JPS60166298A - Preparation of film - Google Patents

Preparation of film

Info

Publication number
JPS60166298A
JPS60166298A JP59021866A JP2186684A JPS60166298A JP S60166298 A JPS60166298 A JP S60166298A JP 59021866 A JP59021866 A JP 59021866A JP 2186684 A JP2186684 A JP 2186684A JP S60166298 A JPS60166298 A JP S60166298A
Authority
JP
Japan
Prior art keywords
film
ion
substrate
vacuum
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59021866A
Other languages
Japanese (ja)
Inventor
Masahito Uda
雅人 右田
Morio Taniguchi
彬雄 谷口
Heigo Ishihara
石原 平吾
Motoo Akagi
赤城 元男
Sumio Yamaguchi
山口 純男
Toru Habu
徹 土生
Kenjiro Tamura
田村 憲司郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59021866A priority Critical patent/JPS60166298A/en
Publication of JPS60166298A publication Critical patent/JPS60166298A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds

Abstract

PURPOSE:To enable the preparation of various kinds of films from highly crystalline polymerized film to amorphous polymerized film in one vacuum apparatus, by evaporating a condensed polycyclic hydrocarbon crystal containing aromatic ring to a substrate in vacuum, and bombarding the substrate with inert gas ion. CONSTITUTION:A condensed polycyclic hydocarbon crystal containing 2-7 aromatic rings is evaporated in vacuum by using a vacuum evaporation apparatus furnished with a means for radiating inert gas ion. Simultaneous to the vacuum evaporation, the substrate is bomboarded with inert gas ion such as He<+>, Ar<+>, Kr<+>, etc. at a prescribed ion current and ion acceleration potential. The evaporated material is deposited in the form of single crystal, polycrystal, amorphous film, or polymerized film having highly oriented constituent molecules, or amorphous polymerized film by properly varying the ion current and the ion acceleration potential. The obtained film has smooth surface and excellent adhesivity to the substrate.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は有機分子性結晶、特に2〜7個の芝香族環を含
む縮合多環炭化水素結晶を構成要素とする膜の作製方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for producing a film whose constituent elements are organic molecular crystals, particularly fused polycyclic hydrocarbon crystals containing 2 to 7 shiba aromatic rings.

〔発明の背景〕[Background of the invention]

薄膜材料は電子、光学、機械等の種々な技術分野で利用
されているが、特に電子工学の分野では最近のIC,L
SI技術の進歩にともない、重要な材料の一つになって
いる。これらの分野で使用される薄膜の中で特に単結晶
薄膜は、本来結晶として有している物理的性質に加えて
、不純物を加えることによって電気抵抗を大きく変える
ことができるなどのいわゆる構造敏感性を有するため、
広(工業的に応用されている。しかし、これらのすぐれ
た特徴を有する単結晶薄膜は一般に製造コストが高いた
め、近年は単結晶薄膜にかわるものとして、非晶質もし
くは多結晶薄膜が注目されるようになった。これらの簿
膜は、単結晶薄膜に比べて、一般に作製が容易で、製造
コストが安くなるという大きな利点がある。
Thin film materials are used in various technical fields such as electronics, optics, and mechanics, but especially in the field of electronic engineering, recent IC, L
With the advancement of SI technology, it has become one of the important materials. Among the thin films used in these fields, single-crystal thin films in particular have so-called structural sensitivities, such as the ability to significantly change electrical resistance by adding impurities, in addition to the physical properties they originally possess as crystals. Because it has
However, since single-crystal thin films with these excellent characteristics are generally expensive to manufacture, amorphous or polycrystalline thin films have attracted attention in recent years as an alternative to single-crystal thin films. Compared to single-crystalline thin films, these films have the major advantage of being easier to fabricate and lower manufacturing costs.

