JPS637092B2 - - Google Patents

Info

Publication number
JPS637092B2
JPS637092B2 JP10923183A JP10923183A JPS637092B2 JP S637092 B2 JPS637092 B2 JP S637092B2 JP 10923183 A JP10923183 A JP 10923183A JP 10923183 A JP10923183 A JP 10923183A JP S637092 B2 JPS637092 B2 JP S637092B2
Authority
JP
Japan
Prior art keywords
substrate
particles
fine particles
incident
producing fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10923183A
Other languages
Japanese (ja)
Other versions
JPS60825A (en
Inventor
Yukio Nakanochi
Shigehiro Oonuma
Takeshi Masumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Riken Corp
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Shingijutsu Kaihatsu Jigyodan filed Critical Riken Corp
Priority to JP10923183A priority Critical patent/JPS60825A/en
Publication of JPS60825A publication Critical patent/JPS60825A/en
Publication of JPS637092B2 publication Critical patent/JPS637092B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、金属、非金属を問わず微粒子を製造
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for producing fine particles, whether metal or non-metal.

従来技術 すべての固体物質において、ある種の物性(融
点、表面活性、磁性等)は、その粒径に著しく依
存し、特定の粒径(サブミクロン)以下で顕著な
変化を生じ、実用上有用な特性を示すことが知ら
れている。このため、近年とくに微粒子物質の物
性研究および工業素材としての研究が盛んになり
つつある。
Prior Art In all solid materials, certain physical properties (melting point, surface activity, magnetism, etc.) are significantly dependent on their particle size, and change significantly below a certain particle size (submicron), making them useful in practice. It is known to exhibit certain characteristics. For this reason, research on the physical properties of particulate matter and its use as an industrial material has become particularly active in recent years.

かかる微粒子物質の製造は主として、気相中
で、蒸発物質の原子あるいは分子を会合成長させ
る方法を採つている。この方法は、粒径や、粒の
形状が一定しないこと、さらには粒子の成長段階
での温度制御および組成制御等の点で難しい問題
がある。また、特に非晶質の微粒子を得ることは
困難であつた。
The production of such fine particulate materials mainly employs a method in which atoms or molecules of evaporated materials are brought together and grown in a gas phase. This method has difficult problems in terms of particle size and particle shape not being constant, and further, temperature control and composition control during the particle growth stage. Furthermore, it has been particularly difficult to obtain amorphous fine particles.

目 的 本発明は、上記従来法の欠点を除去し、粒径、
粒の形状が均一な微粒子を、粒子の成長段階での
温度および組成制御を容易にして得ることを目的
とするもので、結晶質、非晶質を問わず容易に得
ようとするものである。
Purpose The present invention eliminates the drawbacks of the above conventional methods, and
The purpose is to easily obtain fine particles with a uniform grain shape by easily controlling the temperature and composition during the particle growth stage, regardless of whether they are crystalline or amorphous. .

構 成 本発明は薄膜製造方法において、基板表面に適
当な高さと径をもつた、高密度の微細突起を形成
し、該基板上に、気相中より原子、原子集団、分
子あるいは分子集団を入射せしめ、これを柱状あ
るいは粒状の微粒子として成長させることを特徴
とする微粒子の製造方法である。
Structure The present invention is a method for producing a thin film, in which high-density microprotrusions with appropriate height and diameter are formed on the surface of a substrate, and atoms, atomic groups, molecules, or molecular groups are injected onto the substrate from a gas phase. This is a method for producing fine particles, which is characterized by making the particles incident on the particles and growing them as columnar or granular particles.

気相中より原子、原子集団、分子あるいは分子
集団(以下入射粒子という)を基板上に入射させ
て薄膜を製造することは知られている。この場
合、発生源における入射粒子の放出方向の拡が
り、および気相中のガス粒子による散乱のため、
基板上への入射粒子の入射角度は一定にはならな
い。したがつて、適当な高低差を持つ高密度の微
細突起を基板上に設け、そこに上記の入射角度に
拡がりを持つ入射粒子を堆積させると、基板上で
の入射粒子の付着頻度は突起部分の方が底部より
高くなる。
It is known to produce a thin film by making atoms, atomic groups, molecules, or molecular groups (hereinafter referred to as incident particles) incident on a substrate from a gas phase. In this case, due to the spread of the incident particles in the emission direction at the source and the scattering by gas particles in the gas phase,
The angle of incidence of incident particles onto the substrate is not constant. Therefore, if high-density microprotrusions with appropriate height differences are provided on a substrate and incident particles spread over the above-mentioned incident angle are deposited thereon, the frequency of adhesion of incident particles on the substrate will be the same as that of the protrusions. is higher than the bottom.

