JPS6254939A - Monolithic integrated circuit - Google Patents

Monolithic integrated circuit

Info

Publication number
JPS6254939A
JPS6254939A JP19624185A JP19624185A JPS6254939A JP S6254939 A JPS6254939 A JP S6254939A JP 19624185 A JP19624185 A JP 19624185A JP 19624185 A JP19624185 A JP 19624185A JP S6254939 A JPS6254939 A JP S6254939A
Authority
JP
Japan
Prior art keywords
power supply
wiring
circuit
supply potential
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19624185A
Other languages
Japanese (ja)
Other versions
JPH0587018B2 (en
Inventor
Hiroyuki Misawa
三沢 弘行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19624185A priority Critical patent/JPS6254939A/en
Publication of JPS6254939A publication Critical patent/JPS6254939A/en
Publication of JPH0587018B2 publication Critical patent/JPH0587018B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To perform high speed of a monolithic integrated circuit by preparing two power source potential supply lines for respective circuits to be wired to suppress the noise margin of the circuit, and increasing the degree of freedom of the signal wirings without increasing a chip size. CONSTITUTION:The first type of power source potential supply wiring region 13 and the second type of power source potential supply wiring region 15 are disposed on the upper layer of a basic cell 11, and the first and second types of circuit components are provided on the lower layer. Thus, when supplying the external power source potential to the internal cell array region of a gate array, the power source potential supply wirings to the circuit component having a noise margin and the power source potential supply wirings to the circuit component having no noise margin are separated to supply the external power source potential. Thus,the noise margin of the circuit can be obtained while reducing the power source potential wiring region laid in the internal cell array region as small as possible, the wiring degree of freedom of signal wirings is increased without increasing the chip size and the internal cell array region to perform electric characteristic and particularly high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はモノリシック集積回路に関し、特に基本セルを
行列に配置して内部セルアレイ領域を構成するゲートア
レイ型マスタスライス方式のモノリシック集積回路に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a monolithic integrated circuit, and particularly to a gate array type master slice type monolithic integrated circuit in which basic cells are arranged in rows and columns to constitute an internal cell array region.

〔従来の技術〕[Conventional technology]

従来、基本セルを行列に配置して内部セルアレイ領域を
構成するゲートアレイ型マスタスライス方式集積回路(
以下ゲートアレイと記す)の内部セルアレイ領域に対し
外部電源電位を供給する場合には、内部セルアレイ領域
内の基本セルに供給する必要がある。総ての外部電源電
位の種類が−本づつ各基本セル上に位置するように内部
セルアレイ領域上を縦貫する電源電位供給配線を布設し
、各基本セル部においてその基本セルが必要とする外部
電源電位を供給する方法を採っていた。
Conventionally, gate array-type master slice integrated circuits have been developed in which basic cells are arranged in rows and columns to form an internal cell array area.
When supplying an external power supply potential to an internal cell array region (hereinafter referred to as a gate array), it is necessary to supply it to the basic cells within the internal cell array region. Power supply potential supply wiring is laid vertically over the internal cell array area so that all types of external power supply potentials are located on each basic cell, and each basic cell part is provided with the external power supply wiring required by that basic cell. A method of supplying electric potential was used.

従来の大規模ゲートアレイはそのほとんどがCMOSゲ
ートアレイである。CMOSゲートアレイの場合、回路
そのもののノイズマージンが大きいことと、回路の定常
的な電流が小さいことから内部セルアレイ領域内に従来
の方法でごく細い電源電位供給配線を布設しても何ら問
題は生じなかった。また、従来のバイポーラ系ゲートア
レイの場合、その規模が比較的小さく、回路そのものの
ノイズマージンが小さく、回路の定常的な電流が大きい
ECLゲートアレイにおいても内部セルアレイ領域内に
従来の方法で比較的太い電源電位供給配線を布設するこ
とによシ充分に所望の電気的特性を得ることができてい
た。しかし、CMOSゲートアレイの電気的特性、特に
高速化が進んで来た今日、ECLゲートアレイに対し大
規模かつよシ高速化を要求されるに至シ内部セルアレイ
領域内に従来の方法で電源電位供給配線を布設すること
による不都合が目立って来た。ECLゲートアレイの高
速性は回路の駆動インピーダンスと負荷容量に大きく依
存する。よって回路動作に最低限必要なノイズマージン
を確保する論理振幅を持たせかつ駆動インピーダンスを
低く抑えるため、ECL回路の定常電流は必然的に大き
なものとなる。
Most conventional large-scale gate arrays are CMOS gate arrays. In the case of CMOS gate arrays, the noise margin of the circuit itself is large and the steady current of the circuit is small, so even if very thin power supply potential supply wiring is laid within the internal cell array area using the conventional method, no problems will occur. There wasn't. In addition, in the case of conventional bipolar gate arrays, the scale is relatively small and the noise margin of the circuit itself is small, and even in ECL gate arrays where the steady current of the circuit is large, conventional methods are used to By laying thick power supply potential supply wiring, it was possible to sufficiently obtain the desired electrical characteristics. However, as the electrical characteristics of CMOS gate arrays, especially their speeds, have improved, ECL gate arrays are now required to be large-scale and even faster. The inconvenience caused by laying the supply wiring has become noticeable. The high speed of the ECL gate array depends largely on the driving impedance and load capacitance of the circuit. Therefore, in order to provide a logic amplitude that ensures the minimum necessary noise margin for circuit operation and to suppress drive impedance to a low level, the steady current of the ECL circuit inevitably becomes large.