従来、固体材料を用いた薄膜作製方法は、一般に単純蒸
発法が用いられている。単純蒸発法には、真空蒸着法と
昇華法があり、昇華法はさらに大別すると、カラスある
いは石英製の容器の一端部に原料粉末、他端部に基板を
入れ、不活性ガスを適当にみたしてHし切った後、この
容器をi’!i1’h度勾配をもった炉に入れて原料を
高温側で加熱気化させ、それを低温側の基板上に結晶化
させる封管法と、原粉粉末を炉の高温部で気化させ、こ
の蒸気を不活性カスの流れによって基板を置いた低温部
に移し、そこで晶板上に凝縮、結晶化させる気流法とが
ある。
Conventionally, a simple evaporation method has generally been used as a method for producing thin films using solid materials. Simple evaporation methods include vacuum evaporation methods and sublimation methods. Sublimation methods can be further divided into two: A raw material powder is placed in one end of a container made of glass or quartz, a substrate is placed in the other end, and an appropriate amount of inert gas is added. After I finished having sex, I'! The sealed tube method involves placing the raw material in a furnace with a temperature gradient, heating and vaporizing it on the high temperature side, and crystallizing it on a substrate on the low temperature side. There is an air flow method in which vapor is transferred by a flow of inert gas to a low-temperature area where a substrate is placed, where it is condensed and crystallized on a crystal plate.

有機化合物の蒸気圧は一般に高いため、封管法あるいは
気流法による結晶薄膜の作製が容易である。しかし、真
空蒸着法を含めて、単純蒸発法では、薄膜として重要な
特質である任意の面積にわたって表面形状が平滑で、結
晶粒の大きさの違いによる凹凸がなく、しかも均一な結
晶性薄膜を得ることが困難であるという欠点があった。
Since the vapor pressure of organic compounds is generally high, it is easy to produce crystalline thin films using a sealed tube method or an air flow method. However, simple evaporation methods, including vacuum evaporation methods, produce uniform crystalline thin films with a smooth surface over any area, which is an important characteristic for thin films, and without unevenness due to differences in crystal grain size. The disadvantage was that it was difficult to obtain.

また、単結晶薄膜は、最近、機能性新材料としての観点
から期待されている有機化合物において重要になりつつ
あるが、アン;・ラセン、ピレンなとの有機分子性結晶
は通常高温や湿気に弱(、通常の蒸着膜では機能材料と
しての信頼性に欠けるという欠点があった。
In addition, single-crystal thin films have recently become important for organic compounds that are expected to be used as new functional materials, but organic molecular crystals such as anthems, helixes, and pyrenes are generally susceptible to high temperatures and humidity. (Weak), normal vapor-deposited films had the disadvantage of lacking reliability as functional materials.

さらに、従来の非晶質膜の作製方法は、一般に材料によ
って異なり、真空蒸着法、溶融状態からの急冷化法、グ
ロー放電法、アーク放電法等の種々の方法が用いられて
いる。したがって、非晶質も含め、多結晶質膜、単結晶
質膜、さらには高分子化膜の作製を一つの装置で行なう
ことはできず、それぞれに適した多くの装置を必要とし
、はなはだ不便であった。
Furthermore, conventional methods for producing an amorphous film generally vary depending on the material, and various methods are used, such as a vacuum evaporation method, a rapid cooling method from a molten state, a glow discharge method, and an arc discharge method. Therefore, it is not possible to fabricate polycrystalline films, single-crystalline films, and even polymerized films, including amorphous films, using a single device, and many devices suitable for each type of film are required, which is extremely inconvenient. Met.

〔発明の目的〕[Purpose of the invention]

本発明の1」的は、上記従来技術の欠点を改善するとと
もに、有機分子性結晶、特に2〜7個の芳香族環を含む
縮合多環炭化水素結晶を構成要素とする非晶質、多結晶
、単結晶膜のみでなく、高結晶性高分子化膜から非晶質
性高分子化膜まてを一つの真空装置内において作製でき
る方法を提供することにある。
The first object of the present invention is to improve the above-mentioned drawbacks of the prior art, and to provide an amorphous and polycyclic crystalline material whose constituent elements are organic molecular crystals, particularly fused polycyclic hydrocarbon crystals containing 2 to 7 aromatic rings. The object of the present invention is to provide a method that can produce not only crystal and single crystal films but also highly crystalline polymer films and amorphous polymer films in one vacuum apparatus.