本発明者らはこの点に着目し、入射粒子の入射
角の拡がりと、基板上の微細突起の高さ、径およ
び密度を適切に調整することにより、入射粒子を
優先的に突起部分に付着させて、サブミクロン以
下の微粒子に容易に成長させることができること
を見出した。
The present inventors focused on this point, and by appropriately adjusting the spread of the incident angle of the incident particles and the height, diameter, and density of the microprotrusions on the substrate, the incident particles preferentially adhere to the protrusions. It has been found that fine particles of submicron size or less can be easily grown.

本発明の方法において、基板上の微細突起の密
度は、突起部への入射粒子の付着頻度と最終的に
得られる微粒子の粒子径を決める因子である。ま
た、微細突起の高さや径も同様に生成する微粒子
径および形状に影響を与える因子である。
In the method of the present invention, the density of fine protrusions on the substrate is a factor that determines the frequency of adhesion of incident particles to the protrusions and the particle size of the finally obtained fine particles. Furthermore, the height and diameter of the microprotrusions are also factors that similarly affect the diameter and shape of the generated microparticles.

本発明において得ようとする少なくとも1μm
以下の径の微粒子の場合、これらの因子の条件
は、微細突起の高さ、径および密度がそれぞれ
0.02〜10μm、0.01〜1μm、5×105〜5×109個/
mm2の範囲が最も適当である。
At least 1 μm to be obtained in the present invention
For microparticles with the following diameters, the conditions for these factors are such that the height, diameter, and density of the microprojections are
0.02 to 10μm, 0.01 to 1μm, 5×10 5 to 5×10 9 pieces/
A range of mm 2 is most suitable.

かかる微細突起を基板上に形成させるには、例
えば下記の如き方法を応用することができる。
In order to form such fine protrusions on a substrate, for example, the following method can be applied.

その一つはテフロンの如き樹脂フイルムを基板
として用い、その表面をArプラズマイオンエツ
チングすることにより、表面に微細な繊維状突起
を密生させることができる。又、別の方法とし
て、ガラス基板上にAl蒸着薄膜を形成し、その
表面に酸化被膜が形成されないように配慮し、蒸
着後直ちに沸騰水中に浸漬することにより、表面
に微細突起を生成させることができる。その他微
細突起の生成法として知られている方法はいずれ
も本発明の基板に対して適用できる。
One method is to use a resin film such as Teflon as a substrate, and by subjecting the surface to Ar plasma ion etching, fine fibrous protrusions can be formed on the surface. Another method is to form an Al vapor-deposited thin film on a glass substrate, take care not to form an oxide film on the surface, and immediately immerse it in boiling water after vapor deposition to generate fine protrusions on the surface. Can be done. Any other known method for producing fine protrusions can be applied to the substrate of the present invention.

一方、気相中より基板上に入射粒子を入射させ
る場合、その粒子のもつエネルギーは、その粒子
が基板上で微粒子として十分に速く成長するため
のエネルギー範囲になければならない。また、入
射粒子のエネルギーが、一度堆積した微粒子を構
成する原子あるいは分子の結合を再切断しない最
大のエネルギー以下でなければならない。したが
つて、入射粒子のエネルギーは原子1個当りで
3000〜0.1eVの範囲であることが必要である。
On the other hand, when incident particles are incident on a substrate from the gas phase, the energy of the particles must be within the energy range for the particles to grow sufficiently quickly as fine particles on the substrate. Furthermore, the energy of the incident particles must be less than the maximum energy that does not re-break the bonds of atoms or molecules that constitute the fine particles once deposited. Therefore, the energy of the incident particle is per atom
It needs to be in the range of 3000 to 0.1 eV.