ゲートアレイの規模が大きくなると、通常、内部セルア
レイ領域内を縦貫し基本セルに外部電源電位を供給する
電源電位供給配置1!1本当りの供給対象基本セル数は
増加する。高速性を要求される大規模ECLゲートアレ
イの場合、各基本セルの定常電流が多いため、従来の電
源電位供給配線布設方法を用いた場合、電源電位のレベ
ルシフトによるノイズマージン減少を極力小さく抑える
ために、内部セルアレイ領域内を縦貫する電源電位供給
配線1本当シの配線布設幅をかなシ太く設定することが
必要となる。しかし、電源電位供給配線幅を太く設定す
ることは、ゲートアレイにおいては、配線布設領域が限
られているため信号配線布設領域を削減することになシ
、信号配線の布設自拡大させることが必要で、この場合
はチップサイズが増大し基本セル間を結ぶ信号配線の平
均配線長が増し集積回路全体としての電気的特性、特に
高速性が損なわれかつ製造歩留シは低下する。また、電
源電位供給配線の布設配線幅を太く設定した場合、電源
電位供給配線が形成される配線層と異なる配線層で形成
され電源電位供給配線と交差する信号配線のその交差面
積が増加し、その信号配線に付加する寄生容量が増加し
これによシやはシ回路動作の高速性が損われる結果とな
る。
As the scale of the gate array increases, the number of basic cells to be supplied per power supply potential supply arrangement 1! which runs vertically within the internal cell array region and supplies external power supply potential to the basic cells usually increases. In the case of large-scale ECL gate arrays that require high speed, each basic cell has a large steady-state current, so when using the conventional power supply potential supply wiring wiring method, it is possible to minimize the reduction in noise margin due to level shift of the power supply potential. Therefore, it is necessary to set the wiring width of one power supply potential supply wiring extending vertically in the internal cell array region to be quite wide. However, setting the power supply potential supply wiring width to be thick does not reduce the area for signal wiring because the area for wiring is limited in gate arrays, and it is necessary to expand the wiring for signal wiring. In this case, the chip size increases, the average wiring length of signal wiring connecting basic cells increases, the electrical characteristics of the integrated circuit as a whole, especially the high speed, are impaired, and the manufacturing yield decreases. Furthermore, when the wiring width of the power supply potential supply wiring is set to be large, the intersection area of the signal wiring that is formed in a wiring layer different from the wiring layer in which the power supply potential supply wiring is formed and intersects with the power supply potential supply wiring increases. The parasitic capacitance added to the signal wiring increases, resulting in a loss of high-speed circuit operation.

従来のゲートアレイ型集積回路について図面を参照して
説明する。
A conventional gate array type integrated circuit will be explained with reference to the drawings.

第2図は従来のゲートアレイ型集積回路の一例のレイア
ウト図である。
FIG. 2 is a layout diagram of an example of a conventional gate array type integrated circuit.

この集積回路は基本セル11′を20行10列の行列に
並べて内部セルアレイ領域25を形成し、その対辺に外
部電源電位供給配線23を設け、この外部電源電位供給
配線23に外部端子21 、22を設けることにより構
成されている。
In this integrated circuit, basic cells 11' are arranged in a matrix of 20 rows and 10 columns to form an internal cell array area 25, and an external power supply potential supply wiring 23 is provided on the opposite side. It is constructed by providing the following.

外部端子21には外部より最高電位の外部電源電位が供
給され、その電位は内部セルアレイ領域25に対し、外
部電源電位供給配線23を通して供給される。外部端子
22には同様に外部よシ最低電位の外部電源電位が供給
され、その電位は電源電位供給配線24を通して同様に
内部セルアレイ領域25に供給される。
The external terminal 21 is supplied with the highest external power supply potential from the outside, and this potential is supplied to the internal cell array region 25 through the external power supply potential supply wiring 23. The external terminal 22 is similarly supplied with the lowest external power supply potential, and this potential is similarly supplied to the internal cell array region 25 through the power supply potential supply wiring 24.

第3図は第2図に示す基本セルのレイアウト図である。FIG. 3 is a layout diagram of the basic cell shown in FIG. 2.

基本セル11′の下層には回路構成要素が形成され、上
層には電源電位供給配線領域32.33が設けられる。
Circuit components are formed in the lower layer of the basic cell 11', and power supply potential supply wiring regions 32 and 33 are provided in the upper layer.