〔発明の概要〕[Summary of the invention]

本発明は、」二記の目的を達成するために、不活性ガス
イオン照射手段を具えた真空蒸着装置を用い、縮合多環
炭化水素結晶を基板上に真空蒸着すると同時に該基板に
対してHeζArl; Kr4等の不活性ガスイオンを
照射するようにして」二記の欠点を除去するようにした
ものである。この蒸着に際し、イオン電流、イオン加速
電圧を適宜変えることによって、蒸着物質の単結晶、多
結晶、非晶質膜、あるいは構成分子が高配向性をもった
高分子化膜、もしくは非晶質高分子化膜を作製すること
ができる。
In order to achieve the second object, the present invention uses a vacuum evaporation apparatus equipped with inert gas ion irradiation means to vacuum evaporate a condensed polycyclic hydrocarbon crystal onto a substrate, and simultaneously apply HeζArl to the substrate. The above two drawbacks are removed by irradiating with inert gas ions such as Kr4. During this vapor deposition, by appropriately changing the ion current and ion accelerating voltage, it is possible to form a single crystal, polycrystalline, or amorphous film of the vapor deposition material, a polymer film with highly oriented constituent molecules, or an amorphous polymer film. A molecular film can be created.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を添付図面に基づいて説明するが
、本発明はこれらの実施例の範囲に限定されるものでは
ない。
Examples of the present invention will be described below based on the accompanying drawings, but the present invention is not limited to the scope of these examples.

実施例 1゜ 第1図は本発明の実施に用いた膜作製装置である。1は
引き出し、収束、偏向の各電極を含むイオンビーム発生
装置てあり、引き出されたイオンビーム2は真空室3内
に設置された回転可能な裁板保持台4」二の基板5」二
に照射される。6は加熱用フィラメント7を具えた原料
蒸発用るつぼ、8は基板加熱用フィラメント、9は真空
室3の排気管である。
Example 1 FIG. 1 shows a film manufacturing apparatus used to carry out the present invention. Reference numeral 1 denotes an ion beam generator including extraction, convergence, and deflection electrodes, and the extracted ion beam 2 is transferred to a rotatable cutting plate holding table 4, which is installed in a vacuum chamber 3, and a substrate 5, which is installed in a vacuum chamber 3. irradiated. 6 is a crucible for evaporating raw materials equipped with a heating filament 7; 8 is a substrate heating filament; 9 is an exhaust pipe for the vacuum chamber 3.

第2図は第1図の装置を用い、室温下(基板温度、室温
)蒸着速度0.9μm/minで、非晶質石英基板上に
作製した膜厚0.6μmのピレン蒸着膜の透過X線回折
パターンを示す。
Figure 2 shows the transmission X of a pyrene vapor-deposited film with a thickness of 0.6 μm fabricated on an amorphous quartz substrate using the apparatus shown in Figure 1 at room temperature (substrate temperature, room temperature) and a deposition rate of 0.9 μm/min. The line diffraction pattern is shown.

今、結晶蒸着膜の配向度を以下の式で定義する。Now, the degree of orientation of the crystal deposited film is defined by the following equation.

ここで、I(hk#)はMillerの指数(h k 
l )で表わされる結晶面でのX線回折強度である。ま
た、第2図中〔旧<l”JはMiller指数(hk/
)で指定される結晶面を表わしている。
Here, I(hk#) is Miller's index (hk
It is the X-ray diffraction intensity at the crystal plane represented by l). In addition, in Figure 2, [old <l”J is the Miller index (hk/
) represents the crystal plane specified by.

第2図から、このピレン蒸着膜においては、基板に〔0
01]面が平行であるものの配合度が、0.62 、 
C]、 OO)及び[220’:1面が糸仮に平行なも
のの配向度が0.14である。その他種々な結晶面によ
る回折パターンが現われており、上記の蒸着膜は[:0
01]、c■oo〕及び〔220〕優先配向性の多結晶
膜である。
From FIG. 2, it can be seen that in this pyrene vapor-deposited film, [0
01] The blending degree of the planes that are parallel is 0.62,
C], OO) and [220': The degree of orientation of the yarns with one plane parallel to each other is 0.14. Diffraction patterns due to various other crystal planes appear, and the above deposited film has [:0
01], c■oo] and [220] are polycrystalline films with preferential orientation.

第3図に、室温下、蒸着速度12μm/minで、ピレ
ンを蒸着すると同時にイオン電流0.18μA/cl、
加速電圧0,2kVで加速したHe’イオンヒームを照
射して作製したnλのX線回折パターンを示す。この蒸
着膜の〔001]面の配向度は0.93であった。
FIG. 3 shows that pyrene was deposited at room temperature at a deposition rate of 12 μm/min, and at the same time, an ionic current of 0.18 μA/cl was applied.
An X-ray diffraction pattern of nλ produced by irradiation with a He' ion beam accelerated at an acceleration voltage of 0.2 kV is shown. The degree of orientation of the [001] plane of this deposited film was 0.93.

