JP2699608B2 - Single crystal thin film forming method - Google Patents

Single crystal thin film forming method

Info

Publication number
JP2699608B2
JP2699608B2 JP2094528A JP9452890A JP2699608B2 JP 2699608 B2 JP2699608 B2 JP 2699608B2 JP 2094528 A JP2094528 A JP 2094528A JP 9452890 A JP9452890 A JP 9452890A JP 2699608 B2 JP2699608 B2 JP 2699608B2
Authority
JP
Japan
Prior art keywords
film
crystal
thin film
substrate
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2094528A
Other languages
Japanese (ja)
Other versions
JPH03292728A (en
Inventor
明男 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2094528A priority Critical patent/JP2699608B2/en
Publication of JPH03292728A publication Critical patent/JPH03292728A/en
Application granted granted Critical
Publication of JP2699608B2 publication Critical patent/JP2699608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は単結晶薄膜形成方法に関する。The present invention relates to a method for forming a single crystal thin film.

〔従来の技術〕[Conventional technology]

従来、半導体装置において、Si単結晶膜またはAl単結
晶膜を非晶質SiO2膜上に成長させる要請があり、Si単結
晶膜についてはいくつかの方法が試みられている。
Conventionally, in a semiconductor device, there has been a demand to grow a Si single crystal film or an Al single crystal film on an amorphous SiO 2 film, and several methods have been tried for the Si single crystal film.

例えば、表面に非晶質SiO2膜を有する単結晶Si基板表
面にSi露出部を形成した後、その表面に多結晶Si膜を形
成し、電子ビームまたはレーザービームを照射すること
でSiを加熱溶融して、Si露出部を種結晶としてSiO2膜上
にまで単結晶成長させる技術がある。
For example, after forming an exposed Si portion on the surface of a single crystal Si substrate having an amorphous SiO 2 film on the surface, forming a polycrystalline Si film on the surface and heating the Si by irradiating an electron beam or a laser beam There is a technique of melting and growing a single crystal on an SiO 2 film using the exposed Si portion as a seed crystal.

また、表面に非晶質SiO2膜を有する単結晶SI基盤表面
にSi露出部を形成した後、その表面に非晶質Si膜を形成
し基板加熱して、Si露出部を種結晶として非晶質Siを固
相のままSiO2膜上にまで単結晶化させる技術もある。
Also, after forming an exposed Si portion on the surface of a single-crystal SI substrate having an amorphous SiO 2 film on the surface, an amorphous Si film is formed on the surface and the substrate is heated, and the exposed Si portion is used as a seed crystal to form a non-crystal. There is also a technique in which crystalline Si is single-crystallized on a SiO 2 film in a solid phase.

〔発明が解決しようとする課題〕 しかしながら、上述の薄膜形成方法では、基板と異種
の物質の膜の単結晶化が困難であるという問題がある。
[Problems to be Solved by the Invention] However, the above-mentioned thin film forming method has a problem that it is difficult to single-crystallize a film of a material different from the substrate.

本発明の目的は、基板と異種の物質の膜の単結晶化を
非晶質薄膜上で行えるようにした単結晶薄膜形成方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming a single crystal thin film in which a film of a material different from a substrate can be single-crystallized on an amorphous thin film.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の単結晶薄膜形成方法の構成は、非晶質薄膜上
に膜を堆積する際に、基板表面側の基板表面と低角をな
す複数方向からイオンビームまたは電子ビームを照射
し、このビームの照射方向を堆積しようとする膜の結晶
のチャネリング条件に合うような方向にすることを特徴
とする。
The structure of the method for forming a single-crystal thin film of the present invention is such that, when a film is deposited on an amorphous thin film, an ion beam or an electron beam is irradiated from a plurality of directions at a low angle with the substrate surface on the substrate surface side. The irradiation direction is set so as to meet the channeling condition of the crystal of the film to be deposited.

また、本発明において、イオンビームまたは電子ビー
ムの照射が、基板の裏側の複数方向から行われることも
できる。
In the present invention, the irradiation of the ion beam or the electron beam may be performed from a plurality of directions on the back side of the substrate.