電源電位供給配線領域32は、第2図において上下に連
接する隣りの基本セル11′の外部電源電位供給配線3
2と接続する。電源電位供給配線領域33も同様に第2
図における外部電源電位供給配線24に接続する。この
ようにして第2図における電源電位供給配線23.24
はそれぞれ結果的に内部セルアレイ領域25の各基本セ
ル11′上を縦貫している。  ゛第4図は従来のEC
L基本回路の回路図である。
The power supply potential supply wiring area 32 is connected to the external power supply potential supply wiring 3 of the adjacent basic cell 11' connected vertically in FIG.
Connect with 2. Similarly, the power supply potential supply wiring area 33 is connected to the second
It is connected to the external power supply potential supply wiring 24 in the figure. In this way, the power supply potential supply wirings 23 and 24 in FIG.
As a result, each of the basic cells 11' of the internal cell array region 25 is vertically traversed.゛Figure 4 is the conventional EC
FIG. 2 is a circuit diagram of an L basic circuit.

ECL基本回路はカレント・スイッチ部45とエミッタ
・7才ロア部46の2つの回路構成要素から成シ、カレ
ント・スイッチ部45ではトランジスタQ3と抵抗R,
にょシ定電流部を構成しその定電流をトランジスタQ1
とトランジスタQ2のスイッチング動作によシ抵抗R1
あるいは抵抗R8に流す。抵抗R1と抵抗R2の片端は
高電位の外部電源電位が印加された電源電位供給配線4
1に接続され、抵抗R3の片端は低電位の外部電源電位
が印加された電源電位供給配線43に接続される。
The ECL basic circuit consists of two circuit components: a current switch section 45 and an emitter lower section 46. The current switch section 45 includes a transistor Q3, a resistor R,
A constant current section is configured and the constant current is passed through the transistor Q1.
and resistance R1 due to the switching operation of transistor Q2.
Alternatively, it flows through resistor R8. One end of the resistor R1 and the resistor R2 is a power supply potential supply wiring 4 to which a high external power supply potential is applied.
1, and one end of the resistor R3 is connected to a power supply potential supply wiring 43 to which a low external power supply potential is applied.

抵抗R1あるいは抵抗R2のトランジスタQ!あるいは
トランジスタQ2のコレクタ端子に接続する片端には抵
抗R,あるいはR1に電流が流れない時に高レベル電位
、流れる時には低レベル電位が発生され、この電位がエ
ミッタ・7才ロア部46のトランジスタQsあるいはト
ランジスタQ4のペース端子に入力される。前記高レベ
ル電位と低レベル電位の差を論理振幅と呼ぶ。エミッタ
・フォロア部46ではトランジスタQ4あるいはトラン
ジスタQ5のペース端子c′C入力されたレベルよシそ
れぞれのトランジスタのペース・エミッタ間順方向電圧
分レベルシフトした高レベル電位あるいは低レベル電位
をエミッタ端子に出力する。エミッタ拳7オロア部46
のトランジスタQ4とトランジスタQsのコレクタ端子
は高電位の外部電源電位が印加された電源電位供給配線
42に接続され、抵抗R4と抵抗R6の片端は低電位の
外部電源電位が印加された電源電位供給配線44に接続
される。
Transistor Q of resistor R1 or resistor R2! Alternatively, at one end connected to the collector terminal of the transistor Q2, a high level potential is generated when no current flows through the resistor R or R1, and a low level potential is generated when the current flows. It is input to the pace terminal of transistor Q4. The difference between the high level potential and the low level potential is called a logic amplitude. The emitter-follower section 46 outputs to the emitter terminal a high-level potential or a low-level potential whose level is shifted by the forward voltage between the pace and emitter of each transistor compared to the level input to the pace terminal c'C of the transistor Q4 or Q5. do. Emitter fist 7 oroa part 46
The collector terminals of transistor Q4 and transistor Qs are connected to a power supply potential supply wiring 42 to which a high external power supply potential is applied, and one end of the resistor R4 and resistor R6 is connected to a power supply potential supply wiring 42 to which a low external power supply potential is applied. It is connected to the wiring 44.

このECL基本回路が第3図の基本セルの中に組込まれ
る。
This ECL basic circuit is incorporated into the basic cell of FIG.

今、第4図におけるカレント・スイッチ部45の電流が
1mA、エミッタ・フォロア部46の全電流が2mA、
カレント・スイッチ部45の論理振幅が50QmVであ
るとし、第2図の基本セル11′の各々に第4図で示す
回路が2組入っている場合を考える。説明を簡略にする
ため最高電位の外部電源電位系のみを説明する。第2図
の外部端子21に印加された最高電位は第3図の電源電
位供給配線領域32内の配線に接続されるが、今、基本
セル11′の電源電位供給配線領域32内の配線の幅が
100μm、長さが250μm、配線層抵抗が0.03
Ω/口であ石ものとする。従来の方法を採った場合、基
本セル11′上の最高電位供給配線は電源電位供給配線
領域32のみであるので電源電位供給配線41.42は
ともに電源電位供給配線領域32内の配線に接続する。
Now, the current in the current switch section 45 in FIG. 4 is 1 mA, the total current in the emitter follower section 46 is 2 mA,
Assume that the logic amplitude of the current switch section 45 is 50 QmV, and consider a case in which two sets of circuits shown in FIG. 4 are included in each basic cell 11' of FIG. 2. To simplify the explanation, only the highest potential external power supply potential system will be explained. The highest potential applied to the external terminal 21 in FIG. 2 is connected to the wiring in the power supply potential supply wiring area 32 in FIG. Width is 100μm, length is 250μm, wiring layer resistance is 0.03
Ω/ To make a stone with your mouth. If the conventional method is adopted, since the highest potential supply wiring on the basic cell 11' is only in the power supply potential supply wiring area 32, both the power supply potential supply wirings 41 and 42 are connected to the wiring in the power supply potential supply wiring area 32. .