この時[001:]の結晶化度はピレン粉末結晶の結晶
化度に一致した。この膜の赤外スペクトルはイオン照射
しない場合のピレン蒸着膜の赤外スペクトルによく一致
するところから、この膜は高分子化化学反応が進行して
いない、ピレン単結晶に近い構造をもった薄膜となって
いることがわかる。
At this time, the crystallinity of [001:] matched the crystallinity of pyrene powder crystals. The infrared spectrum of this film closely matches the infrared spectrum of a pyrene vapor-deposited film without ion irradiation, indicating that this film is a thin film with a structure close to that of a pyrene single crystal, in which no polymerization chemical reaction has progressed. It can be seen that

実施例 2 ピレンを室温下、蒸着速度09μm/min、蒸着時間
40秒、イオン電流1.18μA/cJ、加速電圧Q、
5kVで、He4イオン照射して作製したピレン蒸着膜
と、イオン照射を行なわず、同一蒸着速度、時間で作製
したピレン蒸着膜の赤外スペクトルを第4図に示す、図
において、曲線aはイオン照射しないで作製した膜、曲
線すはイオン照射して作製した膜のスペクトルである。
Example 2 Pyrene was deposited at room temperature, vapor deposition rate 09 μm/min, vapor deposition time 40 seconds, ion current 1.18 μA/cJ, acceleration voltage Q,
Figure 4 shows the infrared spectra of a pyrene vapor deposited film prepared by irradiating He4 ions at 5 kV and a pyrene vapor deposited film prepared at the same deposition rate and time without ion irradiation. The curve shows the spectrum of the film produced without ion irradiation, and the film produced with ion irradiation.

このようにして得られた膜のうち、曲線すで示したイオ
ン照射しない膜は、エタノール、アセトン、テトラハイ
ドロフラン、ベンゼン、ヘキサノ等の有機溶媒に可溶で
あるが、曲線aで示したイオン照射した膜は前記有機溶
媒に不溶な高分子化膜に変化していた。波数3040C
m ’付近の光に対するピレンのC−H伸縮振動の透過
強度はaの膜の84%からbの膜の94係まで増加して
いることから、少な(ともピレンのC−H結合が関与す
る高分子化反応がイオンビーム照射の結果として起って
いることがわかる。
Among the membranes obtained in this way, the membranes that are not irradiated with the ions shown in the curve a are soluble in organic solvents such as ethanol, acetone, tetrahydrofuran, benzene, hexano, etc., but the ions shown in the curve a The irradiated film had changed into a polymerized film that was insoluble in the organic solvent. Wave number 3040C
The transmission intensity of the C-H stretching vibration of pyrene for light around m' increases from 84% in film a to 94% in film b, indicating that the C-H bond of pyrene is involved. It can be seen that the polymerization reaction occurs as a result of ion beam irradiation.

実施例 3 第5図(B)に室温下、蒸着速度Q、9 pm/min
、蒸着時間40秒の条件でピレンを蒸着すると同時に、
加速電圧Q、5kVと一定にしてHe+イオン電流を変
化させてイオン照射して得られた膜のX線回折よりめた
膜の[:001)面(曲線a)と〔nnO〕(n−1,
2)面(曲線b)の配向度の値をプロットした結果を示
す。また、赤外振動スペクトルに現われたピレンのC−
H伸縮振動の透過速度の同様なプロットを第5図(A)
に示す。図(A)において、縦軸はピレン蒸着膜のC−
H伸縮振動の透過強度をToとし、イオン照射したとき
のそれをTとし、100−T/100−To式で定義さ
れる値である。
Example 3 In FIG. 5(B), at room temperature, vapor deposition rate Q, 9 pm/min
At the same time, pyrene was deposited under the conditions of 40 seconds of deposition time,
The [:001) plane (curve a) and [nnO] (n-1) of the film obtained by X-ray diffraction of the film obtained by ion irradiation with the accelerating voltage Q kept constant at 5 kV and the He+ ion current varied. ,
2) The results of plotting the orientation degree values of the plane (curve b) are shown. In addition, C- of pyrene appeared in the infrared vibration spectrum.
A similar plot of the transmission rate of H stretching vibration is shown in Figure 5 (A).
Shown below. In Figure (A), the vertical axis is C- of the pyrene vapor deposited film.
The transmission intensity of the H stretching vibration is To, and the intensity when ion irradiation is T, which is a value defined by the 100-T/100-To formula.

