JPH07100136B2 - Manufacturing method of fine particles - Google Patents

Manufacturing method of fine particles

Info

Publication number
JPH07100136B2
JPH07100136B2 JP2287336A JP28733690A JPH07100136B2 JP H07100136 B2 JPH07100136 B2 JP H07100136B2 JP 2287336 A JP2287336 A JP 2287336A JP 28733690 A JP28733690 A JP 28733690A JP H07100136 B2 JPH07100136 B2 JP H07100136B2
Authority
JP
Japan
Prior art keywords
fine particles
producing fine
controlling
produced
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2287336A
Other languages
Japanese (ja)
Other versions
JPH04161247A (en
Inventor
美智子 楠
徹 佐竹
Original Assignee
新技術事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新技術事業団 filed Critical 新技術事業団
Priority to JP2287336A priority Critical patent/JPH07100136B2/en
Publication of JPH04161247A publication Critical patent/JPH04161247A/en
Publication of JPH07100136B2 publication Critical patent/JPH07100136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、微粒子や薄膜の製造方法、特にその結晶構造
を制御する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing fine particles or a thin film, and particularly to a method for controlling the crystal structure thereof.

(従来技術) 近年、磁性材料、触媒、特殊セラミックス等の素材とし
て、超微粒子が従来の素材の限界を越える可能性を持つ
として注目されている。これらの金属或いは酸化物等の
微粒子、特に超微粒子の製造方法としては、塩化物、有
機金属蒸気の水素還元、金属塩溶液からの析出法及びガ
ス蒸発法等が知られている。
(Prior Art) In recent years, attention has been paid to ultrafine particles as a material for magnetic materials, catalysts, special ceramics, etc., because they may exceed the limits of conventional materials. Known methods for producing fine particles of these metals or oxides, particularly ultrafine particles, include reduction of chloride and organometallic vapor with hydrogen, precipitation from a metal salt solution, and gas evaporation.

(この発明が解決しようとする問題点) 上記のように微粒子の製造方法は種々試みられてはいる
が、製造された微粒子の結晶構造を制御する方法は、ま
で確立されていない。
(Problems to be Solved by the Invention) Although various methods for producing fine particles have been tried as described above, a method for controlling the crystal structure of produced fine particles has not been established.

製造工程中の輻射加熱、或いはプラズマ加熱によって微
粒子の結晶構造を制御する方法が、研究段階ではある
が、報告されてはいる。しかし、これらの方法は装置が
複雑で大型になり、その上、取扱が難しく、結晶構造の
制御を十分に出来るまでには至っていない。
A method of controlling the crystal structure of fine particles by radiant heating or plasma heating during the manufacturing process, although at the research stage, has been reported. However, in these methods, the apparatus becomes complicated and large in size, and besides, it is difficult to handle, and the crystal structure has not been sufficiently controlled.

従って、微粒子の構造は初期の製造条件で決定され、特
定の構造のものしか得ることが出来なかった。
Therefore, the structure of the fine particles was determined by the initial production conditions, and only a specific structure could be obtained.

また、一般的にも、アモルファス膜や高温相の構造を室
温で製造、保持するのは極めて困難な技術とされてい
る。
In addition, it is generally considered to be extremely difficult to manufacture and maintain an amorphous film or a structure of a high temperature phase at room temperature.

(問題を解決するための手段) この発明は、ガス中蒸発法において、生成した微粒子を
捕集基板で捕集する場合に、その微粒子の衝突条件を変
えることにより、微粒子の結晶構造が変化する現象を見
出し、この現象を利用して高温相の結晶構造、アモルフ
ァス構造のみならず、ひげ状単結晶までの従来得ること
が難しかった微粒子を生成することを可能にしたもので
ある。
(Means for Solving the Problem) In the present invention, when the generated fine particles are collected by the collection substrate in the gas evaporation method, the crystal structure of the fine particles is changed by changing the collision condition of the fine particles. The inventors have discovered a phenomenon, and by utilizing this phenomenon, it is possible to generate not only a high temperature phase crystal structure and an amorphous structure but also fine particles of a whisker-like single crystal, which have been difficult to obtain conventionally.

