JPS6278200A - Method of forming orientation organic thin film - Google Patents

Method of forming orientation organic thin film

Info

Publication number
JPS6278200A
JPS6278200A JP21675085A JP21675085A JPS6278200A JP S6278200 A JPS6278200 A JP S6278200A JP 21675085 A JP21675085 A JP 21675085A JP 21675085 A JP21675085 A JP 21675085A JP S6278200 A JPS6278200 A JP S6278200A
Authority
JP
Japan
Prior art keywords
thin film
substrate
organic thin
film
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21675085A
Other languages
Japanese (ja)
Other versions
JPH0513920B2 (en
Inventor
Shinzo Morita
慎三 森田
Masahiro Tawada
昌弘 多和田
Shuzo Hattori
服部 秀三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP21675085A priority Critical patent/JPS6278200A/en
Publication of JPS6278200A publication Critical patent/JPS6278200A/en
Publication of JPH0513920B2 publication Critical patent/JPH0513920B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form an orientating organic thin film by a safe, dry process without using water, etc., by heating and melting a polycrystalline organic thin film obtained by depositing evaporated organic monomer molecules on the surface of a substrate and cooling the thin film. CONSTITUTION:Evaporated organic monomer molecules are attached to the surface of a substrate to form a polycrystalline organic thin film. Then, the organic thin film is heated, melted and cooled to give the aimed organic thin film. Attaching of the organic monomer molecules to the surface of a substrate is carried out by applying vacuum deposition method, CVD method, plasma CVD method, etc. A film-forming organic compound such as fatty acid, unsaturated group-containing fatty acid, unsaturated hydrocarbon, protein, etc., is properly selected depending upon the purpose and use. Either substrate having flat surface of specular gloss or a substrate having difference in level can be used.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、配向性有機薄膜の形成方法に関し、さらに詳
しくはドライ・プロセスによる配向性有機薄膜の形成方
法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for forming an oriented organic thin film, and more particularly to a method for forming an oriented organic thin film by a dry process.

発明の技術的背景ならびにその問題点 近年、機能性有機薄膜として超微細加工用レジスト等へ
の応用が期待されているラングミュア・プロジェット膜
(LB膜)に対する関心が高まっている。このラングミ
ュア・プロジェット(LB膜)は、従来水面上に有機化
合物の単分子膜を形成し、その膜を1枚づつ基板上に積
層することによって形成されており、常温、常圧下で生
成可能であり大面積化も容易であるなどの利点を有して
いる。この有職超薄膜には、電気的物性研究の進展に伴
なって、様能性薄膜としての応用分野が期待されており
、成膜性分子として知られている直鎖飽和脂肪酸あるい
はそれらの金属塩からなる薄膜をレジスト材料、絶縁性
薄膜、軟X線用回折格子(Pb塩膜)、2次元磁性体(
Mnn成膜などに用いることが検討されている。
Technical background of the invention and its problems In recent years, there has been increasing interest in Langmuir-Prodgett films (LB films), which are expected to be applied to resists for ultrafine processing and the like as functional organic thin films. This Langmuir Project (LB film) is conventionally formed by forming a monomolecular film of an organic compound on the water surface and laminating the films one by one on a substrate, and can be produced at room temperature and pressure. It has the advantage that it can be easily made into a large area. With the progress of research on electrical properties, this ultra-thin film is expected to be applied in the field of functional thin films, and linear saturated fatty acids or their metal salts, which are known as film-forming molecules, are expected to be used. A thin film consisting of a resist material, an insulating thin film, a soft X-ray diffraction grating (Pb salt film), a two-dimensional magnetic material (
It is being considered to be used for Mnn film formation.

しかしながら、これまでのラングミュア・プロジェット
(LB)膜は、上述のように水を用いた湿式法によって
形成されているため、成膜分子の種類、基板物質の種類
ならびに性質等を選定する際に湿式法にともなう制約が
あるという大きな問題点があった。したがってこのよう
な制約のない新しい有機薄膜の形成方法ならびにその薄
膜を機能性薄膜に転換するための方法が望まれていた。
However, conventional Langmuir-Prodgett (LB) films have been formed by a wet method using water as mentioned above, so when selecting the type of film-forming molecules, the type and properties of the substrate material, etc. A major problem was the limitations associated with the wet method. Therefore, there has been a desire for a new method for forming organic thin films that does not have these limitations, as well as a method for converting the thin films into functional thin films.