図(A)、(B)から、イオン電流量0.025 pA
/cl以下では、C−H伸縮振動の透過強度と結晶膜の
配向度ともに変化しないが、イオン電流0025〜0.
125μA/crlの領域では、膜の重合化反応が起る
とともに、[:00])面優先配向性の結晶膜が成長し
ていた。したがって、以上の条件下では、蒸着と同時に
イオンビームを照射することによって(001)優先配
向を引き起こすとともに、その配列構造を保ったままで
化合反応の進行をひきおこし、構成分子の高配列構造を
もった高分子膜を得ることができた。また、得られた膜
の表面形状は平滑で、しかも、基板に対する密着性は良
好であった。
From figures (A) and (B), the ion current amount is 0.025 pA.
/cl or less, both the transmission intensity of C-H stretching vibration and the degree of orientation of the crystal film do not change, but the ionic current is 0025 to 0.
In the region of 125 μA/crl, a polymerization reaction of the film occurred and a crystal film with [:00]) plane preferential orientation was grown. Therefore, under the above conditions, by irradiating the ion beam at the same time as vapor deposition, the (001) preferential orientation is induced, and the compounding reaction is caused to proceed while maintaining the alignment structure, resulting in a highly aligned structure of the constituent molecules. A polymer membrane could be obtained. Moreover, the surface shape of the obtained film was smooth, and the adhesion to the substrate was good.

実施例 4 第6図に室温下、蒸着速度0.9μm/+ηin、蒸着
時間40秒の条件で蒸着すると同時にイオン電流003
μA/ctlと一定にして、加速電圧を0.25kV、
Q、5kV、lkV、2kVと増加させてイオン照射し
て得られた膜の(:OOI:]而の配向度変化(曲線a
)とX線回折のシグナル強度からめた結晶化度の変化(
曲線b)を示す。このとき結晶化度はピレン蒸着膜の全
シグナル強度を1に規格化しである。この場合、[00
1)面優先配向性は、加速電圧03〜Q、4kVで最大
値077をとり、加速電圧の増加とともに減少し、加速
電圧2に■で028になる。一方ピレン粉末結晶の結晶
化度を100とした場合、[001:]の結晶化度は加
速電圧の増加とともに減少し、加速電圧が2kVでは0
.01である。加速電圧がlkV以」二で形成した膜の
赤外振動スペクトルのC−H伸縮強度はピレン蒸着膜に
比べて減少して。
Example 4 Figure 6 shows that the ion current was 0.03 m at room temperature, the evaporation rate was 0.9 μm/+ηin, and the evaporation time was 40 seconds.
Keeping the acceleration voltage constant at μA/ctl, 0.25kV,
Change in the degree of orientation (:OOI:) of the film obtained by ion irradiation with Q, 5kV, lkV, and 2kV (curve a)
) and the change in crystallinity determined from the signal intensity of X-ray diffraction (
Curve b) is shown. At this time, the crystallinity is determined by normalizing the total signal intensity of the pyrene deposited film to 1. In this case, [00
1) The surface-preferential orientation takes a maximum value of 077 at acceleration voltages of 03 to Q and 4 kV, decreases as the acceleration voltage increases, and reaches 028 at acceleration voltage of 2 and ■. On the other hand, when the crystallinity of pyrene powder crystal is 100, the crystallinity of [001:] decreases as the accelerating voltage increases, and when the accelerating voltage is 2 kV, it becomes 0.
.. It is 01. The C-H stretching strength of the infrared vibration spectrum of the film formed at an accelerating voltage of 1kV or higher was decreased compared to that of the pyrene deposited film.

おり、また前記した有機溶媒に不溶であることから、高
分子化反応が起っていることがわかる。
Moreover, since it is insoluble in the above-mentioned organic solvent, it can be seen that a polymerization reaction is occurring.