さらに、入射粒子のエネルギーと気相中に存在
するガスの圧力とは密接な関連がある。入射粒子
のエネルギーに対して気相のガス圧が大きいと、
入射粒子は気相中で会合成長してしまい、基板上
で粒子を成長させるという所期の目的を達するこ
とが難かしくなる。このため気相中のガス圧は
10Torr以下であることが必要である。またこの
ガス圧が1×10-8Torr未満であれば、粒子成長
速度が小さくなるので好ましくない。したがつ
て、ガス圧は1×10-8〜10Torrの間に調整する
必要がある。
Furthermore, there is a close relationship between the energy of the incident particle and the pressure of the gas present in the gas phase. If the gas pressure in the gas phase is large relative to the energy of the incident particle,
The incident particles grow together in the gas phase, making it difficult to achieve the intended purpose of growing particles on the substrate. Therefore, the gas pressure in the gas phase is
It needs to be 10 Torr or less. Moreover, if this gas pressure is less than 1×10 −8 Torr, the particle growth rate will be low, which is not preferable. Therefore, the gas pressure needs to be adjusted between 1×10 −8 and 10 Torr.

次に、基板上の温度は堆積物質と基板材との関
連で決まる特定の温度以下であることが望まし
い。この温度以上では、基板上に設けた微細突起
の密度、形状を反映した粒子状成長が起らず薄膜
化し易くなる。
The temperature on the substrate is then desirably below a certain temperature determined by the relationship between the deposited material and the substrate material. At temperatures above this temperature, granular growth reflecting the density and shape of microprotrusions provided on the substrate does not occur, making it easier to form a thin film.

本発明者らの実験では、500℃以下であれば基
板材を選択することにより、基板上の微細突起の
密度、形状を反映した粒子成長が可能であつた。
In experiments conducted by the present inventors, it was possible to grow particles that reflected the density and shape of microprotrusions on the substrate by selecting a substrate material at temperatures below 500°C.

また、本発明方法においては、特定組成の物質
を用い基板を低温に保つこと、および入射粒子エ
ネルギーを比較的低エネルギーに維持することに
より、非晶質状態の微粒子を得ることができると
いう利点もある。
Furthermore, the method of the present invention has the advantage that fine particles in an amorphous state can be obtained by using a substance with a specific composition, keeping the substrate at a low temperature, and maintaining the incident particle energy at a relatively low energy level. be.

本発明にかかる薄膜製造方法としては、蒸発
法、スパツタリング法およびクラスターイオンビ
ーム法がある。
Thin film manufacturing methods according to the present invention include evaporation methods, sputtering methods, and cluster ion beam methods.

つぎに実施例について述べる。 Next, examples will be described.

実施例 1 サツカロース製基板の表面に高さ約1μm、径
0.05μmの微細突起を4×106個/mm2の高密度に設
け、これを密閉容器中に基板温度約150℃に保持
した。密閉容器内はArガス圧2×10-2Torrの気
相状態とした。
Example 1 Approximately 1 μm in height and diameter on the surface of a satsucrose substrate
Fine protrusions of 0.05 μm were provided at a high density of 4×10 6 pieces/mm 2 , and the substrate temperature was maintained at about 150° C. in a closed container. The inside of the sealed container was in a gaseous state with an Ar gas pressure of 2×10 -2 Torr.

容器内にはボートを置き、それにCo76−Si10
B14よりなる組成のCo−Si−B合金を入れて加熱
蒸発させ、入射粒子の状態にして、上記基板表面
に入射させた。
A boat is placed in the container, and Co 76 −Si 10
A Co--Si--B alloy having a composition of B14 was put in and heated to evaporate to form incident particles, which were incident on the surface of the substrate.

入射粒子は基板上で成長し、平均粒径0.3μmの
結晶質の微粒子が得られた。第1図は、得られた
微粒子の走査型電子顕微鏡写真で、均一性の高い
粒子であることが判る。
The incident particles grew on the substrate, and crystalline fine particles with an average particle size of 0.3 μm were obtained. FIG. 1 is a scanning electron micrograph of the obtained fine particles, which shows that the particles are highly uniform.