発明の目的 本発明は、上記のような従来技術に伴なう問題点を解決
しようとするものであり、配向性有機薄膜を形成するに
際して水などを用いることのなく完全なドライ・プロセ
スによっても薄膜に配向性を与えうる配向性有機薄膜の
形成方法を提供することを目的としており、本発明は有
機薄膜製造に関して新たな展望を切拓くものということ
ができる。
Purpose of the Invention The present invention aims to solve the problems associated with the prior art as described above, and it is possible to form an oriented organic thin film by a completely dry process without using water or the like. It is an object of the present invention to provide a method for forming an oriented organic thin film that can impart orientation to the thin film, and it can be said that the present invention opens up new prospects for the production of organic thin films.

発明の概要 本発明に係る配向性有機薄膜の製造方法は、蒸発させた
有機モノマー分子を基板表面に被着させて多結晶性の有
1aH膜を形成し、次いでこの有機薄膜を加熱して融解
した後冷却することを特徴としている。
Summary of the Invention The method for producing an oriented organic thin film according to the present invention involves depositing evaporated organic monomer molecules on the surface of a substrate to form a polycrystalline 1aH film, and then heating and melting this organic thin film. It is characterized by cooling after that.

及肌色旦盗煎週旦 基板表面への有機モノマー分子の被着は、蒸発した分子
が基板上に被着される限り、いかなる方法によって行っ
てもよく、たとえば真空蒸着法、CVD法、プラズマC
VD法などが適宜に採用される。また成膜分子である有
機モノマー分子についても、脂肪酸、不飽和基含有脂肪
酸、不飽和炭化水素、タンパク質なとの成膜性有機化合
物が目的、用途に応じて適宜に選択される。
The organic monomer molecules may be deposited on the surface of the substrate by any method as long as the evaporated molecules are deposited on the substrate, such as vacuum evaporation, CVD, plasma carbon dioxide, etc.
A VD method or the like is appropriately employed. Regarding the organic monomer molecules that are film-forming molecules, film-forming organic compounds such as fatty acids, unsaturated group-containing fatty acids, unsaturated hydrocarbons, and proteins are appropriately selected depending on the purpose and use.

具体的には脂肪酸としては、ステアリン酸あるいはこれ
らの金属塩などhく用いられ、また不飽和基含有脂肪酸
としてはステアリン酸ビニルなどが用いられる。
Specifically, stearic acid or a metal salt thereof is often used as the fatty acid, and vinyl stearate or the like is used as the unsaturated group-containing fatty acid.

使用される基板についても格別の制限はなく、基板表面
が平坦な鏡面状であるものあるいは段差を有するものの
いずれも使用できる。またガラス基板上に真空蒸着法な
どによって金属薄膜を被着させたものを基板表面として
用いることもできる。
There are no particular restrictions on the substrate used, and either a substrate with a flat, mirror-like surface or a substrate with steps can be used. Alternatively, a glass substrate on which a metal thin film is deposited by vacuum evaporation or the like can also be used as the substrate surface.

この際ガラス基板上に金属薄膜を2層以上順次被着させ
、このうち最上層をエツチングするなどして段差を形成
したものを基板表面として用いることもできる。具体的
には、ガラス基板上に、金属膜、たとえば銅、アルミニ
ウム、クロム、チタンなどの金属薄膜または有機膜を被
着させたものあるいはたとえば、シリコンウェハ、ガラ
ス基板などの無機基板上にシリコン、アモルファス・カ
ーボンの薄膜を被着させたものなどが基板表面として用
いられうる。なお、この発明において特徴的なことであ
るが、疎水性の基板も用いることができ、このことは、
これまでの湿式法の常識からは予想もされなかったこと
である。アモルファス・カーボン薄膜などの無機膜が被
着された疎水性基板表面上に配向性有機薄膜を形成しう
ろことは、この発明によりはじめて見出したことである
At this time, it is also possible to use the substrate surface by sequentially depositing two or more metal thin films on a glass substrate and etching the top layer to form a step. Specifically, a metal film such as copper, aluminum, chromium, titanium, etc., or an organic film is deposited on a glass substrate, or a silicon wafer or an inorganic substrate such as a glass substrate is coated with silicon or an organic film. A surface coated with a thin film of amorphous carbon can be used as the substrate surface. Note that a characteristic feature of this invention is that a hydrophobic substrate can also be used, which means that
This was not expected from the conventional wisdom of wet methods. It was discovered for the first time by the present invention that an oriented organic thin film can be formed on the surface of a hydrophobic substrate on which an inorganic film such as an amorphous carbon thin film is deposited.