実施例 5゜ ピレンを室温下、蒸着速度09μA/cJ、蒸着時間4
0秒の条件で蒸着すると同時に加速電圧2に■、イオン
電流003μA/7としてHe4−イオンを照射して作
製したピレン蒸着膜のX線回折パターンを第7図に示す
。特別な回折ノブナルはほとんど現われず、膜構造は非
晶質であることがわかる。また、この膜は有機溶媒に不
溶である。したがって、この膜は構成分子の配列がほぼ
完全にランタムな高分子膜であることがわかる。
Example 5゜Pyrene at room temperature, evaporation rate 09μA/cJ, evaporation time 4
FIG. 7 shows the X-ray diffraction pattern of a pyrene vapor-deposited film prepared by irradiating He4- ions at an acceleration voltage of 2 and an ion current of 003 μA/7 while simultaneously depositing the film for 0 seconds. Almost no special diffraction knobs appear, indicating that the film structure is amorphous. Additionally, this film is insoluble in organic solvents. Therefore, it can be seen that this membrane is a polymer membrane in which the arrangement of constituent molecules is almost completely random.

以上においてはピレンを例にとって本発明を説明したが
、本発明はピレンのみてなく、これを含む2〜7個の芳
香族環を含む縮合多環炭化水素類に対しても同様な結果
が得られる。
Although the present invention has been explained above using pyrene as an example, the present invention can also be applied not only to pyrene but also to fused polycyclic hydrocarbons containing 2 to 7 aromatic rings. It will be done.

〔発明の効果〕〔Effect of the invention〕

以上説明したところから明らかなように、本発明によれ
ば、イオン照射手段を具えた真空蒸着装置を用い、イオ
ン電流、イオン加速電圧を適宜変えることによって、こ
の装置一つで、縮合多環炭化水素を構成要素とする単結
晶、多結晶、非晶質化膜のみでな(、結晶性高分子化膜
から非晶質高分子化膜まで作製することができる上、得
られる膜は表面形状が泪らかで、しかも基板に対する密
着性も良好であるという大きな利点がある。
As is clear from the above explanation, according to the present invention, by using a vacuum evaporation apparatus equipped with ion irradiation means and appropriately changing the ion current and ion acceleration voltage, condensed polycyclic carbonization can be achieved with just this apparatus. Not only single-crystal, polycrystalline, and amorphous films containing hydrogen as a constituent element can be produced (from crystalline polymer films to amorphous polymer films, and the resulting film has a different surface shape. It has the great advantage of being gentle and having good adhesion to the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に用いる膜作製装置の説明図、第
2図、第3図は本発明に関連したピレン蒸着膜のX線回
折パターンを示す図、第4図は本発明に関連したピレン
蒸着膜の赤外透過スペクトルを示す図、第5図A、Bは
それぞれHe″゛イオン照射電流量とピレン蒸着膜のC
−H伸縮振動の透過強度及び膜結晶の配向度の関係を示
す図、第6図はイオン加速電圧を変えたときのピレン蒸
着膜の結晶配向度と結晶化度の変化を示す図、第7図は
本発明の実施例によるピレン蒸着膜のX線回折パターン
を示す図である。 図において。 1・・・イオンビームJH[置 2・・・イオンビーム 3・・真空室 4・・・基板保持台 5・・・基板 6・・・るつぼ 7・・・るつぼ加熱用フィラメント 8・・・基板加熱用フィラメント 9・・・排気管 代理人弁理士 中村純之助 恒強度1 1’5図 He+イオシV!!、射v 夕友量(、uA/c7?す
1P6図 イオシカD遼、雪、i(KV)
Figure 1 is an explanatory diagram of the film manufacturing apparatus used to carry out the present invention, Figures 2 and 3 are diagrams showing the X-ray diffraction pattern of a pyrene vapor deposited film related to the present invention, and Figure 4 is related to the present invention. Figures A and B show the infrared transmission spectrum of the pyrene vapor-deposited film, respectively.
Figure 6 is a diagram showing the relationship between the transmission intensity of -H stretching vibration and the degree of orientation of the film crystal, Figure 6 is a diagram showing the change in the degree of crystal orientation and crystallinity of the pyrene vapor deposited film when the ion acceleration voltage is changed, Figure 7 The figure shows an X-ray diffraction pattern of a pyrene deposited film according to an example of the present invention. In fig. 1... Ion beam JH [place 2... ion beam 3... vacuum chamber 4... substrate holding stand 5... substrate 6... crucible 7... crucible heating filament 8... substrate Heating filament 9... Exhaust pipe agent Junnosuke Nakamura Constant strength 1 1'5 figure He + Ioshi V! ! , shooting v Yuyu amount (, uA/c7?su 1P6 figure Ioshika D Ryo, Yuki, i (KV)

Claims (1)