実施例 2 実施例1において基板温度を約100℃とした以
外は同一の条件で実施したところ、基板上に平均
粒径0.3μmの非晶質の微粒子が得られた。
Example 2 When Example 1 was carried out under the same conditions except that the substrate temperature was about 100° C., amorphous fine particles with an average particle size of 0.3 μm were obtained on the substrate.

実施例 3 実施例2において基板上の微細突起を高さ約
0.5μm、径0.03μm、密度1×107個/mm2とした以
外は同一の条件で実施したところ、基板上に平均
粒径0.1μmの非晶質の超微粒子が得られた。
Example 3 In Example 2, the fine protrusions on the substrate were made to a height of approximately
When carried out under the same conditions except that the particle diameter was 0.5 μm, the diameter was 0.03 μm, and the density was 1×10 7 particles/mm 2 , amorphous ultrafine particles with an average particle size of 0.1 μm were obtained on the substrate.

実施例 4 実施例3において、蒸発して基板に入射すべき
材料をPbTiO3とし、気相中のArガス圧を4×
10-2Torrとして実施したところ、平均粒子0.1μm
の非晶質の微粒子が得られた。
Example 4 In Example 3, the material to be evaporated and incident on the substrate is PbTiO 3 , and the Ar gas pressure in the gas phase is set to 4×
When carried out at 10 -2 Torr, the average particle size was 0.1 μm.
Amorphous fine particles were obtained.

効 果 本発明によれば、金属、非金属を問わず、結晶
質あるいは非晶質の微粒子が容易に得られ、又、
基板上の突起の高さ、密度及び入射粒子の堆積時
間を調節することにより、アスペクト比の小さい
粒状のものからアスペクト比の大きい細長い柱状
の粒子まで製造可能であり、従来、微粒子の用途
として考えられている磁気記録材料、触媒、低温
焼結助剤などに適用可能な微粒子粉末を提供する
だけでなく、新しい工業素材として可能性をもつ
た微粒子を製造することができる。
Effects According to the present invention, crystalline or amorphous fine particles can be easily obtained regardless of metal or non-metal, and
By adjusting the height and density of the protrusions on the substrate and the deposition time of the incident particles, it is possible to produce particles ranging from granular particles with a small aspect ratio to elongated columnar particles with a large aspect ratio. In addition to providing fine particles that can be used in magnetic recording materials, catalysts, and low-temperature sintering aids, it is also possible to produce fine particles that have potential as new industrial materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1によつて得られた微粒子の走
査型顕微鏡写真である。
FIG. 1 is a scanning micrograph of fine particles obtained in Example 1.

Claims (1)

【特許請求の範囲】 1 薄膜製造方法において、基板表面に、適当な
高さと径をもつた高密度の微細突起を形成し、該
基板上に、気相中より原子、原子集団、分子ある
いは分子集団を入射せしめ、これを柱状あるいは
粒状の微粒子として成長させることを特徴とする
微粒子の製造方法。 2 基板表面の微細突起の高さ、直径および単位
面積当りの個数が、本質的にそれぞれ0.02〜10μ
m、0.01〜1μm、5×105〜5×109個/mm2の範囲
である特許請求の範囲第1項記載の微粒子の製造
方法。 3 基板上に入射する原子、原子集団、分子ある
いは分子集団が、本質的に原子1個当り3000〜
0.1eVの範囲のエネルギーを持つものである特許
請求の範囲第1項記載の微粒子の製造方法。 4 入射粒子と基板材との界面における基板温度
が本質的に500℃以下である特許請求の範囲第1
項記載の微粒子の製造方法。 5 気相中のガス圧を1×10-8〜10Torrの範囲
とする特許請求の範囲第1項記載の微粒子の製造
方法。
[Claims] 1. In a thin film manufacturing method, high-density microprotrusions with appropriate height and diameter are formed on the surface of a substrate, and atoms, atomic groups, molecules, or molecules are injected onto the substrate from a gas phase. A method for producing fine particles, which comprises making a group of particles incident on the particles and growing them as columnar or granular particles. 2 The height, diameter, and number of microprotrusions per unit area on the substrate surface are essentially 0.02 to 10μ, respectively.
The method for producing fine particles according to claim 1, wherein the particle size is in the range of 0.01 to 1 μm and 5×10 5 to 5×10 9 particles/mm 2 . 3 Atoms, atomic groups, molecules or molecular groups incident on the substrate are essentially 3000 to 3000 per atom.
The method for producing fine particles according to claim 1, wherein the fine particles have an energy in the range of 0.1 eV. 4 Claim 1 in which the substrate temperature at the interface between the incident particle and the substrate material is essentially 500°C or less
2. Method for producing fine particles as described in . 5. The method for producing fine particles according to claim 1, wherein the gas pressure in the gas phase is in the range of 1×10 −8 to 10 Torr.
JP10923183A 1983-06-20 1983-06-20 Manufacture of fine particles Granted JPS60825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10923183A JPS60825A (en) 1983-06-20 1983-06-20 Manufacture of fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10923183A JPS60825A (en) 1983-06-20 1983-06-20 Manufacture of fine particles