このような基板表面上に、上)ホのように蒸発された有
機モノマー分子を被着させて多結晶性有機薄膜を形成し
た後、この有Ia薄膜を加熱して融解させるが、この加
熱は、たとえば基板全体を加熱するか、あるいは基板表
面に被着された有機薄膜にレーザー照射することによっ
て行なうことができる。この有機薄膜の加熱は、大気中
あるいは不活性ガス雰囲気中などで行なわれる。上記の
ようにして有は薄膜を融解させた後冷却することによっ
て単結晶が配向した有機薄膜が得られ、この配向した性
別薄膜は機能性薄膜として用いることができる。
After forming a polycrystalline organic thin film by depositing the evaporated organic monomer molecules on the surface of such a substrate as shown in (a) above, this Ia thin film is heated and melted. This can be done, for example, by heating the entire substrate or by irradiating a laser beam onto an organic thin film deposited on the surface of the substrate. This organic thin film is heated in the air or in an inert gas atmosphere. By melting the thin film as described above and then cooling it, an organic thin film with oriented single crystals can be obtained, and this oriented thin film can be used as a functional thin film.

以上説明した構成からなるこの発明について、添付した
図面に沿って配向性有機薄膜成形の効果を説明する。
Regarding this invention having the configuration described above, the effects of forming an oriented organic thin film will be explained with reference to the attached drawings.

図は、ガラス基板上にプラズマCVD法によってアモル
ファス・カーボン(a−C)膜を成膜したものを蒸着用
基板表面として用い、この塞板表面上にステアリン酸を
成膜分子として被着させて得られた有機薄膜の顕微鏡写
真である。第1図はステアリン酸モノマーが蒸着されて
生成した膜を示している(真空度1 、2 x 10’
Torr) 。粒径の小さい部分が親水化処理した部分
に蒸着された膜であり、大きい部分が疎水性部分に蒸着
された膜である。
The figure shows an amorphous carbon (a-C) film formed on a glass substrate by plasma CVD method as the deposition substrate surface, and stearic acid is deposited as a film-forming molecule on the surface of this clogging plate. It is a micrograph of the obtained organic thin film. Figure 1 shows the film produced by vapor deposition of stearic acid monomer (vacuum 1, 2 x 10'
Torr). The part with a small particle size is the film deposited on the hydrophilic part, and the part with a large particle size is the film deposited on the hydrophobic part.

第2図は、大気中で加熱した蒸着膜を示していとによっ
て行なった。第3図は、第2図の部分拡大したもので、
ステアリン酸のC型単結晶の特徴である角度55度をも
つ菱形が存在するのがわかる。
FIG. 2 shows a deposited film heated in the atmosphere. Figure 3 is a partially enlarged version of Figure 2.
It can be seen that there is a diamond shape with an angle of 55 degrees, which is a characteristic of C-type single crystals of stearic acid.

このようにして得られたC型単結晶のX線回格パターン
を表1に示す。
Table 1 shows the X-ray grid pattern of the C-type single crystal thus obtained.