(実施例) 以下、鉄微粒子において常温相、アモルファス及びひげ
状単結晶を得る方法を例としてこの発明を詳細に説明す
る。
(Example) Hereinafter, the present invention will be described in detail by taking as an example a method of obtaining a room temperature phase, an amorphous and a whisker-like single crystal in iron fine particles.

上記の種々の結晶構造の微粒子は、同一の製造装置によ
ってえられるが、その装置の1例を第1図に示す。
The fine particles having various crystal structures described above can be obtained by the same manufacturing apparatus, and an example of the apparatus is shown in FIG.

装置は微粒子生成室1、加速管2、捕集室3から構成さ
れている。微粒子生成室1は、通常のガス中蒸発法によ
り微粒子を生成する装置と同様であり、例えばターボ分
子ポンプと油回転ポンプからなる排気系4、ガス導入系
5が接続され、蒸発源6を内蔵し、真空計7を備えてい
る。
The apparatus is composed of a particle generation chamber 1, an acceleration tube 2 and a collection chamber 3. The particle generation chamber 1 is similar to an apparatus for generating particles by a normal gas evaporation method. For example, an exhaust system 4 including a turbo molecular pump and an oil rotary pump, a gas introduction system 5 are connected, and an evaporation source 6 is built in. However, a vacuum gauge 7 is provided.

加速管2は例えば内計1mmのステンレス管であり、蒸発
源6の真上100mmの一方の端が固定され、他端は捕集室
3内の捕集基板9に対面配置されている。捕集室3はそ
の他に真空計8を備え、バルブ10を介して油回転ポンプ
11に接続されている。
The accelerating tube 2 is, for example, a stainless tube having a total of 1 mm, one end of which is 100 mm directly above the evaporation source 6 is fixed, and the other end of the accelerating tube 2 is arranged to face the collection substrate 9 in the collection chamber 3. The collection chamber 3 is additionally provided with a vacuum gauge 8, and an oil rotary pump is provided via a valve 10.
Connected to 11.

微粒子生成室1を10-7Torr台まで排気した後、Arガスを
100Torrまで導入し、その雰囲気中で純鉄(99.9%)を
蒸発させる。このときの捕集室3内圧力は0.1〜10数Tor
rまでバルブ10で調節できる。蒸発した鉄は凝縮して微
粒子となり、煙となって上昇する。この様子は肉眼で観
察することが出来る。
After exhausting the particle generation chamber 1 to the level of 10 -7 Torr, Ar gas was discharged.
Introduce up to 100 Torr and evaporate pure iron (99.9%) in the atmosphere. At this time, the pressure in the collection chamber 3 is 0.1 to 10 several Tor.
Adjustable up to r with valve 10. The evaporated iron condenses into fine particles and rises as smoke. This state can be observed with the naked eye.

この条件で得られる鉄の微粒子は10〜50nmの大きさで、
すべて常温相の構造(体心立方構造)を有する。立ち昇
る煙状の微粒子を加速管2に吸い込み、捕集室3に流れ
るArガスに乗せて加速し、捕集基板9に衝突させる。微
粒子の速度は、上記の条件で粒径20nmの場合に、最大約
8km/secである。
The iron fine particles obtained under these conditions have a size of 10 to 50 nm,
All have a room temperature phase structure (body centered cubic structure). The rising smoke-like particles are sucked into the accelerating tube 2, placed on Ar gas flowing in the collection chamber 3 to be accelerated, and collide with the collection substrate 9. The particle velocity is about a maximum when the particle size is 20 nm under the above conditions.
It is 8 km / sec.

捕集基板として、電子顕微鏡用のマイクログリッドを鏡
面研磨されたステンレスホルダーに取付けて用い、生成
された微粒子又は膜の構造決定は透過型電子顕微鏡で行
った。
As a collecting substrate, a microgrid for an electron microscope was attached to a mirror-polished stainless holder and used, and the structure of the produced fine particles or film was determined by a transmission electron microscope.