この結果第2図の同列上の基本セル11′の内部も電源
電位供給配線23に近いセル位置の基本セル11′のレ
ベルシフト量をQmVとしたとき、最も遠いセル位置の
基本セル11’のレベルシフト量は85.5mVとなる
。異なる列間の基本的なレベルシフト差が、120mV
あるとすると内部セルアレイ領域25内の全基本セル1
1’間のレベルシフトiの差ハ105.5mVとなる。
As a result, when the level shift amount of the basic cell 11' on the same column in FIG. The level shift amount is 85.5 mV. The fundamental level shift difference between different columns is 120mV
If so, all basic cells 1 in the internal cell array area 25
The difference in level shift i between 1' is 105.5 mV.

ECLゲートアレイの場合、高電位の電源電位のレベル
シフトは直接ノイズマージンの減少につながる。低電位
の電源電位のレベルシフトは通常論理振幅の減少となっ
て現われるのでノイズマージンの減少にはその1/2が
関与する。
For ECL gate arrays, level shifting of high potential power supply potentials directly leads to a reduction in noise margin. Since a level shift of a low power supply potential normally appears as a decrease in logic amplitude, 1/2 of this is involved in reducing the noise margin.

今簡略化のためその値を高電位の電源電位のレベルシフ
トによるノイズマージン減少分の1/2としその値を5
2.5mN’とする。
For the sake of simplicity, let's assume that the value is 1/2 of the noise margin reduction due to the level shift of the high potential power supply potential, and the value will be 5.
2.5 mN'.

論理振幅を50omvとしたとき、その1/2の所をし
きい値とし、伝達特性における微分利得が1である点即
ちユニティ−〇ゲイン・ポイントがしきい値よシ100
mVであるとするとノイズマージンとして許されるのは
150mVとなる。その他諸々のノイズマージンを減少
させる要素による分を30mVとすると上述の例におけ
るノイズマージン減少分の総和は188mVとなシュニ
ティー・ゲイン参ポイントを割ってしまい、回路の安定
動作を保障できない値となる。今、ノイズマージン減少
分の総和を150mv以内にするためには第3図におけ
る電源電位供給配線領域32内の配線の幅を128μm
以上に設定しなければならない。このとき低電位側の電
源電位供給配線領域33内の配線も同様に配線幅を拡大
する必要があシ基本セル11′内の総計の電源配線幅増
加幅は56μm以上必要となる。
When the logic amplitude is 50 omv, the threshold value is 1/2 of it, and the point where the differential gain in the transfer characteristic is 1, that is, the unity gain point, is 100 omv from the threshold value.
If it is mV, the allowable noise margin is 150 mV. If the amount due to other factors that reduce the noise margin is 30 mV, the total amount of noise margin reduction in the above example is 188 mV, which is less than the Schnitty gain reference point, and is a value that cannot guarantee stable operation of the circuit. Now, in order to keep the total noise margin reduction within 150 mV, the width of the wiring in the power supply potential supply wiring area 32 in FIG. 3 is set to 128 μm.
Must be set above. At this time, it is necessary to similarly increase the wiring width of the wiring in the power supply potential supply wiring region 33 on the low potential side, and the total power wiring width increase in the basic cell 11' is required to be 56 μm or more.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したように、基本セル当シの定常電流が大きい大規
模ゲートアレイ、特にECLゲートアレイの内部セルア
レイ領域内に外部電源電位を供給する電源電位供給配線
を布設する際に従来の布設方法を採用した場合には電源
電位供給配線幅を回路のノイズマージンを確保できる程
度に太く設定することが必要となり、大幅の電源電位供
給配線と異なる配線層で形成されこれと交差する信号配
線の寄生配線容量が増加し、集積回路全体としての電気
的特性、特に高速性が損なわれるという第1の欠点があ
る。また、内部セルアレイ領域を拡大せずに電源電位供
給配線幅を太く設定する場合には限られた配線布設領域
内において信号配線の布設自由度を低下させるという第
2の欠点がある。
As mentioned above, conventional wiring methods are used to lay power supply potential supply wiring for supplying external power supply potential within the internal cell array area of large-scale gate arrays, especially ECL gate arrays, where the steady current per basic cell is large. In this case, it is necessary to set the power supply potential supply wiring width wide enough to ensure the noise margin of the circuit, and the parasitic wiring capacitance of the signal wiring that is formed in a wiring layer different from the power supply potential supply wiring and intersects with it is significantly reduced. The first drawback is that the electrical characteristics of the integrated circuit as a whole, especially its high speed performance, are impaired. Furthermore, if the width of the power supply potential supply wiring is set to be large without enlarging the internal cell array area, there is a second drawback that the degree of freedom in laying the signal wiring within the limited wiring laying area is reduced.