表1 C型単結晶(単斜晶) l、m、n    2θ2   2θ20.0,1  
  2.22   2.320.0,2    4.4
4   4.650.0,3    6.66   6
.980.0,4    8.88   9.310.
0,5   11.11  11.640.0.6  
 13.34  13.980.0,7   15.5
7  16.330.0.8   17.81  18
.680.0,9   20.06  21.040.
0.10  22.32  23.4.10.0.12
  26.86  28.180.0.14  31.
44  33.○O○、0.16  36.○7  3
7.880.0,18  40.77  42.830
.0,20 45.54  47.87上記2θ1.2
θ2からそれぞれ格子定数を求めた。
Table 1 C-type single crystal (monoclinic) l, m, n 2θ2 2θ20.0,1
2.22 2.320.0,2 4.4
4 4.650.0,3 6.66 6
.. 980.0,4 8.88 9.310.
0,5 11.11 11.640.0.6
13.34 13.980.0,7 15.5
7 16.330.0.8 17.81 18
.. 680.0,9 20.06 21.040.
0.10 22.32 23.4.10.0.12
26.86 28.180.0.14 31.
44 33. ○○○, 0.16 36. ○7 3
7.880.0,18 40.77 42.830
.. 0,20 45.54 47.87 2θ1.2 above
The lattice constants were determined from θ2.

格子定数 2θ1について a=9.363A b=4.965A C=50.88A B=128.46゜ 2θ2について a=9.51A b=4.95A C=51.4A B=129.6゜ 機能性薄膜として超微細加工用レジスト等への応用が期
待される配向性有機薄膜を完全ドライ・プロセスとして
実現したこの発明の意義は極めて大きなものであり、そ
の効果も明らかである。
For lattice constant 2θ1 a = 9.363A b = 4.965A C = 50.88A B = 128.46° For 2θ2 a = 9.51A b = 4.95A C = 51.4A B = 129.6° Functionality The significance of this invention is extremely large, and its effects are obvious, as it has realized an oriented organic thin film, which is expected to be applied as a thin film to resists for ultrafine processing, etc., through a completely dry process.

以下、この発明の詳細な説明する。The present invention will be explained in detail below.

亙思■−ニ ガラス基板上に真空蒸着によって、約200μm厚のC
u1CrまたはTiの薄膜を被着させ、次いでこの金属
薄膜にA1層を被着させた。
- Approximately 200 μm thick C was deposited on a glass substrate by vacuum evaporation.
A thin film of u1Cr or Ti was deposited and then an A1 layer was deposited on this metal film.

この2層構造の蒸着膜の上層であるA1層をリソグラフ
ィプロセスによって4μ〜100μ幅のスリットにエツ
チング加工した。この2層によって段差を形成した。
The A1 layer, which is the upper layer of this two-layer deposited film, was etched into slits with a width of 4 to 100 μ by a lithography process. A step was formed by these two layers.

この段差のある金属膜を蒸着用基板表面とし、95%以
上の純度を有するステアリン酸をモノマーとして用い、
タングステンボートを用いて6x10−6Torrで真
空蒸着して有機薄膜を基板上に形成した。得られた有機
薄膜に、He−NeレーザーまたはHe−Cdレーザー
をレンズ系および基板移動装置を用いて、レザーパワー
密度2.4W/mm2、スキャン速度’l Qmm/m
in、基板温度26℃でレーザー照射して、有機薄膜の
加熱を行なった。その結果レーザー照射した部分の蒸着
ステアリン酸膜が融解し、それらが再び冷却されると平
面状に単結晶化した有は薄膜が形成された。
This metal film with steps is used as the surface of the substrate for vapor deposition, using stearic acid with a purity of 95% or more as a monomer,
An organic thin film was formed on the substrate by vacuum deposition at 6×10 −6 Torr using a tungsten boat. The obtained organic thin film was heated with a He-Ne laser or a He-Cd laser using a lens system and a substrate moving device at a laser power density of 2.4 W/mm2 and a scanning speed of '1 Qmm/m.
In, the organic thin film was heated by laser irradiation at a substrate temperature of 26°C. As a result, the vapor-deposited stearic acid film in the laser-irradiated area melted, and when it was cooled again, a planar single-crystal thin film was formed.