〔作用〕[Action]

本発明の原理を第2図(a)〜(d)模式的断面によ
り説明する。結晶6に特定の方向からイオンビーム3
(または電子ビーム3a;以下同様とする)を照射すると
チャネリングと呼ばれる現象が生ずる(第2図
(a))。これに対しずらした方向からイオンビーム3
を照射した場合、第2図(b)に模式的に示したように
非チャネリング状態となる。
The principle of the present invention will be described with reference to FIGS. 2 (a) to 2 (d). The ion beam 3 is applied to the crystal 6 from a specific direction.
Irradiation (or electron beam 3a; the same applies hereinafter) causes a phenomenon called channeling (FIG. 2 (a)). On the other hand, the ion beam 3
Irradiates a non-channeling state as schematically shown in FIG. 2 (b).

チャネリング状態と非チャネリング状態ではイオン
(電子)の結晶による散乱率が大幅に異なり、チャネリ
ング状態の方が単位体積当りの結晶の散乱が少ない。即
ち、チャネリング状態の方が結晶がイオンビームから受
け取る単位体積当りのエネルギが小さい。
In the channeling state and the non-channeling state, the scattering rate of ions (electrons) by the crystal is significantly different, and in the channeling state, the scattering of the crystal per unit volume is smaller. That is, the energy per unit volume that the crystal receives from the ion beam in the channeling state is smaller.

予めイオンビーム3が照射された場所で結晶が成長し
ようとする場合、第2図(c)に示すように、初期的に
島状に結晶粒が成長する際にチャネリング条件にあった
結晶方位に配向した結晶粒7の方が非チャネリング条件
の結晶粒8よりイオンビーム3のエネルギを受け取る量
が少ないために安定に成長できる。第2図(d)に示す
ように、特定の複数の方向からイオンビーム3が照射さ
れていれば、より安定に成長できる結晶粒10方位は1つ
に定まり、島状の結晶粒の方位が揃うことになる。やが
て島状結晶粒が互いに接するようになった時に、単結晶
化が進むことになる。
When a crystal is to be grown in a place previously irradiated with the ion beam 3, as shown in FIG. 2 (c), when the crystal grain initially grows in an island shape, the crystal orientation matches the channeling condition. The oriented crystal grains 7 receive less energy of the energy of the ion beam 3 than the crystal grains 8 under the non-channeling condition, so that they can be grown more stably. As shown in FIG. 2 (d), if the ion beam 3 is irradiated from a plurality of specific directions, the crystal grain 10 orientation that can grow more stably is determined to be one, and the orientation of the island-like crystal grain is changed. It will be aligned. Eventually, when the island-shaped crystal grains come into contact with each other, single crystallization proceeds.

しかし、イオン(電子)照射を基板表面の高角から行
なえば、下地にイオンが打ち込まれるため、下地部分で
温度上昇や損傷が生じ、上記の効果が薄れてしまう。そ
のため、基板表面の低角または基板裏面からイオン(電
子)照射をする必要がある。
However, if ion (electron) irradiation is performed from a high angle on the surface of the substrate, ions are implanted into the underlayer, so that a temperature rise or damage occurs in the underlayer, and the above-described effects are diminished. Therefore, it is necessary to irradiate ions (electrons) from a low angle on the substrate surface or from the rear surface of the substrate.

〔実施例〕〔Example〕

第1図(a)〜(c)は、本発明の一実施例を図を説
明する模式的斜視図であり、Al単結晶膜を非晶質SiO2
上に成長させる場合を示す。まず、第1図(a)に示す
ように、表面に500nm厚のSiO2膜2を有するSi基板1の
表面から1度の角度で、互いの角度が70.53度になるよ
うに2方向から1.5MeV,0.1mA/cm2のHeイオンビーム3を
照射した状態で基板温度200℃でAlの真空蒸着による1nm
/秒の堆積を開始する。
1 (a) to 1 (c) are schematic perspective views for explaining an embodiment of the present invention, and show a case where an Al single crystal film is grown on an amorphous SiO 2 film. First, as shown in FIG. 1 (a), an angle of 1 degree from the surface of a Si substrate 1 having a 500 nm thick SiO 2 film 2 on the surface and 1.5 degrees from two directions so that the mutual angle is 70.53 degrees. 1 nm by vacuum evaporation of Al at a substrate temperature of 200 ° C. while irradiating a MeV, 0.1 mA / cm 2 He ion beam 3
Initiate / sec deposition.