また、内部セルアレイ領域を拡大し信号配線の布設自由
度を増す場合には、基本セル間を結ぶ信号配線の平均配
線長が増加し、配線に付加する寄生容量が増し集積回路
全体としての電気的特性、特に高速化を損なうという第
3の欠点とチップサイズが拡大し、製造歩留シが量子す
るというflL4の欠点がある。
In addition, when expanding the internal cell array area and increasing the degree of freedom in laying signal wiring, the average wiring length of the signal wiring connecting basic cells increases, which increases the parasitic capacitance added to the wiring and reduces the electrical power of the integrated circuit as a whole. The third drawback of flL4 is that the characteristics, especially the speedup, are impaired, and the chip size is increased and the manufacturing yield is reduced.

本発明の目的は、対象回路別に電源電位供給線を2本に
し、回路のノイズマージンを抑え、チップサイズを拡大
することなく、信号配線の自由度を増し、高速性を発揮
するモノリシック集積回路を提供することにをする。
The purpose of the present invention is to create a monolithic integrated circuit that uses two power supply potential supply lines for each target circuit, suppresses the noise margin of the circuit, increases the degree of freedom in signal wiring without increasing the chip size, and exhibits high speed. decide to provide.

〔問題点を解決するための手段〕 本発明のモノリシック集積回路は、回路構成要素と電源
電位供給配線とを有する基本セルを行列に配置した内部
セルアレイ領域と、該内部セルアレイ領域に電源電位を
供給する外部電源電位供給配線と外部端子とを有するモ
ノリンツク集積回路され、前記電源電位供給配線が前記
第1の種類の回路構成要素部を主たる供給対象として前
記基本セル上を縦貫する第1の電源電位供給配線と前記
第2の種類の回路構成要素部を主たる供給対象として前
記基本セル上を縦貫する第2の電源電位供給配線とに分
けられかつ前記第1と第2の電源電位供給配線が前記内
部セルアレイ領域外で接続されたものである。
[Means for Solving the Problems] The monolithic integrated circuit of the present invention has an internal cell array region in which basic cells having circuit components and power supply potential supply wiring are arranged in rows and columns, and a power supply potential is supplied to the internal cell array region. a monolink integrated circuit having an external power supply potential supply wiring and an external terminal, the power supply potential supply wiring mainly supplying a first power supply potential across the basic cell and supplying the first type of circuit component section; The power supply potential supply wiring is divided into a supply wiring and a second power supply potential supply wiring that runs vertically over the basic cell with the second type of circuit component section as the main supply target, and the first and second power supply potential supply wiring are connected to the These are connected outside the internal cell array area.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例のレイアウト図である。基本
セル11の上層に第1の種類の電源電位供給配線領域1
3と第2の種類の電源電位供給配線領域15が配置され
、下層に第1及び第2の種類の回路構成要素(図示され
ていない)が設けられる。
FIG. 1 is a layout diagram of an embodiment of the present invention. A first type of power supply potential supply wiring area 1 is provided in the upper layer of the basic cell 11.
3 and a second type of power supply potential supply wiring area 15 are arranged, and first and second types of circuit components (not shown) are provided in the lower layer.

第1の種類の回路構成要素を第4図のカレントスイッチ
部4tl’s第2の種類の回路構成要素をエミッタフォ
ロア部46に分ける。そして、第1の種類の電源電位供
給配線領域11.12に第1の種類の回路構成要素であ
るカレントスイッチ部44に電位を供給する配線を、第
2の種類の電源電位供給配線領域に第2の種類の回路構
成要素であるエミツタ7オロア部46に電位を供給する
配線をそれぞれ設ける。また、第1の種類の電源電位供
給配線領域12に設けられる配線はカレント・スイッチ
部44に最高電位を供給するものであり、電源電位供給
線flj41に接続される。第1の電源電位供給配線領
域13に設けられる配線はカレント・スイッチ部44に
最低電位を供給するものであり、電源電位供給配線43
に接続する。第2の電源電位供給配線領域14に設けら
れる配線はエミッタ・フォロア部46に最高電位を供給
するものであシミ源電位供給配線42に接続される。
The first type of circuit component is divided into a current switch section 4tl' in FIG. 4, and the second type of circuit component is divided into an emitter follower section 46. Then, a wiring for supplying a potential to the current switch section 44, which is a circuit component of the first type, is placed in the first type of power supply potential supply wiring area 11.12, and a second type of wiring is placed in the second type of power supply potential supply wiring area. Wiring for supplying a potential to the emitter 7 oror portion 46, which is the second type of circuit component, is provided respectively. Further, the wiring provided in the first type of power supply potential supply wiring region 12 supplies the highest potential to the current switch section 44, and is connected to the power supply potential supply line flj41. The wiring provided in the first power supply potential supply wiring area 13 supplies the lowest potential to the current switch section 44, and the wiring provided in the first power supply potential supply wiring area 13
Connect to. The wiring provided in the second power supply potential supply wiring region 14 supplies the highest potential to the emitter follower section 46 and is connected to the stain source potential supply wiring 42.

第2の電源電位供給配線領域15に設けられる配線はエ
ミッターフォロア部46に最低電位を供給するものであ
り電源電位供給配線44に接続される。
The wiring provided in the second power supply potential supply wiring region 15 supplies the lowest potential to the emitter follower section 46 and is connected to the power supply potential supply wiring 44 .