実施例 2 直径20cm、電極間隙3.5cmの平行平板電極系を
有するプラズマCVD装置を用い、メタン2QSCC)
l、水素23CCH,ガス圧力Q、1Torr、放電周
波数13.45MHz 、放電電力100Wの条件で、
シリコンウェハー基板上に、アモルファス・カーボン(
a−C)膜をコーティングした。このa−C膜は、蒸溜
水に対して、大気中、室温(約20℃)で、接触角的9
0°の疎水性を示す。このようにして得られたシリコン
ウェハ上に被着されたa−C膜上に、98%の純度のス
テアリン酸(40IOまたは80111(1>をモノマ
ーとし、銅ルツボを用いて1 、2 x 10’Tor
rで30分間か【〕で真空蒸着し、ステアリン酸有機薄
膜を形成した。
Example 2 Using a plasma CVD device with a parallel plate electrode system with a diameter of 20 cm and an electrode gap of 3.5 cm, methane 2QSCC)
1, hydrogen 23 CCH, gas pressure Q, 1 Torr, discharge frequency 13.45 MHz, and discharge power 100 W.
Amorphous carbon (
a-C) Membranes were coated. This a-C film has a contact angle of 9 when exposed to distilled water at room temperature (approximately 20°C) in the atmosphere.
Shows 0° hydrophobicity. On the a-C film deposited on the silicon wafer thus obtained, 98% pure stearic acid (40IO or 80111 (1> is the monomer and 1,2 x 10 'Tor
A stearic acid organic thin film was formed by vacuum evaporation at r for 30 minutes or [ ].

次いで、大気中でステアリン酸の融点70〜80℃)ま
で基板全体を昇温しで、ステアリン酸を融解し、約30
分間加熱した。その俊、約5℃/hrの冷却速度で冷却
すると、結晶化した薄膜が形成された。この結晶はC型
単結晶の特徴である角度55度をもつ菱形を示した。
Next, the temperature of the entire substrate is raised in the air to the melting point of stearic acid (70 to 80°C) to melt the stearic acid,
Heated for minutes. When the material was cooled at a cooling rate of about 5° C./hr, a crystallized thin film was formed. This crystal exhibited a rhombic shape with an angle of 55 degrees, which is a characteristic of a C-type single crystal.

【図面の簡単な説明】[Brief explanation of drawings]

図はアモルファス・カーボン(a−C)膜にステアリン
酸を適用した場合の顕微鏡写真である。 第1図は加熱前の蒸着膜の顕微鏡写真であり、第2図は
加熱後の蒸着督砧微鏡写真であり、第3図は第2図を部
分拡大した顕微鏡写真である。
The figure is a micrograph of a case where stearic acid is applied to an amorphous carbon (a-C) film. FIG. 1 is a microscopic photograph of the deposited film before heating, FIG. 2 is a microscopic photograph of the vapor deposition film after heating, and FIG. 3 is a partially enlarged microscopic photograph of FIG. 2.

Claims (11)

【特許請求の範囲】[Claims] (1)蒸発させた有機モノマー分子を基板表面に被着さ
せて多結晶性有機薄膜を形成し、次いでこの有機薄膜を
加熱して融解した後冷却することを特徴とする配向性有
機薄膜の形成方法。
(1) Formation of an oriented organic thin film characterized by depositing evaporated organic monomer molecules on the surface of a substrate to form a polycrystalline organic thin film, then heating and melting this organic thin film, and then cooling it. Method.
(2)有機モノマー分子を真空蒸着によって基板表面に
被着させる特許請求の範囲1項に記載の方法。
(2) The method according to claim 1, wherein the organic monomer molecules are deposited on the substrate surface by vacuum deposition.
(3)有機モノマー分子が脂肪酸である特許請求の範囲
第1項ないし第2項に記載の方法。
(3) The method according to claims 1 and 2, wherein the organic monomer molecule is a fatty acid.
(4)有機モノマー分子がステアリン酸である特許請求
の範囲第3項に記載の方法。
(4) The method according to claim 3, wherein the organic monomer molecule is stearic acid.
(5)基板表面が鏡面または段差を有する単層膜あるい
は多層膜である特許請求の範囲第1項ないし第4項に記
載の方法。
(5) The method according to any one of claims 1 to 4, wherein the substrate surface is a single layer film or a multilayer film having a mirror surface or steps.
(6)基板表面が金属膜である特許請求の範囲第5項に
記載の方法。
(6) The method according to claim 5, wherein the substrate surface is a metal film.
(7)基板表面が有機膜または無機膜である特許請求の
範囲第5項に記載の方法。
(7) The method according to claim 5, wherein the substrate surface is an organic film or an inorganic film.
(8)基板表面が疎水性を有する特許請求の範囲第7項
に記載の方法。
(8) The method according to claim 7, wherein the substrate surface has hydrophobicity.
(9)基板表面がアモルファスカーボン膜である特許請
求の範囲第7項ないし第8項に記載の方法。
(9) The method according to any one of claims 7 to 8, wherein the substrate surface is an amorphous carbon film.
(10)基板全体を加熱することによって有機薄膜を加
熱する特許請求の範囲第1項ないし第9項に記載の方法
(10) The method according to any one of claims 1 to 9, wherein the organic thin film is heated by heating the entire substrate.
(11)基板表面上に被着された有機薄膜にレーザー照
射を行なうことによって有機薄膜を加熱する特許請求の
範囲第1項ないし第9項に記載に方法。
(11) The method according to any one of claims 1 to 9, wherein the organic thin film deposited on the surface of the substrate is heated by irradiating the organic thin film with a laser beam.
JP21675085A 1985-09-30 1985-09-30 Method of forming orientation organic thin film Granted JPS6278200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21675085A JPS6278200A (en) 1985-09-30 1985-09-30 Method of forming orientation organic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21675085A JPS6278200A (en) 1985-09-30 1985-09-30 Method of forming orientation organic thin film