次に、第1図(b)に示すように、やがて方位の揃っ
た島状結晶粒が互いに接してAlが膜状になると考えられ
る50nm厚までイオンビーム3を照射し続ける。それ以降
は、第1図(c)に示すように、イオンビーム3を照射
しなくても単結晶成長は進む。
Next, as shown in FIG. 1 (b), the ion beam 3 is continuously applied to a thickness of 50 nm, which is considered to be in a state where the island-like crystal grains having a uniform orientation come into contact with each other and Al becomes a film. Thereafter, as shown in FIG. 1 (c), single crystal growth proceeds without irradiation with the ion beam 3.

なお、この場合、基板垂直方向にAl〈110〉,基板面
方向にAl〈111〉というようにAl単結晶膜が成長する。
In this case, an Al single crystal film is grown such that Al <110> is perpendicular to the substrate and Al <111> is perpendicular to the substrate surface.

なお、本実施例において、イオンビーム3aの代りに電
子ビーム(3a)を用いることもできる。この場合、本実
施例のイオンビームに対応する照射する電子ビームは20
0keV,0.1mA/cm2程度であればよい。
In this embodiment, an electron beam (3a) can be used instead of the ion beam 3a. In this case, the irradiation electron beam corresponding to the ion beam of this embodiment is 20
It suffices that it is about 0 keV and about 0.1 mA / cm 2 .

第3図(a)〜(c)は、本発明の第2の実施例を説
明する模式的断面図である。この場合もAl単結晶膜を非
晶質SiO2膜上に成長させている。まず、第3図(a)に
示すように、表面に500nm厚のSiO2膜2を有し、基板Si
の一部が除去されているSi基板1の裏側から、互いの角
度が70.53度になるように2方向から200keV,0.1mA/cm2
の電子ビーム3aを照射した状態で基板温度200℃でAlの
真空蒸着による1nm/秒の堆積を開始する。
FIGS. 3A to 3C are schematic sectional views illustrating a second embodiment of the present invention. Also in this case, the Al single crystal film is grown on the amorphous SiO 2 film. First, as shown in FIG. 3 (a), a 500 nm thick SiO 2 film 2
200 keV, 0.1 mA / cm 2 from two directions from the back side of the Si substrate 1 from which a part of
At a substrate temperature of 200 ° C., deposition of 1 nm / sec by vacuum evaporation of Al is started in a state where the electron beam 3a is irradiated.

次に、第3図(b)に示すように、やがて方位の揃っ
た島状結晶粒が互いに接してAlが膜状になると考えられ
る50nm厚まで電子ビーム3aを照射し、それ以降は、第3
図(c)に示すように、電子ビーム3aを照射しなくても
単結晶成長は進む。
Next, as shown in FIG. 3 (b), the electron beam 3a is irradiated to a thickness of 50 nm, which is considered that the island-shaped crystal grains having a uniform orientation come into contact with each other to form Al into a film. 3
As shown in FIG. 3C, single crystal growth proceeds without irradiation with the electron beam 3a.

なお、この場合、基板垂直方向にAl〈110〉,基板面
方向にAl〈001〉というようにAl単結晶膜が成長する。
In this case, an Al single crystal film grows in the direction perpendicular to the substrate, such as Al <110>, and in the direction along the substrate surface, Al <001>.