第1の電源電位供給配線領域12.13に設けられる配
線は基本セル11内で幅が60μm、長さが250μm
電源電位供給配線領域14.15に設けられる配線は@
が3ONm、長さが25011mの寸法でちゃ、総ての
配線層抵抗は0.030/口であるとする。電源電位供
給配線領域12.14内の配線はともに最高電位であり
、第2図の電源電位供給配線23に接続することにより
内部セルアレイ領域25の端部で短絡する。同様に電源
電位供給配線領域13.15内の配線はともに最低電位
で6B、外部電源電位供給配線24に接続し短絡する。
The wiring provided in the first power supply potential supply wiring area 12.13 has a width of 60 μm and a length of 250 μm in the basic cell 11.
The wiring provided in the power supply potential supply wiring area 14.15 is @
Assume that if the dimensions are 3ONm and the length is 25011m, the resistance of all wiring layers is 0.030/hole. The wiring in the power supply potential supply wiring region 12 and 14 are both at the highest potential, and are short-circuited at the end of the internal cell array region 25 by connecting to the power supply potential supply wiring 23 in FIG. Similarly, the wirings in the power supply potential supply wiring regions 13 and 15 both have the lowest potential of 6B, and are connected to the external power supply potential supply wiring 24 and short-circuited.

これら電源電位供給配線領域12,13゜14.15は
第2図の内部セルアレイ領域25の基本セル11′上を
縦貫することになる。今、最高電位側を説明すると、第
2図の同列上の基本セル11′の内部も外部電源電位供
給配線23に近いセル位置の基本セル11′上の電源電
位のレベルシフト量をOmvとしたとき、最も遠い基本
セル位置11′に対応する基本セル11の電源電位供給
配線領域12内の配線のレベルシフト量は475mV、
電源電位供給配線領域14内の配線のレベルシフトiは
190mVとなる。従来例と同様に異なる列間のレベル
シフト量の差が20mVであるとすると、カレント・ス
イッチ部45の内部セルアレイ領域25内の全基本セル
11′間の最大レベルシフト量差は67.5mV、また
エミッタ・7才ロア部46の内部セルアレイ領域25内
の全基本セル間の最大レベルシフト量差は210mVと
なる。
These power supply potential supply wiring regions 12, 13, 14, and 15 extend vertically over the basic cells 11' of the internal cell array region 25 in FIG. Now, to explain the highest potential side, inside the basic cell 11' on the same column in FIG. At this time, the level shift amount of the wiring in the power supply potential supply wiring area 12 of the basic cell 11 corresponding to the farthest basic cell position 11' is 475 mV,
The level shift i of the wiring within the power supply potential supply wiring region 14 is 190 mV. Assuming that the difference in level shift amount between different columns is 20 mV as in the conventional example, the maximum level shift amount difference between all the basic cells 11' in the internal cell array region 25 of the current switch section 45 is 67.5 mV. Further, the maximum level shift amount difference between all the basic cells in the internal cell array region 25 of the emitter/7-year-old lower section 46 is 210 mV.

最低電位側も同一の結果となるので説明は省略する0 従来例で述べたように、第4図に示すカレントφスイッ
チ部45においては最高電位の電源電位のレベルシフト
量は直接ノイズマージンの減少につながる。最低電位の
電源電位のレベルシフト量がノイズマージンに影響する
量は従来例と同じその1/2とするとその値は33.5
rnVである。従来例と同様に、論理振幅500mVの
1/2の所にしきい値があシ、そこから100mVの所
がユニティ−・ゲイン・ポイントとし、その他諸々のノ
イズマージンを減少させる要素による分を3Qrr:V
とすると、本実施例におけるノイズマージン減少分の総
和は131mVとなり、ユニティ−・ゲイン・ポイント
まで19mVの余裕がある。第4図のエミッタ・フォロ
ア部46に供給される電源電位は210mVのレベルシ
フトを生じているが、この程度のレベルシフトはエミッ
ター7オロアの回路動作に対し何ら問題を生じない。こ
のように、本実施例においては、最高電位あるいは最低
電位を供給する基本セル11内に設けられる電源電位供
給配線の幅の合計が180μmであるにもかかわらず、
従来例の場合の電源電位供給配線の幅の合計が256μ
mのものよシノイズマージンに余裕があシかつ電気的特
性も何ら損なわれるものがないという結果が得られた。
The same result is obtained on the lowest potential side, so the explanation will be omitted.0 As described in the conventional example, in the current φ switch section 45 shown in FIG. Leads to. The amount by which the level shift amount of the lowest potential power supply potential affects the noise margin is the same as in the conventional example, and if it is 1/2 of that, the value is 33.5.
It is rnV. As in the conventional example, the threshold value is set at 1/2 of the logic amplitude of 500 mV, the unity gain point is set at 100 mV from there, and the amount due to various other factors that reduce the noise margin is set at 3 Qrr: V
Then, the total noise margin reduction in this embodiment is 131 mV, and there is a margin of 19 mV up to the unity gain point. Although the power supply potential supplied to the emitter follower section 46 in FIG. 4 has a level shift of 210 mV, this degree of level shift does not cause any problem to the circuit operation of the emitter 7 follower. As described above, in this embodiment, although the total width of the power supply potential supply wiring provided in the basic cell 11 that supplies the highest potential or the lowest potential is 180 μm,
The total width of the power supply potential supply wiring in the conventional example is 256μ
The results showed that the noise margin was larger than that of the M type, and the electrical characteristics were not impaired in any way.