実施例1 面心立方構造(高温相)を有する鉄微粒子捕集室3内の
圧力を0.1Torr捕集基板の温度を常温(約25℃)とし、
加速管出口から中心軸を外れ0.2〜3度の立体角に入っ
ている微粒子を捕集した。得られた微粒子の電子顕微鏡
写真を第2図に示すが、粒径20〜50nmの面心立方構造の
微粒子が得られていることが判る。
Example 1 The pressure in the iron fine particle collection chamber 3 having the face-centered cubic structure (high temperature phase) was 0.1 Torr and the temperature of the collection substrate was room temperature (about 25 ° C.),
Fine particles that were off the central axis and entered a solid angle of 0.2 to 3 degrees were collected from the exit of the accelerating tube. An electron micrograph of the obtained fine particles is shown in FIG. 2, and it can be seen that fine particles having a face-centered cubic structure with a particle size of 20 to 50 nm are obtained.

一方、捕集室3内圧力を1Torr以上にすると、得られる
微粒子は総て常温相である体心立方構造となることが確
かめられた。これは捕集室内の気体との衝突により減速
され、捕集基板への衝突エネルギーが減少するためと考
えられる。
On the other hand, when the pressure in the collection chamber 3 was set to 1 Torr or more, it was confirmed that all the obtained fine particles had a body-centered cubic structure in a room temperature phase. It is considered that this is because the collision energy with the gas in the collection chamber is decelerated and the collision energy with respect to the collection substrate is reduced.

報告された輻射加熱やプラズマ加熱による方法は、まだ
研究段階ではあるが、制御が難しく大型で複雑な装置を
必要とし、コストが高くなる上に均質な微粒子が得られ
ていない。しかし、本方法では捕集室内の圧力の制御だ
けで容易に均質な高温相の微粒子が得られた。
Although the reported methods using radiant heating and plasma heating are still in the research stage, they are difficult to control, require a large-scale and complicated apparatus, and are expensive, and uniform particles cannot be obtained. However, in this method, homogeneous high-temperature phase fine particles were easily obtained only by controlling the pressure in the collection chamber.

実施例2 アモルファス膜の生成 捕集室3内の圧力を0.1Torrとし、捕集基板温度を常温
(約25℃)とし、加速管2出口からの中心軸に沿った立
体角0.1度以内の微粒子を捕集すると、電子顕微鏡写真
第3図を見るように、アモルファス鉄の薄膜が得られ
る。
Example 2 Formation of Amorphous Film The pressure in the collection chamber 3 was 0.1 Torr, the temperature of the collection substrate was room temperature (about 25 ° C.), and the fine particles within a solid angle of 0.1 degree along the central axis from the exit of the accelerating tube 2. Is collected, an amorphous iron thin film is obtained as shown in the electron micrograph in FIG.

アモルファス金属の製造は極めて難しく、特に微粒子か
らの生成法は知られていない。本方法によれば、材料成
分の制限も少なく、各種のアモルファス膜の生成が可能
である。
Amorphous metal is extremely difficult to produce, and a method for producing it from fine particles is not known. According to this method, there are few restrictions on material components, and various amorphous films can be produced.

実施例3 ひげ状単結晶の生成 捕集室3内の圧力を0.1Torrとし、捕集基板温度を200℃
とし、微粒子の堆積量を約1μmの厚さに捕集した資料
の電子顕微鏡写真を第4図に示す。幅3μm、長さ60μ
mの面心立方構造のひげ状単結晶が成長していることが
判る。
Example 3 Formation of a whisker-shaped single crystal The pressure in the collection chamber 3 was 0.1 Torr, and the collection substrate temperature was 200 ° C.
Fig. 4 shows an electron micrograph of the material in which the amount of fine particles deposited was collected to a thickness of about 1 µm. Width 3μm, length 60μ
It can be seen that a beard-shaped single crystal of m face-centered cubic structure is growing.

また、はじめにひげ状結晶の見られない場所において
も、電子ビーム照射下でひげ状結晶が数100nmまで成長
する現象が観察された。これまでに、電界放射電子顕微
鏡のような特別な装置の中で、せいぜいμmオーダーの
ひげ結晶を成長させた例が報告されているだけであり、
しかも、それはまだ研究段階であり実用的な製法とはな
っていない。これに対して、本方法では極めて容易に効
率良く数十μmという大きなひげ状単結晶が得られた。
In the first place, the phenomenon that whiskers grow up to several 100 nm under electron beam irradiation was observed even in the places where no whiskers were observed. Up to now, there have been only reported examples of growing whiskers on the order of μm in a special device such as a field emission electron microscope.
Moreover, it is still in the research stage and is not a practical method. On the other hand, according to this method, a large whisker-shaped single crystal having a size of several tens of μm was obtained very easily and efficiently.