【特許請求の範囲】[Claims] 1、不活性カスイオン照射手段を具えた真空蒸着装置を
用い、2〜7個の芳香族環を含む縮合多環炭化水素結晶
を基板上に真空蒸着すると同11−冒こ該基板に対して
所定イオン電流、所定イオン加速電圧で不活性カスイオ
ンを照射することを特徴とする膜作製方法。
1. When a condensed polycyclic hydrocarbon crystal containing 2 to 7 aromatic rings is vacuum evaporated onto a substrate using a vacuum evaporation apparatus equipped with an inert gas ion irradiation means, a predetermined amount of A method for producing a film characterized by irradiating inert gas ions with an ion current and a predetermined ion acceleration voltage.
JP59021866A 1984-02-10 1984-02-10 Preparation of film Pending JPS60166298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59021866A JPS60166298A (en) 1984-02-10 1984-02-10 Preparation of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59021866A JPS60166298A (en) 1984-02-10 1984-02-10 Preparation of film

Publications (1)

Publication Number Publication Date
JPS60166298A true JPS60166298A (en) 1985-08-29

Family

ID=12067045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59021866A Pending JPS60166298A (en) 1984-02-10 1984-02-10 Preparation of film

Country Status (1)

Country Link
JP (1) JPS60166298A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278200A (en) * 1985-09-30 1987-04-10 Res Dev Corp Of Japan Method of forming orientation organic thin film
JPS63238271A (en) * 1987-03-26 1988-10-04 Tokuyama Soda Co Ltd Method for modifying surface by radiation of ion
JPS6456424A (en) * 1987-08-27 1989-03-03 Fujitsu Ltd Production of organic film
JPH01172297A (en) * 1987-12-26 1989-07-07 Toray Ind Inc Production of organic single crystal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278200A (en) * 1985-09-30 1987-04-10 Res Dev Corp Of Japan Method of forming orientation organic thin film
JPH0513920B2 (en) * 1985-09-30 1993-02-23 Shingijutsu Kaihatsu Jigyodan
JPS63238271A (en) * 1987-03-26 1988-10-04 Tokuyama Soda Co Ltd Method for modifying surface by radiation of ion
JPS6456424A (en) * 1987-08-27 1989-03-03 Fujitsu Ltd Production of organic film
JPH01172297A (en) * 1987-12-26 1989-07-07 Toray Ind Inc Production of organic single crystal
JPH058159B2 (en) * 1987-12-26 1993-02-01 Toray Industries

Similar Documents

Publication Publication Date Title
GB1558786A (en) Method and apparatus for film deposition
Usui et al. Effect of substrate temperature on the deposition of polytetrafluoroethylene by an ionization‐assisted evaporation method
JPS60166298A (en) Preparation of film
US3560364A (en) Method for preparing thin unsupported films of silicon nitride
JPS6178463A (en) Formation of synthetic resin film
KR100192228B1 (en) Coating method of tin-oxide
JP3758696B2 (en) Method for producing molecularly oriented organic film
US4214018A (en) Method for making adherent pinhole free aluminum films on pyroelectric and/or piezoelectric substrates
JP2996922B2 (en) Tin oxide thin film sensor for sensing hydrogen and method of manufacturing the same
JP3049534B2 (en) Method for producing polyperinaphthalene thin film
Yin et al. The application of the cathodic arc to plasma assisted chemical vapor deposition of carbon
JPS6379791A (en) Production of thin film
ISHIHARA et al. Structure of MgO films prepared by ion beam sputtering
JPS62177168A (en) Production of thin carbon film
JPH1192684A (en) Production of epsilon-type copper phthalocyanine crystal and thin film thereof by vacuum deposition in gas
JP2524548B2 (en) Method for producing base material having diamond film on surface
JP2856533B2 (en) Method for manufacturing polycrystalline silicon thin film
JPS587058B2 (en) Sankakei Sohakumakuno Seizouhouhou
JP3637926B2 (en) Method for producing diamond single crystal film
JPH03250728A (en) Manufacture of polycrystalline silicon
Ghosh et al. Ultrahigh vacuum evaporation of thin antimony films onto carbon substrates
JPS62208678A (en) Manufacture of superconducting thin film
JPH02226126A (en) Oriented polydiacetylene layer
JPH01190729A (en) Formation of polyimide resin film
JPH01219162A (en) Production of thin oxide film and apparatus therefor