上記実施例では第1の種類の回路構成要素をカレント・
スイッチ型回路、第2の種類の回路構成要素をエミッタ
・7オロアとしたECLゲートアレイを例として説明し
たが、本発明は第1の種類の回路構成要素をTTL論理
回路部、第2の種類の回路構成要素を出力バッファ回路
としたTTLゲートアレイ、第1の種類の回路構成要素
をCMO8回路部、第2の種類の回路構成要素をバイポ
ーラ回路部としたバイポーラ・0MO8混在ゲートアレ
イ等に適用でき、一方の回路構成要素を他方の回路構成
要素によるノイズから隔離しノイズマージンが確保され
るという効果が得られる。
In the above embodiment, the first type of circuit component is
Although the switch type circuit and the ECL gate array in which the second type of circuit component is an emitter/7-orer have been described as an example, the present invention also provides a switch type circuit in which the first type of circuit component is a TTL logic circuit section and the second type of circuit component is a TTL logic circuit section. Applicable to TTL gate arrays with output buffer circuits as the circuit components, bipolar/0MO8 mixed gate arrays with the first type of circuit components as CMO8 circuit sections, and the second type of circuit components as bipolar circuit sections, etc. This has the effect of isolating one circuit component from noise caused by the other circuit component and ensuring a noise margin.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、ゲートアレイの内部セ
ルアレイ領域に外部電源電位を供給する際にノイズマー
ジンに余裕がある回路構成要素に対する電源電位供給配
線とノイズマージンに余裕がない回路構成要素に対する
電源電位供給配線とを分離して外部電源電位を供給する
ことにより内部セルアレイ領域内に布設する電源電位配
線領域を極力小さくしつつ回路のノイズマージンを確保
することが可能であり、その結果チップサイズ及び内部
セルアレイ領域を拡げることなく、信号配線の布設自由
度を増し、かつ電気的特性、特に高速性を発揮できる集
積回路を提供できるという効果がある。また本発明を用
いた場合過渡的に電流変化がある回路構成要素をノイズ
に弱い回路構成要素と分離することもでき集積回路自体
の電気的特性および信頼性を向上することが可能となる
As described above, the present invention provides power supply potential supply wiring for circuit components with sufficient noise margin when supplying external power supply potential to the internal cell array region of a gate array, and power supply potential supply wiring for circuit components with no margin for noise margin. By separating the power supply potential supply wiring and supplying the external power supply potential, it is possible to minimize the power supply potential wiring area laid within the internal cell array area while ensuring a noise margin for the circuit, resulting in a reduction in chip size. Moreover, it is possible to provide an integrated circuit that increases the degree of freedom in laying signal wiring and exhibits electrical characteristics, particularly high speed, without expanding the internal cell array area. Furthermore, when the present invention is used, circuit components that undergo transient current changes can be separated from circuit components that are susceptible to noise, making it possible to improve the electrical characteristics and reliability of the integrated circuit itself.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のレイアウト図、第2図は従来
のゲートアレイ型集積回路のレイアウト図、第3図は第
2図に示す基本セルのレイアウト図、第4図は従来のE
CL基本回路の回路図である。 11.11’・・曲基本セル、12,13・・・・・・
第1の種類の電源電位供給配線領域、14.15・・・
・・・第2の種類の電源電位供給配線領域、21,22
・・・・・・外部端子、23.24・・・・・・外部電
源電位供給配線、25・・・・・・内部セルアレイ領域
、32.33・・・・・・電源電位供給配線領域、41
,42,43.44・・・・・・電源電位供給配線、4
5・・・・・・カレント・スイッチ部、46・・・・・
・エミッタ・フォロア部、Qt、Qt。 Qs * Q4 e Qs−−)ランジスタ、R+1.
R,、R+、。 R4,R,・・・・・・抵抗器。 代理人 弁理士  内 原   晋1.二′”j”、、
”’。 \、′J 牛1 図 車3 図
FIG. 1 is a layout diagram of an embodiment of the present invention, FIG. 2 is a layout diagram of a conventional gate array type integrated circuit, FIG. 3 is a layout diagram of the basic cell shown in FIG. 2, and FIG. 4 is a layout diagram of a conventional gate array integrated circuit.
FIG. 2 is a circuit diagram of a CL basic circuit. 11.11'...Song basic cell, 12,13...
First type of power supply potential supply wiring area, 14.15...
...Second type power supply potential supply wiring area, 21, 22
...External terminal, 23.24... External power supply potential supply wiring, 25... Internal cell array area, 32.33... Power supply potential supply wiring area, 41
, 42, 43. 44... Power supply potential supply wiring, 4
5...Current switch section, 46...
・Emitter follower section, Qt, Qt. Qs * Q4 e Qs--) transistor, R+1.
R,,R+,. R4, R,...Resistor. Agent: Susumu Uchihara, patent attorney 1. 2′”j”,,
”'.\,'J Cow 1 Figure Car 3 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)回路構成要素と電源電位供給配線とを有する基本
セルを行列に配置した内部セルアレイ領域と、該内部セ
ルアレイ領域に外部電源電位を供給する外部電源電位供
給配線と外部端子とを有するモノリシック集積回路にお
いて、前記回路構成要素が第1の種類の回路構成要素部
と第2の種類の回路構成要素部とで構成され、前記電源
電位供給配線が前記第1の種類の回路構成要素部を主た
る供給対象として前記基本セル上を縦貫する第1の電源
電位供給配線と前記第2の種類の回路構成要素部を主た
る供給対象として前記基本セル上を縦貫する第2の電源
電位供給配線とに分けられかつ前記第1と第2の電源電
位供給配線が前記内部セルアレイ領域外で接続されてい
ることを特徴とするモノリシック集積回路。
(1) Monolithic integration having an internal cell array area in which basic cells having circuit components and power supply potential supply lines are arranged in rows and columns, and external terminals and external power supply potential supply lines that supply external power supply potential to the internal cell array area. In the circuit, the circuit component includes a first type of circuit component section and a second type of circuit component section, and the power supply potential supply wiring mainly connects the first type of circuit component section. divided into a first power supply potential supply wiring that runs vertically over the basic cell as a supply target and a second power supply potential supply wiring that runs vertically over the basic cell and mainly supplies the second type of circuit component section. and the first and second power supply potential supply wirings are connected outside the internal cell array region.
(2)回路構成要素がECL型であり、第一の種類の回
路構成要素がカレントスイッチ型回路であり、第二の種
類の回路構成要素がエミッタフォロアである特許請求の
範囲第(1)項記載のモノリシック集積回路。
(2) Claim (1) wherein the circuit component is an ECL type, the first type of circuit component is a current switch type circuit, and the second type of circuit component is an emitter follower. The monolithic integrated circuit described.
JP19624185A 1985-09-04 1985-09-04 Monolithic integrated circuit Granted JPS6254939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19624185A JPS6254939A (en) 1985-09-04 1985-09-04 Monolithic integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19624185A JPS6254939A (en) 1985-09-04 1985-09-04 Monolithic integrated circuit