Publications (2)

Publication Number Publication Date
JPS60825A JPS60825A (en) 1985-01-05
JPS637092B2 true JPS637092B2 (en) 1988-02-15

Family

ID=14504934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10923183A Granted JPS60825A (en) 1983-06-20 1983-06-20 Manufacture of fine particles

Country Status (1)

Country Link
JP (1) JPS60825A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224557U (en) * 1985-07-30 1987-02-14
US6042959A (en) * 1997-10-10 2000-03-28 3M Innovative Properties Company Membrane electrode assembly and method of its manufacture
US5879827A (en) * 1997-10-10 1999-03-09 Minnesota Mining And Manufacturing Company Catalyst for membrane electrode assembly and method of making
US6136412A (en) * 1997-10-10 2000-10-24 3M Innovative Properties Company Microtextured catalyst transfer substrate
US5879828A (en) * 1997-10-10 1999-03-09 Minnesota Mining And Manufacturing Company Membrane electrode assembly
JP5052074B2 (en) * 2006-09-06 2012-10-17 株式会社アルバック Method for forming nano metal particles and nano-order wiring

Also Published As

Publication number Publication date
JPS60825A (en) 1985-01-05

Similar Documents

Publication Publication Date Title
Gracia-Pinilla et al. Deposition of size-selected Cu nanoparticles by inert gas condensation
JPS634628B2 (en)
Zhou et al. Competitive growth of Ta nanopillars during glancing angle deposition: Effect of surface diffusion
JPS637092B2 (en)
Kaatz et al. Narrowing sputtered nanoparticle size distributions
Jałochowski et al. Rheed intensity and electrical resistivity oscillations during metallic film growth
CN102553588B (en) Catalyst for zinc oxide nanowire growth, and application of catalyst
JPH09309713A (en) Fullerene and its production
EP1146138B1 (en) Tungsten super fine particle and method for producing the same
JPS5845375A (en) Formation of thin film by vapor deposition
JP3532412B2 (en) Method for producing ultrafine Nb particles
Hu et al. Gold clusters deposited on highly oriented pyrolytic graphite by pulse laser ablation and liquid metal ion source
JP3227768B2 (en) Method for controlling crystal orientation of copper thin film
Zhang et al. Electrical and structural characterizations of one-dimensional carbon nanostructures synthesized at ambient pressure
JP2000192113A (en) Manufacture of metallic superfine particle, and metallic superfine particle aggregate to which the manufacture is applied
KR20030049756A (en) Step-flow mode growth method of metal oxide films at low temperature and synthesis method of nano wires therewith
Subagio et al. Growth of TiO2 Thin Films by High Energy Milling Assisted Pulsed Laser Deposition Method
JP2699608B2 (en) Single crystal thin film forming method
JPS6091625A (en) Manufacture of thin film
JPH02196086A (en) Production of single crystal
Lü et al. Study on nucleation and growth of Ag nanoparticles prepared by radio-frequency sputtering on highly oriented pyrolytic graphite and amorphous carbon
JPH0222458A (en) Method for synthesizing thin film
JP2005022952A (en) Methods of manufacturing carbon nanotube and amorphous carbon rod, and substrate for manufacturing used therefor
JP2000150384A (en) Aggregate of semiconductor fine particles and manufacture thereof applied by same method
JPH07100136B2 (en) Manufacturing method of fine particles