膜上のほぼ全面に2分割して設
けられ、それらのうちの一方は前記最高電位電源
パツドに接続されるとともに前記第1の開孔を介
して前記複数条の最高電位電源配線パターンに接
続され、他方は前記最低電位電源パツドに接続さ
れるとともに前記第2の開孔を介して前記複数条
の最低電位電源配線パターンに接続された第1及
び第2の配線パターンとを有することを特徴とす
る半導体装置。
1. An internal region in which a plurality of cells constituting an ECL circuit are arranged in a matrix, a highest potential power supply pad and a lowest potential power supply pad provided at the periphery of the internal region, and alternately parallel to the internal region. and a plurality of highest potential power supply wiring patterns and lowest potential power supply wiring patterns arranged independently from each other and each having the same width; an insulating film provided on the highest potential power supply wiring pattern and the lowest potential power supply wiring pattern; A first opening provided in the insulating film by exposing the central portions of the plurality of highest potential power wiring patterns, and a first opening provided in the insulating film by exposing the central portions of the plurality of lowest potential power wiring patterns, respectively. a second opening provided in the inner region, and a second opening provided on almost the entire surface of the insulating film on the internal region, one of which is connected to the highest potential power supply pad, and one of which is connected to the first The other is connected to the plurality of highest potential power supply wiring patterns through the openings, and the other is connected to the lowest potential power supply pad and connected to the plurality of lowest potential power supply wiring patterns through the second opening. A semiconductor device comprising first and second wiring patterns connected to each other.
JP2710982A 1982-02-22 1982-02-22 Semiconductor device Granted JPS58143550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2710982A JPS58143550A (en) 1982-02-22 1982-02-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2710982A JPS58143550A (en) 1982-02-22 1982-02-22 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS58143550A JPS58143550A (en) 1983-08-26
JPH0434307B2 true JPH0434307B2 (en) 1992-06-05

Family

ID=12211906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2710982A Granted JPS58143550A (en) 1982-02-22 1982-02-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58143550A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165086A (en) * 1985-02-20 1992-11-17 Hitachi, Ltd. Microprocessor chip using two-level metal lines technology
JPS63175441A (en) * 1987-01-14 1988-07-19 Nec Corp Semiconductor device
JPS63307759A (en) * 1987-06-09 1988-12-15 Nec Corp Semiconductor integrated circuit
JPS6413733U (en) * 1987-07-16 1989-01-24
JPH01251639A (en) * 1988-03-31 1989-10-06 Toshiba Corp Semiconductor integrated circuit device
JPH01251640A (en) * 1988-03-31 1989-10-06 Toshiba Corp Semiconductor integrated circuit device
JP2516403B2 (en) * 1988-06-01 1996-07-24 富士通株式会社 Wafer scale memory

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125085A (en) * 1974-06-26 1976-03-01 Ibm BUREENAHANDOTAISHUSEKIKAIROCHITSUPUKOZO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125085A (en) * 1974-06-26 1976-03-01 Ibm BUREENAHANDOTAISHUSEKIKAIROCHITSUPUKOZO

Also Published As

Publication number Publication date
JPS58143550A (en) 1983-08-26

Similar Documents

Publication Publication Date Title
EP0074825B1 (en) Manufacture of integrated circuits by masterslice methods
US4701777A (en) Gate array type semiconductor integrated circuit device
US5300796A (en) Semiconductor device having an internal cell array region and a peripheral region surrounding the internal cell array for providing input/output basic cells
JPH04116951A (en) Semiconductor integrated circuit
JPS6361778B2 (en)
JPH0480538B2 (en)
JPH0434307B2 (en)
EP0021661A1 (en) Semiconductor master-slice device
JPH0120536B2 (en)
EP0074804B1 (en) Semiconductor integrated circuit comprising a semiconductor substrate and interconnecting layers
JPH0542823B2 (en)
JPH0120538B2 (en)
JPH073863B2 (en) Semiconductor integrated circuit
JPH04225548A (en) Integrated circuit device
JP2674378B2 (en) Semiconductor integrated circuit device
JPS59132144A (en) Manufacture of semiconductor integrated circuit device
JPS643054B2 (en)
JPH01152642A (en) Semiconductor integrated circuit
JPS6254939A (en) Monolithic integrated circuit
JP2652948B2 (en) Semiconductor integrated circuit
JPH04280471A (en) Semiconductor integrated circuit based on master slice system
JPH03255665A (en) Semiconductor integrated circuit device
JPH0355981B2 (en)
JPS61294833A (en) Semiconductor integrated circuit
JPH0823029A (en) Semiconductor integrated circuit and designing thereof