Publications (2)

Publication Number Publication Date
JPS6254939A true JPS6254939A (en) 1987-03-10
JPH0587018B2 JPH0587018B2 (en) 1993-12-15

Family

ID=16354539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19624185A Granted JPS6254939A (en) 1985-09-04 1985-09-04 Monolithic integrated circuit

Country Status (1)

Country Link
JP (1) JPS6254939A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179692A (en) * 1991-12-17 1993-07-20 Hokushiyou Cement Kogyosho:Kk Inlet for side gutter
JPH0627981U (en) * 1992-09-09 1994-04-15 有限会社友和開発 Simple sewer system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420680A (en) * 1977-07-18 1979-02-16 Hitachi Ltd Large scale integrated circuit
JPS58107649A (en) * 1981-12-21 1983-06-27 Nec Corp Semiconductor integrated circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420680A (en) * 1977-07-18 1979-02-16 Hitachi Ltd Large scale integrated circuit
JPS58107649A (en) * 1981-12-21 1983-06-27 Nec Corp Semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179692A (en) * 1991-12-17 1993-07-20 Hokushiyou Cement Kogyosho:Kk Inlet for side gutter
JPH0627981U (en) * 1992-09-09 1994-04-15 有限会社友和開発 Simple sewer system

Also Published As

Publication number Publication date
JPH0587018B2 (en) 1993-12-15

Similar Documents

Publication Publication Date Title
US7018889B2 (en) Latch-up prevention for memory cells
EP0177336B1 (en) Gate array integrated device
IE53844B1 (en) Semiconductor integrated circuit comprising a semiconductor substrate and interconnecting layers
US3973246A (en) Sense-write circuit for bipolar integrated circuit ram
JP3115787B2 (en) Polycell integrated circuit
JPH0365663B2 (en)
JP3137413B2 (en) Semi-custom integrated circuits
JPS61180466A (en) Laminated type semiconductor device
KR920011006B1 (en) Semiconductor integrated circuit device
JPS6254939A (en) Monolithic integrated circuit
JPH0434307B2 (en)
US4851891A (en) Gate array having transistor buried in interconnection region
EP0074804B1 (en) Semiconductor integrated circuit comprising a semiconductor substrate and interconnecting layers
JP2852051B2 (en) Complementary clock donand circuit
US4984058A (en) Semiconductor integrated circuit device
JP2978501B2 (en) Logic circuit
JP3529473B2 (en) Semiconductor storage device
US5237215A (en) ECL master slice gates with different power levels
JP2674378B2 (en) Semiconductor integrated circuit device
JPS643054B2 (en)
JPS644667B2 (en)
JPH03116867A (en) Semiconductor integrated circuit device
JPH037964Y2 (en)
JPH02132854A (en) Emitter-coupled logic circuit
JPH0828482B2 (en) Clip method in gate array master slice integrated circuit device