(発明の効果) この発明の微粒子の製造方法は、ガス中蒸発法におい
て、微粒子の捕集基板への衝突条件を制御することによ
り、捕集基板状に堆積する微粒子や膜の結晶構造を容易
に、しかも確実に制御することが出来、高温相の結晶構
造を有する微粒子の常温下での製造、アモルファス膜及
びひげ状単結晶の製造等、従来困難であったものが容易
に出来るようになり、微粒子の応用範囲を飛躍的に拡大
させるものである。
(Effects of the Invention) The method for producing fine particles of the present invention facilitates the crystal structure of fine particles or films deposited on the collecting substrate by controlling the collision conditions of the fine particles on the collecting substrate in the gas evaporation method. In addition, it is possible to control with certainty, and it becomes possible to easily perform the previously difficult things such as the production of fine particles having a high temperature phase crystal structure at room temperature, the production of an amorphous film and a whisker-shaped single crystal. The application range of fine particles is dramatically expanded.

また、実施例は1例として純鉄を材料とした場合を示し
たが、他の素材によってもその結晶構造を制御して所望
の微粒子が得られることは、上記の説明から明らかであ
る。
In addition, although the example shows the case where pure iron is used as a material as an example, it is clear from the above description that the desired fine particles can be obtained by controlling the crystal structure of other materials.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の微粒子の製造方法を実施するための
装置の1例を示す概念図、第2図は実施例1で製造され
た高温相の粒子構造を示す電子顕微鏡写真、第3図
(a)は、実施例2で製造されたアモルファス鉄の薄膜
の金属組織を示す電子顕微鏡写真、第3図(b)はその
部分拡大写真、第4図は実施例3で製造されたひげ状単
結晶の粒子構造を示す電子顕微鏡写真である。 1:微粒子生成室、2:加速管 3:微粒子捕集室、4:排気系 5:ガス導入系、6:蒸発源 7、8:真空計、9:捕集基板 10:バルブ、11:油回転ポンプ
FIG. 1 is a conceptual diagram showing an example of an apparatus for carrying out the method for producing fine particles of the present invention, FIG. 2 is an electron micrograph showing the grain structure of the high temperature phase produced in Example 1, and FIG. (A) is an electron micrograph showing the metal structure of the amorphous iron thin film produced in Example 2, Fig. 3 (b) is a partially enlarged photograph thereof, and Fig. 4 is a whiskers produced in Example 3. It is an electron micrograph which shows the particle structure of a single crystal. 1: Particle generation chamber, 2: Accelerator tube 3: Particle collection chamber, 4: Exhaust system 5: Gas introduction system, 6: Evaporation source 7, 8: Vacuum gauge, 9: Collection substrate 10: Valve, 11: Oil Rotary pump