Publications (2)

Publication Number Publication Date
JPS6278200A true JPS6278200A (en) 1987-04-10
JPH0513920B2 JPH0513920B2 (en) 1993-02-23

Family

ID=16693334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21675085A Granted JPS6278200A (en) 1985-09-30 1985-09-30 Method of forming orientation organic thin film

Country Status (1)

Country Link
JP (1) JPS6278200A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166298A (en) * 1984-02-10 1985-08-29 Hitachi Ltd Preparation of film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166298A (en) * 1984-02-10 1985-08-29 Hitachi Ltd Preparation of film

Also Published As

Publication number Publication date
JPH0513920B2 (en) 1993-02-23

Similar Documents

Publication Publication Date Title
JP4428921B2 (en) Nanostructure, electronic device, and manufacturing method thereof
US20060211154A1 (en) Method of manufacturing patterned ferroelectric media
KR20160117515A (en) Method of pulsed laser-based large area graphene synthesis on metallic and crystalline substrates
JPS59211216A (en) Method of producing semiconductor device
CN105621353A (en) Large-area nanometer patterning method based on multiple AAO (anodic aluminum oxide) templates
JPS6278200A (en) Method of forming orientation organic thin film
Vroegindeweij et al. Exploring microstencils for sub-micron patterning using pulsed laser deposition
US5639300A (en) Epitaxy with reusable template
JP4747330B2 (en) Preparation of rutile type titanium oxide single crystal thin film
CN108502840B (en) Method for efficiently preparing annular nanogap ordered array
JPS637092B2 (en)
JPH04212214A (en) Manufacture of oxide superconductive thin film
Szabó et al. Hierarchical oxide nanostructures fabricated with atomic layer deposition and hydrothermal growth
JP2506081B2 (en) Organic thin film dry development resist
JPH08330303A (en) Method and system for preparing thin film
CN1188897C (en) Method for preparing nano-scale ordered microcrack on strontium titanate substrate
CN1328166C (en) Method for magnesia nanometer line epitaxial growth from strontium titanate monocrystal chip
JP3986243B2 (en) Hard thin film fabrication method using ion beam
JPH04182317A (en) Formation of oxide superconducting thin film
JPH01313974A (en) Method of manufacturing polycrystalline silicon semiconductor resistance layer on silicon substrate and silicon pressure sensor manufactured by the method
JPH0210719A (en) Manufacture of polycrystalline layer having rough crystal structure for thin film semiconductor device
JP2003335516A (en) Polysilicate, mesoporous body, and method for producing them
JP3213769B2 (en) Manufacturing method and manufacturing apparatus for gold crystal
JP2008137869A (en) Method for manufacturing metal oxide thin film having controlled surface fine structure and the metal oxide thin film
WO2004103893A1 (en) Fine structure and method for preparation thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term