また、本実施例も電子ビーム3の代りに、第1の実施
例と同様のイオンビーム3を用いることができる。
In this embodiment, the same ion beam 3 as in the first embodiment can be used instead of the electron beam 3.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、基板と異種の物
質の単結晶膜を非晶質薄膜上に結晶方位を制御して成長
することができるという効果がある。
As described above, according to the present invention, there is an effect that a single crystal film of a substance different from the substrate can be grown on the amorphous thin film while controlling the crystal orientation.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(c)は本発明の一実施例を工程順に説
明する模式的斜視図、第2図(a)〜(d)は本発明の
原理を説明する断面図、第3図(a)〜(c)は本発明
の第2の実施例を工程順に説明する斜視図である。 1……Si基板、2……SiO2膜、3……イオンビーム、3a
……電子ビーム、4……蒸着Al原子、5……堆積Al、6
……結晶、7,8……チャネリング条件および非チャネリ
ング条件の結晶粒、9……基板、10……安定成長した結
晶粒。
1 (a) to 1 (c) are schematic perspective views illustrating an embodiment of the present invention in the order of steps, FIGS. 2 (a) to 2 (d) are cross-sectional views illustrating the principle of the present invention, and FIG. FIGS. 7A to 7C are perspective views for explaining a second embodiment of the present invention in the order of steps. 1 ... Si substrate, 2 ... SiO 2 film, 3 ... Ion beam, 3a
...... Electron beam, 4 ... Evaporated Al atoms, 5 ... Evaporated Al, 6
... crystal, 7,8 ... crystal grains under channeling and non-channeling conditions, 9 ... substrate, 10 ... crystal grains grown stably.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非晶質薄膜上に膜を堆積する際に、基板表
面側の基板表面と低角をなす複数方向からイオンビーム
または電子ビームを直接照射し、このビームの照射方向
を堆積しようとする膜の結晶のチャネリング条件に合う
ような方向にすることを特徴とする単結晶薄膜形成方
法。
When depositing a film on an amorphous thin film, an ion beam or an electron beam is directly irradiated from a plurality of directions forming a low angle with the substrate surface on the substrate surface side, and the irradiation direction of the beam is deposited. A method for forming a single crystal thin film, characterized in that the direction is set so as to meet channeling conditions of the crystal of the film to be formed.
【請求項2】非晶質薄膜上に膜を堆積する際に、基板裏
面側の基板と低角をなす複数方向からイオンビームまた
は電子ビームを非晶質薄膜を介して照射し、このビーム
の照射方向を堆積しようとする膜の結晶のチャネリング
条件に合うような方向にすることを特徴とする単結晶薄
膜形成方法。
2. When depositing a film on an amorphous thin film, an ion beam or an electron beam is irradiated through the amorphous thin film from a plurality of directions forming a low angle with the substrate on the back surface of the substrate. A method for forming a single crystal thin film, wherein the irradiation direction is set to a direction that matches channeling conditions of a crystal of a film to be deposited.
JP2094528A 1990-04-10 1990-04-10 Single crystal thin film forming method Expired - Lifetime JP2699608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2094528A JP2699608B2 (en) 1990-04-10 1990-04-10 Single crystal thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2094528A JP2699608B2 (en) 1990-04-10 1990-04-10 Single crystal thin film forming method

Publications (2)

Publication Number Publication Date
JPH03292728A JPH03292728A (en) 1991-12-24
JP2699608B2 true JP2699608B2 (en) 1998-01-19

Family

ID=14112834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2094528A Expired - Lifetime JP2699608B2 (en) 1990-04-10 1990-04-10 Single crystal thin film forming method

Country Status (1)

Country Link
JP (1) JP2699608B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158615A (en) * 1984-01-27 1985-08-20 Toshiba Corp Single crystal growth
JP2504038B2 (en) * 1987-03-23 1996-06-05 日新電機株式会社 Method of forming metal film

Also Published As

Publication number Publication date
JPH03292728A (en) 1991-12-24

Similar Documents

Publication Publication Date Title
JP2000119096A (en) Method for forming silicide of alkaline earth metal on silicon
JPH0360171B2 (en)
JP2743377B2 (en) Semiconductor thin film manufacturing method
JP2699608B2 (en) Single crystal thin film forming method
US6057213A (en) Methods of forming polycrystalline semiconductor layers
Kumomi et al. Selective nucleation-based epitaxy (SENTAXY): A novel approach for thin film formation
JPS5893222A (en) Preparation of semiconductor single crystal film
JPH0810669B2 (en) Method of forming SOI film
US5379712A (en) Method of epitaxially growing thin films using ion implantation
JP3194608B2 (en) Recrystallization method by beam irradiation of neutral particles
JPH059099A (en) Method for growing crystal
JP2541456B2 (en) Microstructure fabrication method
JPH01239094A (en) Method for crystal growth
JP2748358B2 (en) Manufacturing method of semiconductor single crystal thin film
JP2737152B2 (en) SOI forming method
JPH03250621A (en) Manufacture of semiconductor film
JP3227768B2 (en) Method for controlling crystal orientation of copper thin film
JPS60246619A (en) Manufacture of semiconductor device
JPH02143414A (en) Formation of single crystal film
JP2680114B2 (en) Method for forming crystalline semiconductor thin film
JPS60164316A (en) Formation of semiconductor thin film
JPS63107894A (en) Formation of thin semiconductor film
JPH0834176B2 (en) Method for manufacturing semiconductor single crystal layer
JPS5939022A (en) Manufacture of semiconductor single crystal thin film
JPS63232311A (en) Manufacture of semiconductor thin film