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】ガス中蒸発法により生成した微粒子を捕集
体に衝突、捕集する際に、その衝突条件を制御すること
により、捕集体上に堆積する微粒子や膜の結晶構造を制
御することを特徴とする微粒子等の製造方法
1. When the fine particles produced by the in-gas evaporation method collide with a collector and are collected, the collision conditions are controlled to control the crystal structure of the fine particles or film deposited on the collector. For producing fine particles, etc.
【請求項2】上記衝突条件の制御は、生成した微粒子を
捕集体に衝突させる速度を制御することを特徴とする請
求項1の微粒子等の製造方法
2. The method for producing fine particles and the like according to claim 1, wherein the control of the collision condition is performed by controlling the speed at which the generated fine particles collide with the collector.
【請求項3】上記衝突速度の制御は、微粒子生成室と捕
集室とを連結し、その間の圧力差を制御することで行わ
れることを特徴とする請求項2の微粒子等の製造方法
3. The method for producing fine particles and the like according to claim 2, wherein the control of the collision speed is performed by connecting the fine particle generating chamber and the collecting chamber and controlling the pressure difference therebetween.
【請求項4】上記衝突速度の制御は、捕集室の圧力を制
御することによつて行われることを特徴とする請求項3
の微粒子等の製造方法
4. The control of the collision speed is performed by controlling the pressure in the collection chamber.
Method for producing fine particles of
【請求項5】上記衝突条件の制御は、捕集体の状態を制
御することによって行われることを特徴とする請求項1
の微粒子等の製造方法
5. The control of the collision condition is performed by controlling the state of the collector.
Method for producing fine particles of
【請求項6】高温相の結晶構造を有する微粒子を製造す
ることを特徴とする請求項1ないし5の何れかの微粒子
等の製造方法
6. A method for producing fine particles or the like according to claim 1, wherein fine particles having a high temperature phase crystal structure are produced.
【請求項7】アモルファス膜を製造することを特徴とす
る請求項1ないし5の何れかの微粒子等の製造方法
7. A method for producing fine particles or the like according to claim 1, wherein an amorphous film is produced.
【請求項8】ひげ状単結晶を製造することを特徴とする
請求項1ないし5の何れかの微粒子等の製造方法
8. A method for producing fine particles or the like according to claim 1, wherein a whisker-shaped single crystal is produced.
【請求項9】素材が鉄であることを特徴とする請求項6
ないし8の何れかの微粒子等の製造方法
9. The material as claimed in claim 6, wherein the material is iron.
To the method for producing fine particles, etc.
JP2287336A 1990-10-26 1990-10-26 Manufacturing method of fine particles Expired - Fee Related JPH07100136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2287336A JPH07100136B2 (en) 1990-10-26 1990-10-26 Manufacturing method of fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2287336A JPH07100136B2 (en) 1990-10-26 1990-10-26 Manufacturing method of fine particles

Publications (2)

Publication Number Publication Date
JPH04161247A JPH04161247A (en) 1992-06-04
JPH07100136B2 true JPH07100136B2 (en) 1995-11-01

Family

ID=17716051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2287336A Expired - Fee Related JPH07100136B2 (en) 1990-10-26 1990-10-26 Manufacturing method of fine particles

Country Status (1)

Country Link
JP (1) JPH07100136B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255364A (en) * 1987-04-10 1988-10-21 Anelva Corp Apparatus for manufacturing thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255364A (en) * 1987-04-10 1988-10-21 Anelva Corp Apparatus for manufacturing thin film

Also Published As

Publication number Publication date
JPH04161247A (en) 1992-06-04

Similar Documents

Publication Publication Date Title
US5958329A (en) Method and apparatus for producing nanoparticles at a high rate
Ayyub et al. Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures
US4892579A (en) Process for preparing an amorphous alloy body from mixed crystalline elemental metal powders
CN108411267A (en) A method of preparing free state polyhedron Ag nano particles
EP0135118B1 (en) Method of producing fine particles
CN1262692C (en) Silicon nono-wire and its preparation method
Kylián et al. Plasma-assisted gas-phase aggregation of clusters for functional nanomaterials
JP2500360B2 (en) Method for producing compound ultrafine particles
JPH07100136B2 (en) Manufacturing method of fine particles
Ishii et al. Hollow cathode sputtering cluster source for low energy deposition: Deposition of Fe small clusters
JPH11511205A (en) Manufacture of structural materials by physical vapor deposition.
JP4803674B2 (en) Molybdenum or tungsten particles, or a thin film comprising the particles, and a method for producing the same
CN102030327A (en) Method for preparing silicon nano-wire by pulsed laser ablation
CN102925863B (en) Gas phase method for generating metastable phase nanometer particle beam and depositing nanometer film
JPS637092B2 (en)
CN113667935B (en) Preparation method of magnesium-based hollow nanomaterial
KR100479844B1 (en) Appratus for making nano-particles and method of preparing nano-particles using the same
JP3476232B2 (en) Method for synthesizing C3N4 by plasma arc method
Ishii et al. A new process for producing a granular material
JP2000309866A (en) Method and equipment for producing alloy or compound cluster particle
CN109234695A (en) A kind of preparation method of nanocrystalline intermetallics hydrogen storage material
JP2004195339A (en) Method for forming nanostructure and nanostructure
Pompe et al. Metallization of bacterial surface layer by cross-beam pulsed laser deposition
JPS58133368A (en) Formation of boron coating film
JPH0891818A (en) Production of carbon cluster-containing hard film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees